gecko-dev/widget/gonk/libui/InputDispatcher.h

1118 lines
42 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _UI_INPUT_DISPATCHER_H
#define _UI_INPUT_DISPATCHER_H
#include "Input.h"
#include "InputTransport.h"
#include <utils/KeyedVector.h>
#include <utils/Vector.h>
#include <utils/threads.h>
#include <utils/Timers.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/Looper.h>
#include <utils/BitSet.h>
#include <cutils/atomic.h>
#include <stddef.h>
#include <unistd.h>
#include <limits.h>
#include "InputWindow.h"
#include "InputApplication.h"
#include "InputListener.h"
namespace android {
/*
* Constants used to report the outcome of input event injection.
*/
enum {
/* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
INPUT_EVENT_INJECTION_PENDING = -1,
/* Injection succeeded. */
INPUT_EVENT_INJECTION_SUCCEEDED = 0,
/* Injection failed because the injector did not have permission to inject
* into the application with input focus. */
INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
/* Injection failed because there were no available input targets. */
INPUT_EVENT_INJECTION_FAILED = 2,
/* Injection failed due to a timeout. */
INPUT_EVENT_INJECTION_TIMED_OUT = 3
};
/*
* Constants used to determine the input event injection synchronization mode.
*/
enum {
/* Injection is asynchronous and is assumed always to be successful. */
INPUT_EVENT_INJECTION_SYNC_NONE = 0,
/* Waits for previous events to be dispatched so that the input dispatcher can determine
* whether input event injection willbe permitted based on the current input focus.
* Does not wait for the input event to finish processing. */
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
/* Waits for the input event to be completely processed. */
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
};
/*
* An input target specifies how an input event is to be dispatched to a particular window
* including the window's input channel, control flags, a timeout, and an X / Y offset to
* be added to input event coordinates to compensate for the absolute position of the
* window area.
*/
struct InputTarget {
enum {
/* This flag indicates that the event is being delivered to a foreground application. */
FLAG_FOREGROUND = 1 << 0,
/* This flag indicates that the target of a MotionEvent is partly or wholly
* obscured by another visible window above it. The motion event should be
* delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
FLAG_WINDOW_IS_OBSCURED = 1 << 1,
/* This flag indicates that a motion event is being split across multiple windows. */
FLAG_SPLIT = 1 << 2,
/* This flag indicates that the pointer coordinates dispatched to the application
* will be zeroed out to avoid revealing information to an application. This is
* used in conjunction with FLAG_DISPATCH_AS_OUTSIDE to prevent apps not sharing
* the same UID from watching all touches. */
FLAG_ZERO_COORDS = 1 << 3,
/* This flag indicates that the event should be sent as is.
* Should always be set unless the event is to be transmuted. */
FLAG_DISPATCH_AS_IS = 1 << 8,
/* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
* of the area of this target and so should instead be delivered as an
* AMOTION_EVENT_ACTION_OUTSIDE to this target. */
FLAG_DISPATCH_AS_OUTSIDE = 1 << 9,
/* This flag indicates that a hover sequence is starting in the given window.
* The event is transmuted into ACTION_HOVER_ENTER. */
FLAG_DISPATCH_AS_HOVER_ENTER = 1 << 10,
/* This flag indicates that a hover event happened outside of a window which handled
* previous hover events, signifying the end of the current hover sequence for that
* window.
* The event is transmuted into ACTION_HOVER_ENTER. */
FLAG_DISPATCH_AS_HOVER_EXIT = 1 << 11,
/* This flag indicates that the event should be canceled.
* It is used to transmute ACTION_MOVE into ACTION_CANCEL when a touch slips
* outside of a window. */
FLAG_DISPATCH_AS_SLIPPERY_EXIT = 1 << 12,
/* This flag indicates that the event should be dispatched as an initial down.
* It is used to transmute ACTION_MOVE into ACTION_DOWN when a touch slips
* into a new window. */
FLAG_DISPATCH_AS_SLIPPERY_ENTER = 1 << 13,
/* Mask for all dispatch modes. */
FLAG_DISPATCH_MASK = FLAG_DISPATCH_AS_IS
| FLAG_DISPATCH_AS_OUTSIDE
| FLAG_DISPATCH_AS_HOVER_ENTER
| FLAG_DISPATCH_AS_HOVER_EXIT
| FLAG_DISPATCH_AS_SLIPPERY_EXIT
| FLAG_DISPATCH_AS_SLIPPERY_ENTER,
};
// The input channel to be targeted.
sp<InputChannel> inputChannel;
// Flags for the input target.
int32_t flags;
// The x and y offset to add to a MotionEvent as it is delivered.
// (ignored for KeyEvents)
float xOffset, yOffset;
// Scaling factor to apply to MotionEvent as it is delivered.
// (ignored for KeyEvents)
float scaleFactor;
// The subset of pointer ids to include in motion events dispatched to this input target
// if FLAG_SPLIT is set.
BitSet32 pointerIds;
};
/*
* Input dispatcher configuration.
*
* Specifies various options that modify the behavior of the input dispatcher.
* The values provided here are merely defaults. The actual values will come from ViewConfiguration
* and are passed into the dispatcher during initialization.
*/
struct InputDispatcherConfiguration {
// The key repeat initial timeout.
nsecs_t keyRepeatTimeout;
// The key repeat inter-key delay.
nsecs_t keyRepeatDelay;
InputDispatcherConfiguration() :
keyRepeatTimeout(500 * 1000000LL),
keyRepeatDelay(50 * 1000000LL) { }
};
/*
* Input dispatcher policy interface.
*
* The input reader policy is used by the input reader to interact with the Window Manager
* and other system components.
*
* The actual implementation is partially supported by callbacks into the DVM
* via JNI. This interface is also mocked in the unit tests.
*/
class InputDispatcherPolicyInterface : public virtual RefBase {
protected:
InputDispatcherPolicyInterface() { }
virtual ~InputDispatcherPolicyInterface() { }
public:
/* Notifies the system that a configuration change has occurred. */
virtual void notifyConfigurationChanged(nsecs_t when) = 0;
/* Notifies the system that an application is not responding.
* Returns a new timeout to continue waiting, or 0 to abort dispatch. */
virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
const sp<InputWindowHandle>& inputWindowHandle) = 0;
/* Notifies the system that an input channel is unrecoverably broken. */
virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0;
/* Gets the input dispatcher configuration. */
virtual void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) = 0;
/* Returns true if automatic key repeating is enabled. */
virtual bool isKeyRepeatEnabled() = 0;
/* Filters an input event.
* Return true to dispatch the event unmodified, false to consume the event.
* A filter can also transform and inject events later by passing POLICY_FLAG_FILTERED
* to injectInputEvent.
*/
virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) = 0;
/* Intercepts a key event immediately before queueing it.
* The policy can use this method as an opportunity to perform power management functions
* and early event preprocessing such as updating policy flags.
*
* This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
* should be dispatched to applications.
*/
virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0;
/* Intercepts a touch, trackball or other motion event before queueing it.
* The policy can use this method as an opportunity to perform power management functions
* and early event preprocessing such as updating policy flags.
*
* This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
* should be dispatched to applications.
*/
virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;
/* Allows the policy a chance to intercept a key before dispatching. */
virtual nsecs_t interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle,
const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
/* Allows the policy a chance to perform default processing for an unhandled key.
* Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */
virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle,
const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0;
/* Notifies the policy about switch events.
*/
virtual void notifySwitch(nsecs_t when,
uint32_t switchValues, uint32_t switchMask, uint32_t policyFlags) = 0;
/* Poke user activity for an event dispatched to a window. */
virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;
/* Checks whether a given application pid/uid has permission to inject input events
* into other applications.
*
* This method is special in that its implementation promises to be non-reentrant and
* is safe to call while holding other locks. (Most other methods make no such guarantees!)
*/
virtual bool checkInjectEventsPermissionNonReentrant(
int32_t injectorPid, int32_t injectorUid) = 0;
};
/* Notifies the system about input events generated by the input reader.
* The dispatcher is expected to be mostly asynchronous. */
class InputDispatcherInterface : public virtual RefBase, public InputListenerInterface {
protected:
InputDispatcherInterface() { }
virtual ~InputDispatcherInterface() { }
public:
/* Dumps the state of the input dispatcher.
*
* This method may be called on any thread (usually by the input manager). */
virtual void dump(String8& dump) = 0;
/* Called by the heatbeat to ensures that the dispatcher has not deadlocked. */
virtual void monitor() = 0;
/* Runs a single iteration of the dispatch loop.
* Nominally processes one queued event, a timeout, or a response from an input consumer.
*
* This method should only be called on the input dispatcher thread.
*/
virtual void dispatchOnce() = 0;
/* Injects an input event and optionally waits for sync.
* The synchronization mode determines whether the method blocks while waiting for
* input injection to proceed.
* Returns one of the INPUT_EVENT_INJECTION_XXX constants.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual int32_t injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
uint32_t policyFlags) = 0;
/* Sets the list of input windows.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles) = 0;
/* Sets the focused application.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setFocusedApplication(
const sp<InputApplicationHandle>& inputApplicationHandle) = 0;
/* Sets the input dispatching mode.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
/* Sets whether input event filtering is enabled.
* When enabled, incoming input events are sent to the policy's filterInputEvent
* method instead of being dispatched. The filter is expected to use
* injectInputEvent to inject the events it would like to have dispatched.
* It should include POLICY_FLAG_FILTERED in the policy flags during injection.
*/
virtual void setInputFilterEnabled(bool enabled) = 0;
/* Transfers touch focus from the window associated with one channel to the
* window associated with the other channel.
*
* Returns true on success. False if the window did not actually have touch focus.
*/
virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
const sp<InputChannel>& toChannel) = 0;
/* Registers or unregister input channels that may be used as targets for input events.
* If monitor is true, the channel will receive a copy of all input events.
*
* These methods may be called on any thread (usually by the input manager).
*/
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0;
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
};
/* Dispatches events to input targets. Some functions of the input dispatcher, such as
* identifying input targets, are controlled by a separate policy object.
*
* IMPORTANT INVARIANT:
* Because the policy can potentially block or cause re-entrance into the input dispatcher,
* the input dispatcher never calls into the policy while holding its internal locks.
* The implementation is also carefully designed to recover from scenarios such as an
* input channel becoming unregistered while identifying input targets or processing timeouts.
*
* Methods marked 'Locked' must be called with the lock acquired.
*
* Methods marked 'LockedInterruptible' must be called with the lock acquired but
* may during the course of their execution release the lock, call into the policy, and
* then reacquire the lock. The caller is responsible for recovering gracefully.
*
* A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
*/
class InputDispatcher : public InputDispatcherInterface {
protected:
virtual ~InputDispatcher();
public:
explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
virtual void dump(String8& dump);
virtual void monitor();
virtual void dispatchOnce();
virtual void notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args);
virtual void notifyKey(const NotifyKeyArgs* args);
virtual void notifyMotion(const NotifyMotionArgs* args);
virtual void notifySwitch(const NotifySwitchArgs* args);
virtual void notifyDeviceReset(const NotifyDeviceResetArgs* args);
virtual int32_t injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
uint32_t policyFlags);
virtual void setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles);
virtual void setFocusedApplication(const sp<InputApplicationHandle>& inputApplicationHandle);
virtual void setInputDispatchMode(bool enabled, bool frozen);
virtual void setInputFilterEnabled(bool enabled);
virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
const sp<InputChannel>& toChannel);
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
private:
template <typename T>
struct Link {
T* next;
T* prev;
protected:
inline Link() : next(NULL), prev(NULL) { }
};
struct InjectionState {
mutable int32_t refCount;
int32_t injectorPid;
int32_t injectorUid;
int32_t injectionResult; // initially INPUT_EVENT_INJECTION_PENDING
bool injectionIsAsync; // set to true if injection is not waiting for the result
int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
InjectionState(int32_t injectorPid, int32_t injectorUid);
void release();
private:
~InjectionState();
};
struct EventEntry : Link<EventEntry> {
enum {
TYPE_CONFIGURATION_CHANGED,
TYPE_DEVICE_RESET,
TYPE_KEY,
TYPE_MOTION
};
mutable int32_t refCount;
int32_t type;
nsecs_t eventTime;
uint32_t policyFlags;
InjectionState* injectionState;
bool dispatchInProgress; // initially false, set to true while dispatching
inline bool isInjected() const { return injectionState != NULL; }
void release();
virtual void appendDescription(String8& msg) const = 0;
protected:
EventEntry(int32_t type, nsecs_t eventTime, uint32_t policyFlags);
virtual ~EventEntry();
void releaseInjectionState();
};
struct ConfigurationChangedEntry : EventEntry {
ConfigurationChangedEntry(nsecs_t eventTime);
virtual void appendDescription(String8& msg) const;
protected:
virtual ~ConfigurationChangedEntry();
};
struct DeviceResetEntry : EventEntry {
int32_t deviceId;
DeviceResetEntry(nsecs_t eventTime, int32_t deviceId);
virtual void appendDescription(String8& msg) const;
protected:
virtual ~DeviceResetEntry();
};
struct KeyEntry : EventEntry {
int32_t deviceId;
uint32_t source;
int32_t action;
int32_t flags;
int32_t keyCode;
int32_t scanCode;
int32_t metaState;
int32_t repeatCount;
nsecs_t downTime;
bool syntheticRepeat; // set to true for synthetic key repeats
enum InterceptKeyResult {
INTERCEPT_KEY_RESULT_UNKNOWN,
INTERCEPT_KEY_RESULT_SKIP,
INTERCEPT_KEY_RESULT_CONTINUE,
INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER,
};
InterceptKeyResult interceptKeyResult; // set based on the interception result
nsecs_t interceptKeyWakeupTime; // used with INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER
KeyEntry(nsecs_t eventTime,
int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
int32_t repeatCount, nsecs_t downTime);
virtual void appendDescription(String8& msg) const;
void recycle();
protected:
virtual ~KeyEntry();
};
struct MotionEntry : EventEntry {
nsecs_t eventTime;
int32_t deviceId;
uint32_t source;
int32_t action;
int32_t flags;
int32_t metaState;
int32_t buttonState;
int32_t edgeFlags;
float xPrecision;
float yPrecision;
nsecs_t downTime;
int32_t displayId;
uint32_t pointerCount;
PointerProperties pointerProperties[MAX_POINTERS];
PointerCoords pointerCoords[MAX_POINTERS];
MotionEntry(nsecs_t eventTime,
int32_t deviceId, uint32_t source, uint32_t policyFlags,
int32_t action, int32_t flags,
int32_t metaState, int32_t buttonState, int32_t edgeFlags,
float xPrecision, float yPrecision,
nsecs_t downTime, int32_t displayId, uint32_t pointerCount,
const PointerProperties* pointerProperties, const PointerCoords* pointerCoords);
virtual void appendDescription(String8& msg) const;
protected:
virtual ~MotionEntry();
};
// Tracks the progress of dispatching a particular event to a particular connection.
struct DispatchEntry : Link<DispatchEntry> {
const uint32_t seq; // unique sequence number, never 0
EventEntry* eventEntry; // the event to dispatch
int32_t targetFlags;
float xOffset;
float yOffset;
float scaleFactor;
nsecs_t deliveryTime; // time when the event was actually delivered
// Set to the resolved action and flags when the event is enqueued.
int32_t resolvedAction;
int32_t resolvedFlags;
DispatchEntry(EventEntry* eventEntry,
int32_t targetFlags, float xOffset, float yOffset, float scaleFactor);
~DispatchEntry();
inline bool hasForegroundTarget() const {
return targetFlags & InputTarget::FLAG_FOREGROUND;
}
inline bool isSplit() const {
return targetFlags & InputTarget::FLAG_SPLIT;
}
private:
static volatile int32_t sNextSeqAtomic;
static uint32_t nextSeq();
};
// A command entry captures state and behavior for an action to be performed in the
// dispatch loop after the initial processing has taken place. It is essentially
// a kind of continuation used to postpone sensitive policy interactions to a point
// in the dispatch loop where it is safe to release the lock (generally after finishing
// the critical parts of the dispatch cycle).
//
// The special thing about commands is that they can voluntarily release and reacquire
// the dispatcher lock at will. Initially when the command starts running, the
// dispatcher lock is held. However, if the command needs to call into the policy to
// do some work, it can release the lock, do the work, then reacquire the lock again
// before returning.
//
// This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
// never calls into the policy while holding its lock.
//
// Commands are implicitly 'LockedInterruptible'.
struct CommandEntry;
typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
class Connection;
struct CommandEntry : Link<CommandEntry> {
CommandEntry(Command command);
~CommandEntry();
Command command;
// parameters for the command (usage varies by command)
sp<Connection> connection;
nsecs_t eventTime;
KeyEntry* keyEntry;
sp<InputApplicationHandle> inputApplicationHandle;
sp<InputWindowHandle> inputWindowHandle;
int32_t userActivityEventType;
uint32_t seq;
bool handled;
};
// Generic queue implementation.
template <typename T>
struct Queue {
T* head;
T* tail;
inline Queue() : head(NULL), tail(NULL) {
}
inline bool isEmpty() const {
return !head;
}
inline void enqueueAtTail(T* entry) {
entry->prev = tail;
if (tail) {
tail->next = entry;
} else {
head = entry;
}
entry->next = NULL;
tail = entry;
}
inline void enqueueAtHead(T* entry) {
entry->next = head;
if (head) {
head->prev = entry;
} else {
tail = entry;
}
entry->prev = NULL;
head = entry;
}
inline void dequeue(T* entry) {
if (entry->prev) {
entry->prev->next = entry->next;
} else {
head = entry->next;
}
if (entry->next) {
entry->next->prev = entry->prev;
} else {
tail = entry->prev;
}
}
inline T* dequeueAtHead() {
T* entry = head;
head = entry->next;
if (head) {
head->prev = NULL;
} else {
tail = NULL;
}
return entry;
}
uint32_t count() const;
};
/* Specifies which events are to be canceled and why. */
struct CancelationOptions {
enum Mode {
CANCEL_ALL_EVENTS = 0,
CANCEL_POINTER_EVENTS = 1,
CANCEL_NON_POINTER_EVENTS = 2,
CANCEL_FALLBACK_EVENTS = 3,
};
// The criterion to use to determine which events should be canceled.
Mode mode;
// Descriptive reason for the cancelation.
const char* reason;
// The specific keycode of the key event to cancel, or -1 to cancel any key event.
int32_t keyCode;
// The specific device id of events to cancel, or -1 to cancel events from any device.
int32_t deviceId;
CancelationOptions(Mode mode, const char* reason) :
mode(mode), reason(reason), keyCode(-1), deviceId(-1) { }
};
/* Tracks dispatched key and motion event state so that cancelation events can be
* synthesized when events are dropped. */
class InputState {
public:
InputState();
~InputState();
// Returns true if there is no state to be canceled.
bool isNeutral() const;
// Returns true if the specified source is known to have received a hover enter
// motion event.
bool isHovering(int32_t deviceId, uint32_t source, int32_t displayId) const;
// Records tracking information for a key event that has just been published.
// Returns true if the event should be delivered, false if it is inconsistent
// and should be skipped.
bool trackKey(const KeyEntry* entry, int32_t action, int32_t flags);
// Records tracking information for a motion event that has just been published.
// Returns true if the event should be delivered, false if it is inconsistent
// and should be skipped.
bool trackMotion(const MotionEntry* entry, int32_t action, int32_t flags);
// Synthesizes cancelation events for the current state and resets the tracked state.
void synthesizeCancelationEvents(nsecs_t currentTime,
Vector<EventEntry*>& outEvents, const CancelationOptions& options);
// Clears the current state.
void clear();
// Copies pointer-related parts of the input state to another instance.
void copyPointerStateTo(InputState& other) const;
// Gets the fallback key associated with a keycode.
// Returns -1 if none.
// Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy.
int32_t getFallbackKey(int32_t originalKeyCode);
// Sets the fallback key for a particular keycode.
void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode);
// Removes the fallback key for a particular keycode.
void removeFallbackKey(int32_t originalKeyCode);
inline const KeyedVector<int32_t, int32_t>& getFallbackKeys() const {
return mFallbackKeys;
}
private:
struct KeyMemento {
int32_t deviceId;
uint32_t source;
int32_t keyCode;
int32_t scanCode;
int32_t metaState;
int32_t flags;
nsecs_t downTime;
uint32_t policyFlags;
};
struct MotionMemento {
int32_t deviceId;
uint32_t source;
int32_t flags;
float xPrecision;
float yPrecision;
nsecs_t downTime;
int32_t displayId;
uint32_t pointerCount;
PointerProperties pointerProperties[MAX_POINTERS];
PointerCoords pointerCoords[MAX_POINTERS];
bool hovering;
uint32_t policyFlags;
void setPointers(const MotionEntry* entry);
};
Vector<KeyMemento> mKeyMementos;
Vector<MotionMemento> mMotionMementos;
KeyedVector<int32_t, int32_t> mFallbackKeys;
ssize_t findKeyMemento(const KeyEntry* entry) const;
ssize_t findMotionMemento(const MotionEntry* entry, bool hovering) const;
void addKeyMemento(const KeyEntry* entry, int32_t flags);
void addMotionMemento(const MotionEntry* entry, int32_t flags, bool hovering);
static bool shouldCancelKey(const KeyMemento& memento,
const CancelationOptions& options);
static bool shouldCancelMotion(const MotionMemento& memento,
const CancelationOptions& options);
};
/* Manages the dispatch state associated with a single input channel. */
class Connection : public RefBase {
protected:
virtual ~Connection();
public:
enum Status {
// Everything is peachy.
STATUS_NORMAL,
// An unrecoverable communication error has occurred.
STATUS_BROKEN,
// The input channel has been unregistered.
STATUS_ZOMBIE
};
Status status;
sp<InputChannel> inputChannel; // never null
sp<InputWindowHandle> inputWindowHandle; // may be null
bool monitor;
InputPublisher inputPublisher;
InputState inputState;
// True if the socket is full and no further events can be published until
// the application consumes some of the input.
bool inputPublisherBlocked;
// Queue of events that need to be published to the connection.
Queue<DispatchEntry> outboundQueue;
// Queue of events that have been published to the connection but that have not
// yet received a "finished" response from the application.
Queue<DispatchEntry> waitQueue;
explicit Connection(const sp<InputChannel>& inputChannel,
const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
const char* getWindowName() const;
const char* getStatusLabel() const;
DispatchEntry* findWaitQueueEntry(uint32_t seq);
};
enum DropReason {
DROP_REASON_NOT_DROPPED = 0,
DROP_REASON_POLICY = 1,
DROP_REASON_APP_SWITCH = 2,
DROP_REASON_DISABLED = 3,
DROP_REASON_BLOCKED = 4,
DROP_REASON_STALE = 5,
};
sp<InputDispatcherPolicyInterface> mPolicy;
InputDispatcherConfiguration mConfig;
Mutex mLock;
Condition mDispatcherIsAliveCondition;
sp<Looper> mLooper;
EventEntry* mPendingEvent;
Queue<EventEntry> mInboundQueue;
Queue<CommandEntry> mCommandQueue;
void dispatchOnceInnerLocked(nsecs_t* nextWakeupTime);
// Enqueues an inbound event. Returns true if mLooper->wake() should be called.
bool enqueueInboundEventLocked(EventEntry* entry);
// Cleans up input state when dropping an inbound event.
void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);
// App switch latency optimization.
bool mAppSwitchSawKeyDown;
nsecs_t mAppSwitchDueTime;
static bool isAppSwitchKeyCode(int32_t keyCode);
bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
bool isAppSwitchPendingLocked();
void resetPendingAppSwitchLocked(bool handled);
// Stale event latency optimization.
static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry);
// Blocked event latency optimization. Drops old events when the user intends
// to transfer focus to a new application.
EventEntry* mNextUnblockedEvent;
sp<InputWindowHandle> findTouchedWindowAtLocked(int32_t displayId, int32_t x, int32_t y);
// All registered connections mapped by channel file descriptor.
KeyedVector<int, sp<Connection> > mConnectionsByFd;
ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);
// Input channels that will receive a copy of all input events.
Vector<sp<InputChannel> > mMonitoringChannels;
// Event injection and synchronization.
Condition mInjectionResultAvailableCondition;
bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
Condition mInjectionSyncFinishedCondition;
void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
void decrementPendingForegroundDispatchesLocked(EventEntry* entry);
// Key repeat tracking.
struct KeyRepeatState {
KeyEntry* lastKeyEntry; // or null if no repeat
nsecs_t nextRepeatTime;
} mKeyRepeatState;
void resetKeyRepeatLocked();
KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime);
// Deferred command processing.
bool haveCommandsLocked() const;
bool runCommandsLockedInterruptible();
CommandEntry* postCommandLocked(Command command);
// Input filter processing.
bool shouldSendKeyToInputFilterLocked(const NotifyKeyArgs* args);
bool shouldSendMotionToInputFilterLocked(const NotifyMotionArgs* args);
// Inbound event processing.
void drainInboundQueueLocked();
void releasePendingEventLocked();
void releaseInboundEventLocked(EventEntry* entry);
// Dispatch state.
bool mDispatchEnabled;
bool mDispatchFrozen;
bool mInputFilterEnabled;
Vector<sp<InputWindowHandle> > mWindowHandles;
sp<InputWindowHandle> getWindowHandleLocked(const sp<InputChannel>& inputChannel) const;
bool hasWindowHandleLocked(const sp<InputWindowHandle>& windowHandle) const;
// Focus tracking for keys, trackball, etc.
sp<InputWindowHandle> mFocusedWindowHandle;
// Focus tracking for touch.
struct TouchedWindow {
sp<InputWindowHandle> windowHandle;
int32_t targetFlags;
BitSet32 pointerIds; // zero unless target flag FLAG_SPLIT is set
};
struct TouchState {
bool down;
bool split;
int32_t deviceId; // id of the device that is currently down, others are rejected
uint32_t source; // source of the device that is current down, others are rejected
int32_t displayId; // id to the display that currently has a touch, others are rejected
Vector<TouchedWindow> windows;
TouchState();
~TouchState();
void reset();
void copyFrom(const TouchState& other);
void addOrUpdateWindow(const sp<InputWindowHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds);
void removeWindow(const sp<InputWindowHandle>& windowHandle);
void filterNonAsIsTouchWindows();
sp<InputWindowHandle> getFirstForegroundWindowHandle() const;
bool isSlippery() const;
};
TouchState mTouchState;
TouchState mTempTouchState;
// Focused application.
sp<InputApplicationHandle> mFocusedApplicationHandle;
// Dispatcher state at time of last ANR.
String8 mLastANRState;
// Dispatch inbound events.
bool dispatchConfigurationChangedLocked(
nsecs_t currentTime, ConfigurationChangedEntry* entry);
bool dispatchDeviceResetLocked(
nsecs_t currentTime, DeviceResetEntry* entry);
bool dispatchKeyLocked(
nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime);
bool dispatchMotionLocked(
nsecs_t currentTime, MotionEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime);
void dispatchEventLocked(nsecs_t currentTime, EventEntry* entry,
const Vector<InputTarget>& inputTargets);
void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
// Keeping track of ANR timeouts.
enum InputTargetWaitCause {
INPUT_TARGET_WAIT_CAUSE_NONE,
INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
};
InputTargetWaitCause mInputTargetWaitCause;
nsecs_t mInputTargetWaitStartTime;
nsecs_t mInputTargetWaitTimeoutTime;
bool mInputTargetWaitTimeoutExpired;
sp<InputApplicationHandle> mInputTargetWaitApplicationHandle;
// Contains the last window which received a hover event.
sp<InputWindowHandle> mLastHoverWindowHandle;
// Finding targets for input events.
int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle,
nsecs_t* nextWakeupTime, const char* reason);
void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
const sp<InputChannel>& inputChannel);
nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
void resetANRTimeoutsLocked();
int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
Vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime);
int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
Vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime,
bool* outConflictingPointerActions);
void addWindowTargetLocked(const sp<InputWindowHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds, Vector<InputTarget>& inputTargets);
void addMonitoringTargetsLocked(Vector<InputTarget>& inputTargets);
void pokeUserActivityLocked(const EventEntry* eventEntry);
bool checkInjectionPermission(const sp<InputWindowHandle>& windowHandle,
const InjectionState* injectionState);
bool isWindowObscuredAtPointLocked(const sp<InputWindowHandle>& windowHandle,
int32_t x, int32_t y) const;
bool isWindowReadyForMoreInputLocked(nsecs_t currentTime,
const sp<InputWindowHandle>& windowHandle, const EventEntry* eventEntry);
String8 getApplicationWindowLabelLocked(const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle);
// Manage the dispatch cycle for a single connection.
// These methods are deliberately not Interruptible because doing all of the work
// with the mutex held makes it easier to ensure that connection invariants are maintained.
// If needed, the methods post commands to run later once the critical bits are done.
void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
EventEntry* eventEntry, const InputTarget* inputTarget);
void enqueueDispatchEntriesLocked(nsecs_t currentTime, const sp<Connection>& connection,
EventEntry* eventEntry, const InputTarget* inputTarget);
void enqueueDispatchEntryLocked(const sp<Connection>& connection,
EventEntry* eventEntry, const InputTarget* inputTarget, int32_t dispatchMode);
void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
uint32_t seq, bool handled);
void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
bool notify);
void drainDispatchQueueLocked(Queue<DispatchEntry>* queue);
void releaseDispatchEntryLocked(DispatchEntry* dispatchEntry);
static int handleReceiveCallback(int fd, int events, void* data);
void synthesizeCancelationEventsForAllConnectionsLocked(
const CancelationOptions& options);
void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
const CancelationOptions& options);
void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
const CancelationOptions& options);
// Splitting motion events across windows.
MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);
// Reset and drop everything the dispatcher is doing.
void resetAndDropEverythingLocked(const char* reason);
// Dump state.
void dumpDispatchStateLocked(String8& dump);
void logDispatchStateLocked();
// Registration.
void removeMonitorChannelLocked(const sp<InputChannel>& inputChannel);
status_t unregisterInputChannelLocked(const sp<InputChannel>& inputChannel, bool notify);
// Add or remove a connection to the mActiveConnections vector.
void activateConnectionLocked(Connection* connection);
void deactivateConnectionLocked(Connection* connection);
// Interesting events that we might like to log or tell the framework about.
void onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled);
void onDispatchCycleBrokenLocked(
nsecs_t currentTime, const sp<Connection>& connection);
void onANRLocked(
nsecs_t currentTime, const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle,
nsecs_t eventTime, nsecs_t waitStartTime, const char* reason);
// Outbound policy interactions.
void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry);
bool afterKeyEventLockedInterruptible(const sp<Connection>& connection,
DispatchEntry* dispatchEntry, KeyEntry* keyEntry, bool handled);
bool afterMotionEventLockedInterruptible(const sp<Connection>& connection,
DispatchEntry* dispatchEntry, MotionEntry* motionEntry, bool handled);
void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry);
// Statistics gathering.
void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
void traceInboundQueueLengthLocked();
void traceOutboundQueueLengthLocked(const sp<Connection>& connection);
void traceWaitQueueLengthLocked(const sp<Connection>& connection);
};
/* Enqueues and dispatches input events, endlessly. */
class InputDispatcherThread : public Thread {
public:
explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
~InputDispatcherThread();
private:
virtual bool threadLoop();
sp<InputDispatcherInterface> mDispatcher;
};
} // namespace android
#endif // _UI_INPUT_DISPATCHER_H