gecko-dev/tools/trace-malloc/uncategorized.pl
timeless%mac.com dec943eb10 Bug 106386 rid source of misspellings
r=db48x sr=blake a=asa
2002-03-19 04:30:17 +00:00

135 lines
3.7 KiB
Perl
Executable File

#!/usr/bin/perl -w
#
# The contents of this file are subject to the Mozilla Public
# License Version 1.1 (the "License"); you may not use this file
# except in compliance with the License. You may obtain a copy of
# the License at http://www.mozilla.org/MPL/
#
# Software distributed under the License is distributed on an "AS
# IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
# implied. See the License for the specific language governing
# rights and limitations under the License.
#
# The Original Code is uncategorized.pl, released Nov 27, 2000.
#
# The Initial Developer of the Original Code is Netscape
# Communications Corporation. Portions created by Netscape are
# Copyright (C) 2000 Netscape Communications Corporation. All
# Rights Reserved.
#
# Contributor(s):
# Chris Waterson <waterson@netscape.com>
#
# This tool is used to construct the ``type inference'' file. It
# prints the total number of bytes that are attributed to a type that
# cannot be inferred, grouped by stack trace; e.g.,
#
# (100) PR_Malloc
# (50) foo
# (50) foo2::foo2
# (25) bar
# (25) baz
# (50) __builtin_new
# (50) foo2::foo2
#
#
# Which indicates that 100 bytes were allocated by uninferrable
# classes via PR_Malloc(). Of that 100 bytes, 50 were allocated from
# calls by foo(), 25 from calls by bar(), and 25 from calls by baz().
# 50 bytes were allocated by __builtin_new from foo2's ctor.
#
#
# From this, we might be able to infer the type of the object that was
# created by examining the PR_Malloc() usage in foo() and the
# ::operator new() usage in foo2(), and could add new type inference
# rules; e.g.,
#
# <unclassified-string>
# foo
# foo2
#
# # Attribute ::operator new() usage in foo2's ctor to foo2
# <foo2>
# __builtin_new
# foo2::foo2
#
use 5.004;
use strict;
use Getopt::Long;
# So we can find TraceMalloc.pm
use FindBin;
use lib "$FindBin::Bin";
use TraceMalloc;
# Collect program options
$::opt_help = 0;
$::opt_depth = 10;
$::opt_types = "${FindBin::Bin}/types.dat";
GetOptions("help", "depth=n", "types=s");
if ($::opt_help) {
die "usage: uncategorized.pl [options] <dumpfile>
--help Display this message
--depth=<n> Display at most <n> stack frames
--types=<file> Read type heuristics from <file>";
}
# Initialize type inference juju from the type file specified by
# ``--types''.
TraceMalloc::init_type_inference($::opt_types);
# Read the objects from the dump file. For each object, remember up to
# ``--depth'' stack frames (from the top). Thread together common
# stack prefixes, accumulating the number of bytes attributed to the
# prefix.
# This'll hold the inverted stacks
$::Stacks = { '#bytes#' => 0 };
sub collect_stacks($) {
my ($object) = @_;
my $stack = $object->{'stack'};
return unless ($object->{'type'} eq 'void*') && (TraceMalloc::infer_type($stack) eq 'void*');
my $count = 0;
my $link = \%::Stacks;
FRAME: foreach my $frame (@$stack) {
last FRAME unless $count++ < $::opt_depth;
$link->{'#bytes#'} += $object->{'size'};
$link->{$frame} = { '#bytes#' => 0 } unless $link->{$frame};
$link = $link->{$frame};
}
}
TraceMalloc::read(\&collect_stacks);
# Do a depth-first walk of the inverted stack tree.
sub walk($$) {
my ($links, $indent) = @_;
my @keys;
KEY: foreach my $key (keys %$links) {
next KEY if $key eq '#bytes#';
$keys[$#keys + 1] = $key;
}
foreach my $key (sort { $links->{$b}->{'#bytes#'} <=> $links->{$a}->{'#bytes#'} } @keys) {
for (my $i = 0; $i < $indent; ++$i) {
print " ";
}
print "($links->{$key}->{'#bytes#'}) $key\n";
walk($links->{$key}, $indent + 1);
}
}
walk(\%::Stacks, 0);