mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-01 06:35:42 +00:00
692 lines
24 KiB
C++
692 lines
24 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* vim: sw=4 ts=4 et :
|
|
*/
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef ipc_glue_MessageChannel_h
|
|
#define ipc_glue_MessageChannel_h 1
|
|
|
|
#include "base/basictypes.h"
|
|
#include "base/message_loop.h"
|
|
|
|
#include "mozilla/WeakPtr.h"
|
|
#include "mozilla/Monitor.h"
|
|
#include "mozilla/ipc/Transport.h"
|
|
#include "MessageLink.h"
|
|
#include "nsAutoPtr.h"
|
|
#include "mozilla/DebugOnly.h"
|
|
|
|
#include <deque>
|
|
#include <stack>
|
|
#include <vector>
|
|
#include <math.h>
|
|
|
|
namespace mozilla {
|
|
namespace ipc {
|
|
|
|
class MessageChannel;
|
|
|
|
class RefCountedMonitor : public Monitor
|
|
{
|
|
public:
|
|
RefCountedMonitor()
|
|
: Monitor("mozilla.ipc.MessageChannel.mMonitor")
|
|
{}
|
|
|
|
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedMonitor)
|
|
};
|
|
|
|
class MessageChannel : HasResultCodes
|
|
{
|
|
friend class ProcessLink;
|
|
friend class ThreadLink;
|
|
friend class AutoEnterRPCTransaction;
|
|
|
|
typedef mozilla::Monitor Monitor;
|
|
|
|
public:
|
|
static const int32_t kNoTimeout;
|
|
|
|
typedef IPC::Message Message;
|
|
typedef mozilla::ipc::Transport Transport;
|
|
|
|
MessageChannel(MessageListener *aListener);
|
|
~MessageChannel();
|
|
|
|
// "Open" from the perspective of the transport layer; the underlying
|
|
// socketpair/pipe should already be created.
|
|
//
|
|
// Returns true iff the transport layer was successfully connected,
|
|
// i.e., mChannelState == ChannelConnected.
|
|
bool Open(Transport* aTransport, MessageLoop* aIOLoop=0, Side aSide=UnknownSide);
|
|
|
|
// "Open" a connection to another thread in the same process.
|
|
//
|
|
// Returns true iff the transport layer was successfully connected,
|
|
// i.e., mChannelState == ChannelConnected.
|
|
//
|
|
// For more details on the process of opening a channel between
|
|
// threads, see the extended comment on this function
|
|
// in MessageChannel.cpp.
|
|
bool Open(MessageChannel *aTargetChan, MessageLoop *aTargetLoop, Side aSide);
|
|
|
|
// Close the underlying transport channel.
|
|
void Close();
|
|
|
|
// Force the channel to behave as if a channel error occurred. Valid
|
|
// for process links only, not thread links.
|
|
void CloseWithError();
|
|
|
|
// Asynchronously send a message to the other side of the channel
|
|
bool Send(Message* aMsg);
|
|
|
|
// Asynchronously deliver a message back to this side of the
|
|
// channel
|
|
bool Echo(Message* aMsg);
|
|
|
|
// Synchronously send |msg| (i.e., wait for |reply|)
|
|
bool Send(Message* aMsg, Message* aReply);
|
|
|
|
// Make an Interrupt call to the other side of the channel
|
|
bool Call(Message* aMsg, Message* aReply);
|
|
|
|
void SetReplyTimeoutMs(int32_t aTimeoutMs);
|
|
|
|
bool IsOnCxxStack() const {
|
|
return !mCxxStackFrames.empty();
|
|
}
|
|
|
|
void FlushPendingInterruptQueue();
|
|
|
|
// Unsound_IsClosed and Unsound_NumQueuedMessages are safe to call from any
|
|
// thread, but they make no guarantees about whether you'll get an
|
|
// up-to-date value; the values are written on one thread and read without
|
|
// locking, on potentially different threads. Thus you should only use
|
|
// them when you don't particularly care about getting a recent value (e.g.
|
|
// in a memory report).
|
|
bool Unsound_IsClosed() const {
|
|
return mLink ? mLink->Unsound_IsClosed() : true;
|
|
}
|
|
uint32_t Unsound_NumQueuedMessages() const {
|
|
return mLink ? mLink->Unsound_NumQueuedMessages() : 0;
|
|
}
|
|
|
|
static bool IsPumpingMessages() {
|
|
return sIsPumpingMessages;
|
|
}
|
|
static void SetIsPumpingMessages(bool aIsPumping) {
|
|
sIsPumpingMessages = aIsPumping;
|
|
}
|
|
|
|
#ifdef OS_WIN
|
|
struct MOZ_STACK_CLASS SyncStackFrame
|
|
{
|
|
SyncStackFrame(MessageChannel* channel, bool interrupt);
|
|
~SyncStackFrame();
|
|
|
|
bool mInterrupt;
|
|
bool mSpinNestedEvents;
|
|
bool mListenerNotified;
|
|
MessageChannel* mChannel;
|
|
|
|
// The previous stack frame for this channel.
|
|
SyncStackFrame* mPrev;
|
|
|
|
// The previous stack frame on any channel.
|
|
SyncStackFrame* mStaticPrev;
|
|
};
|
|
friend struct MessageChannel::SyncStackFrame;
|
|
|
|
static bool IsSpinLoopActive() {
|
|
for (SyncStackFrame* frame = sStaticTopFrame; frame; frame = frame->mPrev) {
|
|
if (frame->mSpinNestedEvents)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
protected:
|
|
// The deepest sync stack frame for this channel.
|
|
SyncStackFrame* mTopFrame;
|
|
|
|
// The deepest sync stack frame on any channel.
|
|
static SyncStackFrame* sStaticTopFrame;
|
|
|
|
public:
|
|
void ProcessNativeEventsInInterruptCall();
|
|
static void NotifyGeckoEventDispatch();
|
|
|
|
private:
|
|
void SpinInternalEventLoop();
|
|
#endif
|
|
|
|
private:
|
|
void CommonThreadOpenInit(MessageChannel *aTargetChan, Side aSide);
|
|
void OnOpenAsSlave(MessageChannel *aTargetChan, Side aSide);
|
|
|
|
void PostErrorNotifyTask();
|
|
void OnNotifyMaybeChannelError();
|
|
void ReportConnectionError(const char* aChannelName) const;
|
|
void ReportMessageRouteError(const char* channelName) const;
|
|
bool MaybeHandleError(Result code, const char* channelName);
|
|
|
|
void Clear();
|
|
|
|
// Send OnChannelConnected notification to listeners.
|
|
void DispatchOnChannelConnected(int32_t peer_pid);
|
|
|
|
// Any protocol that requires blocking until a reply arrives, will send its
|
|
// outgoing message through this function. Currently, two protocols do this:
|
|
//
|
|
// sync, which can only initiate messages from child to parent.
|
|
// urgent, which can only initiate messages from parent to child.
|
|
//
|
|
// SendAndWait() expects that the worker thread owns the monitor, and that
|
|
// the message has been prepared to be sent over the link. It returns as
|
|
// soon as a reply has been received, or an error has occurred.
|
|
//
|
|
// Note that while the child is blocked waiting for a sync reply, it can wake
|
|
// up to process urgent calls from the parent.
|
|
bool SendAndWait(Message* aMsg, Message* aReply);
|
|
|
|
bool RPCCall(Message* aMsg, Message* aReply);
|
|
bool InterruptCall(Message* aMsg, Message* aReply);
|
|
bool UrgentCall(Message* aMsg, Message* aReply);
|
|
|
|
bool InterruptEventOccurred();
|
|
|
|
bool ProcessPendingUrgentRequest();
|
|
bool ProcessPendingRPCCall();
|
|
|
|
void MaybeUndeferIncall();
|
|
void EnqueuePendingMessages();
|
|
|
|
// Executed on the worker thread. Dequeues one pending message.
|
|
bool OnMaybeDequeueOne();
|
|
bool DequeueOne(Message *recvd);
|
|
|
|
// Dispatches an incoming message to its appropriate handler.
|
|
void DispatchMessage(const Message &aMsg);
|
|
|
|
// DispatchMessage will route to one of these functions depending on the
|
|
// protocol type of the message.
|
|
void DispatchSyncMessage(const Message &aMsg);
|
|
void DispatchUrgentMessage(const Message &aMsg);
|
|
void DispatchAsyncMessage(const Message &aMsg);
|
|
void DispatchRPCMessage(const Message &aMsg);
|
|
void DispatchInterruptMessage(const Message &aMsg, size_t aStackDepth);
|
|
|
|
// Return true if the wait ended because a notification was received.
|
|
//
|
|
// Return false if the time elapsed from when we started the process of
|
|
// waiting until afterwards exceeded the currently allotted timeout.
|
|
// That *DOES NOT* mean false => "no event" (== timeout); there are many
|
|
// circumstances that could cause the measured elapsed time to exceed the
|
|
// timeout EVEN WHEN we were notified.
|
|
//
|
|
// So in sum: true is a meaningful return value; false isn't,
|
|
// necessarily.
|
|
bool WaitForSyncNotify();
|
|
bool WaitForInterruptNotify();
|
|
|
|
bool WaitResponse(bool aWaitTimedOut);
|
|
|
|
bool ShouldContinueFromTimeout();
|
|
|
|
// The "remote view of stack depth" can be different than the
|
|
// actual stack depth when there are out-of-turn replies. When we
|
|
// receive one, our actual Interrupt stack depth doesn't decrease, but
|
|
// the other side (that sent the reply) thinks it has. So, the
|
|
// "view" returned here is |stackDepth| minus the number of
|
|
// out-of-turn replies.
|
|
//
|
|
// Only called from the worker thread.
|
|
size_t RemoteViewOfStackDepth(size_t stackDepth) const {
|
|
AssertWorkerThread();
|
|
return stackDepth - mOutOfTurnReplies.size();
|
|
}
|
|
|
|
int32_t NextSeqno() {
|
|
AssertWorkerThread();
|
|
return (mSide == ChildSide) ? --mNextSeqno : ++mNextSeqno;
|
|
}
|
|
|
|
// This helper class manages mCxxStackDepth on behalf of MessageChannel.
|
|
// When the stack depth is incremented from zero to non-zero, it invokes
|
|
// a callback, and similarly for when the depth goes from non-zero to zero.
|
|
void EnteredCxxStack() {
|
|
mListener->OnEnteredCxxStack();
|
|
}
|
|
|
|
void ExitedCxxStack();
|
|
|
|
void EnteredCall() {
|
|
mListener->OnEnteredCall();
|
|
}
|
|
|
|
void ExitedCall() {
|
|
mListener->OnExitedCall();
|
|
}
|
|
|
|
MessageListener *Listener() const {
|
|
return mListener.get();
|
|
}
|
|
|
|
enum Direction { IN_MESSAGE, OUT_MESSAGE };
|
|
struct InterruptFrame {
|
|
InterruptFrame(Direction direction, const Message* msg)
|
|
: mDirection(direction), mMsg(msg)
|
|
{ }
|
|
|
|
bool IsInterruptIncall() const {
|
|
return mMsg->is_interrupt() && IN_MESSAGE == mDirection;
|
|
}
|
|
bool IsInterruptOutcall() const {
|
|
return mMsg->is_interrupt() && OUT_MESSAGE == mDirection;
|
|
}
|
|
|
|
void Describe(int32_t* id, const char** dir, const char** sems,
|
|
const char** name) const
|
|
{
|
|
*id = mMsg->routing_id();
|
|
*dir = (IN_MESSAGE == mDirection) ? "in" : "out";
|
|
*sems = mMsg->is_interrupt() ? "intr" : mMsg->is_sync() ? "sync" : "async";
|
|
*name = mMsg->name();
|
|
}
|
|
|
|
Direction mDirection;
|
|
const Message* mMsg;
|
|
};
|
|
|
|
class MOZ_STACK_CLASS CxxStackFrame
|
|
{
|
|
public:
|
|
CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg)
|
|
: mThat(that)
|
|
{
|
|
mThat.AssertWorkerThread();
|
|
|
|
if (mThat.mCxxStackFrames.empty())
|
|
mThat.EnteredCxxStack();
|
|
|
|
mThat.mCxxStackFrames.push_back(InterruptFrame(direction, msg));
|
|
const InterruptFrame& frame = mThat.mCxxStackFrames.back();
|
|
|
|
if (frame.IsInterruptIncall())
|
|
mThat.EnteredCall();
|
|
|
|
mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall();
|
|
}
|
|
|
|
~CxxStackFrame() {
|
|
bool exitingCall = mThat.mCxxStackFrames.back().IsInterruptIncall();
|
|
mThat.mCxxStackFrames.pop_back();
|
|
bool exitingStack = mThat.mCxxStackFrames.empty();
|
|
|
|
// mListener could have gone away if Close() was called while
|
|
// MessageChannel code was still on the stack
|
|
if (!mThat.mListener)
|
|
return;
|
|
|
|
mThat.AssertWorkerThread();
|
|
if (exitingCall)
|
|
mThat.ExitedCall();
|
|
|
|
if (exitingStack)
|
|
mThat.ExitedCxxStack();
|
|
}
|
|
private:
|
|
MessageChannel& mThat;
|
|
|
|
// disable harmful methods
|
|
CxxStackFrame();
|
|
CxxStackFrame(const CxxStackFrame&);
|
|
CxxStackFrame& operator=(const CxxStackFrame&);
|
|
};
|
|
|
|
void DebugAbort(const char* file, int line, const char* cond,
|
|
const char* why,
|
|
bool reply=false) const;
|
|
|
|
// This method is only safe to call on the worker thread, or in a
|
|
// debugger with all threads paused.
|
|
void DumpInterruptStack(const char* const pfx="") const;
|
|
|
|
private:
|
|
// Called from both threads
|
|
size_t InterruptStackDepth() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mInterruptStack.size();
|
|
}
|
|
|
|
// Returns true if we're blocking waiting for a reply.
|
|
bool AwaitingSyncReply() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mPendingSyncReplies > 0;
|
|
}
|
|
bool AwaitingUrgentReply() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mPendingUrgentReplies > 0;
|
|
}
|
|
bool AwaitingRPCReply() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return mPendingRPCReplies > 0;
|
|
}
|
|
bool AwaitingInterruptReply() const {
|
|
mMonitor->AssertCurrentThreadOwns();
|
|
return !mInterruptStack.empty();
|
|
}
|
|
|
|
// Returns true if we're dispatching a sync message's callback.
|
|
bool DispatchingSyncMessage() const {
|
|
return mDispatchingSyncMessage;
|
|
}
|
|
|
|
bool Connected() const;
|
|
|
|
private:
|
|
// Executed on the IO thread.
|
|
void NotifyWorkerThread();
|
|
|
|
// Return true if |aMsg| is a special message targeted at the IO
|
|
// thread, in which case it shouldn't be delivered to the worker.
|
|
bool MaybeInterceptSpecialIOMessage(const Message& aMsg);
|
|
|
|
void OnChannelConnected(int32_t peer_id);
|
|
|
|
// Tell the IO thread to close the channel and wait for it to ACK.
|
|
void SynchronouslyClose();
|
|
|
|
void OnMessageReceivedFromLink(const Message& aMsg);
|
|
void OnChannelErrorFromLink();
|
|
|
|
private:
|
|
// Run on the not current thread.
|
|
void NotifyChannelClosed();
|
|
void NotifyMaybeChannelError();
|
|
|
|
private:
|
|
// Can be run on either thread
|
|
void AssertWorkerThread() const
|
|
{
|
|
NS_ABORT_IF_FALSE(mWorkerLoopID == MessageLoop::current()->id(),
|
|
"not on worker thread!");
|
|
}
|
|
|
|
// The "link" thread is either the I/O thread (ProcessLink) or the
|
|
// other actor's work thread (ThreadLink). In either case, it is
|
|
// NOT our worker thread.
|
|
void AssertLinkThread() const
|
|
{
|
|
NS_ABORT_IF_FALSE(mWorkerLoopID != MessageLoop::current()->id(),
|
|
"on worker thread but should not be!");
|
|
}
|
|
|
|
private:
|
|
typedef IPC::Message::msgid_t msgid_t;
|
|
typedef std::deque<Message> MessageQueue;
|
|
typedef std::map<size_t, Message> MessageMap;
|
|
|
|
// All dequeuing tasks require a single point of cancellation,
|
|
// which is handled via a reference-counted task.
|
|
class RefCountedTask
|
|
{
|
|
public:
|
|
RefCountedTask(CancelableTask* aTask)
|
|
: mTask(aTask)
|
|
{ }
|
|
~RefCountedTask() { delete mTask; }
|
|
void Run() { mTask->Run(); }
|
|
void Cancel() { mTask->Cancel(); }
|
|
|
|
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedTask)
|
|
|
|
private:
|
|
CancelableTask* mTask;
|
|
};
|
|
|
|
// Wrap an existing task which can be cancelled at any time
|
|
// without the wrapper's knowledge.
|
|
class DequeueTask : public Task
|
|
{
|
|
public:
|
|
DequeueTask(RefCountedTask* aTask)
|
|
: mTask(aTask)
|
|
{ }
|
|
void Run() { mTask->Run(); }
|
|
|
|
private:
|
|
nsRefPtr<RefCountedTask> mTask;
|
|
};
|
|
|
|
private:
|
|
mozilla::WeakPtr<MessageListener> mListener;
|
|
ChannelState mChannelState;
|
|
nsRefPtr<RefCountedMonitor> mMonitor;
|
|
Side mSide;
|
|
MessageLink* mLink;
|
|
MessageLoop* mWorkerLoop; // thread where work is done
|
|
CancelableTask* mChannelErrorTask; // NotifyMaybeChannelError runnable
|
|
|
|
// id() of mWorkerLoop. This persists even after mWorkerLoop is cleared
|
|
// during channel shutdown.
|
|
int mWorkerLoopID;
|
|
|
|
// A task encapsulating dequeuing one pending message.
|
|
nsRefPtr<RefCountedTask> mDequeueOneTask;
|
|
|
|
// Timeout periods are broken up in two to prevent system suspension from
|
|
// triggering an abort. This method (called by WaitForEvent with a 'did
|
|
// timeout' flag) decides if we should wait again for half of mTimeoutMs
|
|
// or give up.
|
|
int32_t mTimeoutMs;
|
|
bool mInTimeoutSecondHalf;
|
|
|
|
// Worker-thread only; sequence numbers for messages that require
|
|
// synchronous replies.
|
|
int32_t mNextSeqno;
|
|
|
|
static bool sIsPumpingMessages;
|
|
|
|
class AutoEnterPendingReply {
|
|
public:
|
|
AutoEnterPendingReply(size_t &replyVar)
|
|
: mReplyVar(replyVar)
|
|
{
|
|
mReplyVar++;
|
|
}
|
|
~AutoEnterPendingReply() {
|
|
mReplyVar--;
|
|
}
|
|
private:
|
|
size_t& mReplyVar;
|
|
};
|
|
|
|
// Worker-thread only; type we're expecting for the reply to a sync
|
|
// out-message. This will never be greater than 1.
|
|
size_t mPendingSyncReplies;
|
|
|
|
// Worker-thread only; Number of urgent and rpc replies we're waiting on.
|
|
// These are mutually exclusive since one channel cannot have outcalls of
|
|
// both kinds.
|
|
size_t mPendingUrgentReplies;
|
|
size_t mPendingRPCReplies;
|
|
|
|
// When we send an urgent request from the parent process, we could race
|
|
// with an RPC message that was issued by the child beforehand. In this
|
|
// case, if the parent were to wake up while waiting for the urgent reply,
|
|
// and process the RPC, it could send an additional urgent message. The
|
|
// child would wake up to process the urgent message (as it always will),
|
|
// then send a reply, which could be received by the parent out-of-order
|
|
// with respect to the first urgent reply.
|
|
//
|
|
// To address this problem, urgent or RPC requests are associated with a
|
|
// "transaction". Whenever one side of the channel wishes to start a
|
|
// chain of RPC/urgent messages, it allocates a new transaction ID. Any
|
|
// messages the parent receives, not apart of this transaction, are
|
|
// deferred. When issuing RPC/urgent requests on top of a started
|
|
// transaction, the initiating transaction ID is used.
|
|
//
|
|
// To ensure IDs are unique, we use sequence numbers for transaction IDs,
|
|
// which grow in opposite directions from child to parent.
|
|
|
|
// The current transaction ID.
|
|
int32_t mCurrentRPCTransaction;
|
|
|
|
class AutoEnterRPCTransaction
|
|
{
|
|
public:
|
|
AutoEnterRPCTransaction(MessageChannel *aChan)
|
|
: mChan(aChan),
|
|
mOldTransaction(mChan->mCurrentRPCTransaction)
|
|
{
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
if (mChan->mCurrentRPCTransaction == 0)
|
|
mChan->mCurrentRPCTransaction = mChan->NextSeqno();
|
|
}
|
|
AutoEnterRPCTransaction(MessageChannel *aChan, Message *message)
|
|
: mChan(aChan),
|
|
mOldTransaction(mChan->mCurrentRPCTransaction)
|
|
{
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
|
|
if (!message->is_rpc() && !message->is_urgent())
|
|
return;
|
|
|
|
MOZ_ASSERT_IF(mChan->mSide == ParentSide,
|
|
!mOldTransaction || mOldTransaction == message->transaction_id());
|
|
mChan->mCurrentRPCTransaction = message->transaction_id();
|
|
}
|
|
~AutoEnterRPCTransaction() {
|
|
mChan->mMonitor->AssertCurrentThreadOwns();
|
|
mChan->mCurrentRPCTransaction = mOldTransaction;
|
|
}
|
|
|
|
private:
|
|
MessageChannel *mChan;
|
|
int32_t mOldTransaction;
|
|
};
|
|
|
|
// If waiting for the reply to a sync out-message, it will be saved here
|
|
// on the I/O thread and then read and cleared by the worker thread.
|
|
nsAutoPtr<Message> mRecvd;
|
|
|
|
// Set while we are dispatching a synchronous message.
|
|
bool mDispatchingSyncMessage;
|
|
|
|
// Queue of all incoming messages, except for replies to sync and urgent
|
|
// messages, which are delivered directly to mRecvd, and any pending urgent
|
|
// incall, which is stored in mPendingUrgentRequest.
|
|
//
|
|
// If both this side and the other side are functioning correctly, the queue
|
|
// can only be in certain configurations. Let
|
|
//
|
|
// |A<| be an async in-message,
|
|
// |S<| be a sync in-message,
|
|
// |C<| be an Interrupt in-call,
|
|
// |R<| be an Interrupt reply.
|
|
//
|
|
// The queue can only match this configuration
|
|
//
|
|
// A<* (S< | C< | R< (?{mStack.size() == 1} A<* (S< | C<)))
|
|
//
|
|
// The other side can send as many async messages |A<*| as it wants before
|
|
// sending us a blocking message.
|
|
//
|
|
// The first case is |S<|, a sync in-msg. The other side must be blocked,
|
|
// and thus can't send us any more messages until we process the sync
|
|
// in-msg.
|
|
//
|
|
// The second case is |C<|, an Interrupt in-call; the other side must be blocked.
|
|
// (There's a subtlety here: this in-call might have raced with an
|
|
// out-call, but we detect that with the mechanism below,
|
|
// |mRemoteStackDepth|, and races don't matter to the queue.)
|
|
//
|
|
// Final case, the other side replied to our most recent out-call |R<|.
|
|
// If that was the *only* out-call on our stack, |?{mStack.size() == 1}|,
|
|
// then other side "finished with us," and went back to its own business.
|
|
// That business might have included sending any number of async message
|
|
// |A<*| until sending a blocking message |(S< | C<)|. If we had more than
|
|
// one Interrupt call on our stack, the other side *better* not have sent us
|
|
// another blocking message, because it's blocked on a reply from us.
|
|
//
|
|
MessageQueue mPending;
|
|
|
|
// Note that these two pointers are mutually exclusive. One channel cannot
|
|
// send both urgent requests (parent -> child) and RPC calls (child->parent).
|
|
// Also note that since initiating either requires blocking, they cannot
|
|
// queue up on the other side. One message slot is enough.
|
|
//
|
|
// Normally, all other message types are deferred into into mPending, and
|
|
// only these two types have special treatment (since they wake up blocked
|
|
// requests). However, when an RPC in-call races with an urgent out-call,
|
|
// the RPC message will be put into mPending instead of its slot below.
|
|
nsAutoPtr<Message> mPendingUrgentRequest;
|
|
nsAutoPtr<Message> mPendingRPCCall;
|
|
|
|
// Stack of all the out-calls on which this channel is awaiting responses.
|
|
// Each stack refers to a different protocol and the stacks are mutually
|
|
// exclusive: multiple outcalls of the same kind cannot be initiated while
|
|
// another is active.
|
|
std::stack<Message> mInterruptStack;
|
|
|
|
// This is what we think the Interrupt stack depth is on the "other side" of this
|
|
// Interrupt channel. We maintain this variable so that we can detect racy Interrupt
|
|
// calls. With each Interrupt out-call sent, we send along what *we* think the
|
|
// stack depth of the remote side is *before* it will receive the Interrupt call.
|
|
//
|
|
// After sending the out-call, our stack depth is "incremented" by pushing
|
|
// that pending message onto mPending.
|
|
//
|
|
// Then when processing an in-call |c|, it must be true that
|
|
//
|
|
// mStack.size() == c.remoteDepth
|
|
//
|
|
// I.e., my depth is actually the same as what the other side thought it
|
|
// was when it sent in-call |c|. If this fails to hold, we have detected
|
|
// racy Interrupt calls.
|
|
//
|
|
// We then increment mRemoteStackDepth *just before* processing the
|
|
// in-call, since we know the other side is waiting on it, and decrement
|
|
// it *just after* finishing processing that in-call, since our response
|
|
// will pop the top of the other side's |mPending|.
|
|
//
|
|
// One nice aspect of this race detection is that it is symmetric; if one
|
|
// side detects a race, then the other side must also detect the same race.
|
|
size_t mRemoteStackDepthGuess;
|
|
|
|
// Approximation of code frames on the C++ stack. It can only be
|
|
// interpreted as the implication:
|
|
//
|
|
// !mCxxStackFrames.empty() => MessageChannel code on C++ stack
|
|
//
|
|
// This member is only accessed on the worker thread, and so is not
|
|
// protected by mMonitor. It is managed exclusively by the helper
|
|
// |class CxxStackFrame|.
|
|
std::vector<InterruptFrame> mCxxStackFrames;
|
|
|
|
// Did we process an Interrupt out-call during this stack? Only meaningful in
|
|
// ExitedCxxStack(), from which this variable is reset.
|
|
bool mSawInterruptOutMsg;
|
|
|
|
// Map of replies received "out of turn", because of Interrupt
|
|
// in-calls racing with replies to outstanding in-calls. See
|
|
// https://bugzilla.mozilla.org/show_bug.cgi?id=521929.
|
|
MessageMap mOutOfTurnReplies;
|
|
|
|
// Stack of Interrupt in-calls that were deferred because of race
|
|
// conditions.
|
|
std::stack<Message> mDeferred;
|
|
|
|
#ifdef OS_WIN
|
|
HANDLE mEvent;
|
|
#endif
|
|
};
|
|
|
|
} // namespace ipc
|
|
} // namespace mozilla
|
|
|
|
#endif // ifndef ipc_glue_MessageChannel_h
|