mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-01-01 05:43:46 +00:00
3de99c3be7
This will help support Chrome and should also let us output directly to a cairo compatible format.
254 lines
9.0 KiB
C
254 lines
9.0 KiB
C
#include <xmmintrin.h>
|
|
|
|
#include "qcmsint.h"
|
|
|
|
/* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
|
|
#define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE)
|
|
#define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE )
|
|
static const ALIGN float floatScaleX4[4] =
|
|
{ FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
|
|
static const ALIGN float clampMaxValueX4[4] =
|
|
{ CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};
|
|
|
|
void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform,
|
|
unsigned char *src,
|
|
unsigned char *dest,
|
|
size_t length)
|
|
{
|
|
unsigned int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
char input_back[32];
|
|
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
|
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
|
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
|
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
|
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
|
/* share input and output locations to save having to keep the
|
|
* locations in separate registers */
|
|
uint32_t const * output = (uint32_t*)input;
|
|
|
|
/* deref *transform now to avoid it in loop */
|
|
const float *igtbl_r = transform->input_gamma_table_r;
|
|
const float *igtbl_g = transform->input_gamma_table_g;
|
|
const float *igtbl_b = transform->input_gamma_table_b;
|
|
|
|
/* deref *transform now to avoid it in loop */
|
|
const uint8_t *otdata_r = &transform->output_table_r->data[0];
|
|
const uint8_t *otdata_g = &transform->output_table_g->data[0];
|
|
const uint8_t *otdata_b = &transform->output_table_b->data[0];
|
|
|
|
/* input matrix values never change */
|
|
const __m128 mat0 = _mm_load_ps(mat[0]);
|
|
const __m128 mat1 = _mm_load_ps(mat[1]);
|
|
const __m128 mat2 = _mm_load_ps(mat[2]);
|
|
|
|
/* these values don't change, either */
|
|
const __m128 max = _mm_load_ps(clampMaxValueX4);
|
|
const __m128 min = _mm_setzero_ps();
|
|
const __m128 scale = _mm_load_ps(floatScaleX4);
|
|
|
|
/* working variables */
|
|
__m128 vec_r, vec_g, vec_b, result;
|
|
|
|
/* CYA */
|
|
if (!length)
|
|
return;
|
|
|
|
/* one pixel is handled outside of the loop */
|
|
length--;
|
|
|
|
/* setup for transforming 1st pixel */
|
|
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
|
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
|
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
|
src += 3;
|
|
|
|
/* transform all but final pixel */
|
|
|
|
for (i=0; i<length; i++)
|
|
{
|
|
/* position values from gamma tables */
|
|
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
|
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
|
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
|
|
|
/* gamma * matrix */
|
|
vec_r = _mm_mul_ps(vec_r, mat0);
|
|
vec_g = _mm_mul_ps(vec_g, mat1);
|
|
vec_b = _mm_mul_ps(vec_b, mat2);
|
|
|
|
/* crunch, crunch, crunch */
|
|
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
|
vec_r = _mm_max_ps(min, vec_r);
|
|
vec_r = _mm_min_ps(max, vec_r);
|
|
result = _mm_mul_ps(vec_r, scale);
|
|
|
|
/* store calc'd output tables indices */
|
|
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
|
result = _mm_movehl_ps(result, result);
|
|
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ;
|
|
|
|
/* load for next loop while store completes */
|
|
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
|
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
|
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
|
src += 3;
|
|
|
|
/* use calc'd indices to output RGB values */
|
|
dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
|
|
dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
|
|
dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
|
|
dest += RGB_OUTPUT_COMPONENTS;
|
|
}
|
|
|
|
/* handle final (maybe only) pixel */
|
|
|
|
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
|
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
|
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
|
|
|
vec_r = _mm_mul_ps(vec_r, mat0);
|
|
vec_g = _mm_mul_ps(vec_g, mat1);
|
|
vec_b = _mm_mul_ps(vec_b, mat2);
|
|
|
|
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
|
vec_r = _mm_max_ps(min, vec_r);
|
|
vec_r = _mm_min_ps(max, vec_r);
|
|
result = _mm_mul_ps(vec_r, scale);
|
|
|
|
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
|
result = _mm_movehl_ps(result, result);
|
|
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
|
|
|
|
dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
|
|
dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
|
|
dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
|
|
|
|
_mm_empty();
|
|
}
|
|
|
|
void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform,
|
|
unsigned char *src,
|
|
unsigned char *dest,
|
|
size_t length)
|
|
{
|
|
unsigned int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
char input_back[32];
|
|
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
|
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
|
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
|
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
|
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
|
/* share input and output locations to save having to keep the
|
|
* locations in separate registers */
|
|
uint32_t const * output = (uint32_t*)input;
|
|
|
|
/* deref *transform now to avoid it in loop */
|
|
const float *igtbl_r = transform->input_gamma_table_r;
|
|
const float *igtbl_g = transform->input_gamma_table_g;
|
|
const float *igtbl_b = transform->input_gamma_table_b;
|
|
|
|
/* deref *transform now to avoid it in loop */
|
|
const uint8_t *otdata_r = &transform->output_table_r->data[0];
|
|
const uint8_t *otdata_g = &transform->output_table_g->data[0];
|
|
const uint8_t *otdata_b = &transform->output_table_b->data[0];
|
|
|
|
/* input matrix values never change */
|
|
const __m128 mat0 = _mm_load_ps(mat[0]);
|
|
const __m128 mat1 = _mm_load_ps(mat[1]);
|
|
const __m128 mat2 = _mm_load_ps(mat[2]);
|
|
|
|
/* these values don't change, either */
|
|
const __m128 max = _mm_load_ps(clampMaxValueX4);
|
|
const __m128 min = _mm_setzero_ps();
|
|
const __m128 scale = _mm_load_ps(floatScaleX4);
|
|
|
|
/* working variables */
|
|
__m128 vec_r, vec_g, vec_b, result;
|
|
unsigned char alpha;
|
|
|
|
/* CYA */
|
|
if (!length)
|
|
return;
|
|
|
|
/* one pixel is handled outside of the loop */
|
|
length--;
|
|
|
|
/* setup for transforming 1st pixel */
|
|
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
|
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
|
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
|
alpha = src[3];
|
|
src += 4;
|
|
|
|
/* transform all but final pixel */
|
|
|
|
for (i=0; i<length; i++)
|
|
{
|
|
/* position values from gamma tables */
|
|
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
|
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
|
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
|
|
|
/* gamma * matrix */
|
|
vec_r = _mm_mul_ps(vec_r, mat0);
|
|
vec_g = _mm_mul_ps(vec_g, mat1);
|
|
vec_b = _mm_mul_ps(vec_b, mat2);
|
|
|
|
/* store alpha for this pixel; load alpha for next */
|
|
dest[OUTPUT_A_INDEX] = alpha;
|
|
alpha = src[3];
|
|
|
|
/* crunch, crunch, crunch */
|
|
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
|
vec_r = _mm_max_ps(min, vec_r);
|
|
vec_r = _mm_min_ps(max, vec_r);
|
|
result = _mm_mul_ps(vec_r, scale);
|
|
|
|
/* store calc'd output tables indices */
|
|
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
|
result = _mm_movehl_ps(result, result);
|
|
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
|
|
|
|
/* load gamma values for next loop while store completes */
|
|
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
|
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
|
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
|
src += 4;
|
|
|
|
/* use calc'd indices to output RGB values */
|
|
dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
|
|
dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
|
|
dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
|
|
dest += 4;
|
|
}
|
|
|
|
/* handle final (maybe only) pixel */
|
|
|
|
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
|
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
|
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
|
|
|
vec_r = _mm_mul_ps(vec_r, mat0);
|
|
vec_g = _mm_mul_ps(vec_g, mat1);
|
|
vec_b = _mm_mul_ps(vec_b, mat2);
|
|
|
|
dest[OUTPUT_A_INDEX] = alpha;
|
|
|
|
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
|
vec_r = _mm_max_ps(min, vec_r);
|
|
vec_r = _mm_min_ps(max, vec_r);
|
|
result = _mm_mul_ps(vec_r, scale);
|
|
|
|
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
|
result = _mm_movehl_ps(result, result);
|
|
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
|
|
|
|
dest[OUTPUT_R_INDEX] = otdata_r[output[0]];
|
|
dest[OUTPUT_G_INDEX] = otdata_g[output[1]];
|
|
dest[OUTPUT_B_INDEX] = otdata_b[output[2]];
|
|
|
|
_mm_empty();
|
|
}
|