gecko-dev/js/tamarin/pcre/pcre_exec.cpp
2006-11-07 05:35:54 +00:00

3811 lines
112 KiB
C++

#include "avmplus.h"
/*************************************************
* Perl-Compatible Regular Expressions *
*************************************************/
/* PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.
Written by Philip Hazel
Copyright (c) 1997-2005 University of Cambridge
-----------------------------------------------------------------------------
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the University of Cambridge nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
-----------------------------------------------------------------------------
*/
/* This module contains pcre_exec(), the externally visible function that does
pattern matching using an NFA algorithm, trying to mimic Perl as closely as
possible. There are also some static supporting functions. */
#include "pcre_internal.h"
// CN: Mods to pcre to make it ECMAScript edition 3 compatible are enabled when this global
// is set to true
static const bool ES3_Compatible_Behavior = true;
/* Structure for building a chain of data that actually lives on the
stack, for holding the values of the subject pointer at the start of each
subpattern, so as to detect when an empty string has been matched by a
subpattern - to break infinite loops. When NO_RECURSE is set, these blocks
are on the heap, not on the stack. */
typedef struct eptrblock {
struct eptrblock *epb_prev;
const uschar *epb_saved_eptr;
} eptrblock;
/* Flag bits for the match() function */
#define match_condassert 0x01 /* Called to check a condition assertion */
#define match_isgroup 0x02 /* Set if start of bracketed group */
/* Non-error returns from the match() function. Error returns are externally
defined PCRE_ERROR_xxx codes, which are all negative. */
#define MATCH_MATCH 1
#define MATCH_NOMATCH 0
/* Maximum number of ints of offset to save on the stack for recursive calls.
If the offset vector is bigger, malloc is used. This should be a multiple of 3,
because the offset vector is always a multiple of 3 long. */
#define REC_STACK_SAVE_MAX 30
/* Min and max values for the common repeats; for the maxima, 0 => infinity */
static const char rep_min[] = { 0, 0, 1, 1, 0, 0 };
static const char rep_max[] = { 0, 0, 0, 0, 1, 1 };
#ifdef DEBUG
/*************************************************
* Debugging function to print chars *
*************************************************/
/* Print a sequence of chars in printable format, stopping at the end of the
subject if the requested.
Arguments:
p points to characters
length number to print
is_subject TRUE if printing from within md->start_subject
md pointer to matching data block, if is_subject is TRUE
Returns: nothing
*/
static void
pchars(const uschar *p, int length, BOOL is_subject, match_data *md)
{
int c;
if (is_subject && length > md->end_subject - p) length = md->end_subject - p;
while (length-- > 0)
if (isprint(c = *(p++))) printf("%c", c); else printf("\\x%02x", c);
}
#endif
/*************************************************
* Match a back-reference *
*************************************************/
/* If a back reference hasn't been set, the length that is passed is greater
than the number of characters left in the string, so the match fails.
Arguments:
offset index into the offset vector
eptr points into the subject
length length to be matched
md points to match data block
ims the ims flags
Returns: TRUE if matched
*/
static BOOL
match_ref(int offset, register const uschar *eptr, int length, match_data *md,
unsigned long int ims)
{
if (ES3_Compatible_Behavior)
{
if (md->offset_vector[offset] == -1) // for ECMAScript compliance, undefined group references are always true
return true; // though they match 0 characters.
}
const uschar *p = md->start_subject + md->offset_vector[offset];
#ifdef DEBUG
if (eptr >= md->end_subject)
printf("matching subject <null>");
else
{
printf("matching subject ");
pchars(eptr, length, TRUE, md);
}
printf(" against backref ");
pchars(p, length, FALSE, md);
printf("\n");
#endif
/* Always fail if not enough characters left */
if (length > md->end_subject - eptr) return FALSE;
/* Separate the caselesss case for speed */
if ((ims & PCRE_CASELESS) != 0)
{
while (length-- > 0)
if (md->lcc[*p++] != md->lcc[*eptr++]) return FALSE;
}
else
{ while (length-- > 0) if (*p++ != *eptr++) return FALSE; }
return TRUE;
}
/***************************************************************************
****************************************************************************
RECURSION IN THE match() FUNCTION
The match() function is highly recursive. Some regular expressions can cause
it to recurse thousands of times. I was writing for Unix, so I just let it
call itself recursively. This uses the stack for saving everything that has
to be saved for a recursive call. On Unix, the stack can be large, and this
works fine.
It turns out that on non-Unix systems there are problems with programs that
use a lot of stack. (This despite the fact that every last chip has oodles
of memory these days, and techniques for extending the stack have been known
for decades.) So....
There is a fudge, triggered by defining NO_RECURSE, which avoids recursive
calls by keeping local variables that need to be preserved in blocks of memory
obtained from malloc instead instead of on the stack. Macros are used to
achieve this so that the actual code doesn't look very different to what it
always used to.
****************************************************************************
***************************************************************************/
/* These versions of the macros use the stack, as normal */
#ifndef NO_RECURSE
#define REGISTER register
#define RMATCH(rx,ra,rb,rc,rd,re,rf,rg) rx = match(ra,rb,rc,rd,re,rf,rg)
#define RRETURN(ra) return ra
#else
/* These versions of the macros manage a private stack on the heap. Note
that the rd argument of RMATCH isn't actually used. It's the md argument of
match(), which never changes. */
#define REGISTER
#define RMATCH(rx,ra,rb,rc,rd,re,rf,rg)\
{\
heapframe *newframe = (heapframe*) (pcre_stack_malloc)(sizeof(heapframe));\
if (setjmp(frame->Xwhere) == 0)\
{\
newframe->Xeptr = ra;\
newframe->Xecode = rb;\
newframe->Xoffset_top = rc;\
newframe->Xims = re;\
newframe->Xeptrb = rf;\
newframe->Xflags = rg;\
newframe->Xprevframe = frame;\
frame = newframe;\
DPRINTF(("restarting from line %d\n", __LINE__));\
goto HEAP_RECURSE;\
}\
else\
{\
DPRINTF(("longjumped back to line %d\n", __LINE__));\
frame = md->thisframe;\
rx = frame->Xresult;\
}\
}
#define RRETURN(ra)\
{\
heapframe *newframe = frame;\
frame = newframe->Xprevframe;\
(pcre_stack_free)(newframe);\
if (frame != NULL)\
{\
frame->Xresult = ra;\
md->thisframe = frame;\
longjmp(frame->Xwhere, 1);\
}\
return ra;\
}
/* Structure for remembering the local variables in a private frame */
typedef struct heapframe {
struct heapframe *Xprevframe;
/* Function arguments that may change */
const uschar *Xeptr;
const uschar *Xecode;
int Xoffset_top;
long int Xims;
eptrblock *Xeptrb;
int Xflags;
/* Function local variables */
const uschar *Xcallpat;
const uschar *Xcharptr;
const uschar *Xdata;
const uschar *Xnext;
const uschar *Xpp;
const uschar *Xprev;
const uschar *Xsaved_eptr;
recursion_info Xnew_recursive;
BOOL Xcur_is_word;
BOOL Xcondition;
BOOL Xminimize;
BOOL Xprev_is_word;
unsigned long int Xoriginal_ims;
#ifdef SUPPORT_UCP
int Xprop_type;
int Xprop_fail_result;
int Xprop_category;
int Xprop_chartype;
int Xprop_othercase;
int Xprop_test_against;
int *Xprop_test_variable;
#endif
int Xctype;
int Xfc;
int Xfi;
int Xlength;
int Xmax;
int Xmin;
int Xnumber;
int Xoffset;
int Xop;
int Xsave_capture_last;
int Xsave_offset1, Xsave_offset2, Xsave_offset3;
int Xstacksave[REC_STACK_SAVE_MAX];
int XoffsetStackSave[REC_STACK_SAVE_MAX];
int XsavedElems;
eptrblock Xnewptrb;
/* Place to pass back result, and where to jump back to */
int Xresult;
jmp_buf Xwhere;
} heapframe;
#endif
/***************************************************************************
***************************************************************************/
/*************************************************
* Match from current position *
*************************************************/
/* On entry ecode points to the first opcode, and eptr to the first character
in the subject string, while eptrb holds the value of eptr at the start of the
last bracketed group - used for breaking infinite loops matching zero-length
strings. This function is called recursively in many circumstances. Whenever it
returns a negative (error) response, the outer incarnation must also return the
same response.
Performance note: It might be tempting to extract commonly used fields from the
md structure (e.g. utf8, end_subject) into individual variables to improve
performance. Tests using gcc on a SPARC disproved this; in the first case, it
made performance worse.
Arguments:
eptr pointer in subject
ecode position in code
offset_top current top pointer
md pointer to "static" info for the match
ims current /i, /m, and /s options
eptrb pointer to chain of blocks containing eptr at start of
brackets - for testing for empty matches
flags can contain
match_condassert - this is an assertion condition
match_isgroup - this is the start of a bracketed group
Returns: MATCH_MATCH if matched ) these values are >= 0
MATCH_NOMATCH if failed to match )
a negative PCRE_ERROR_xxx value if aborted by an error condition
(e.g. stopped by recursion limit)
*/
static int
match(REGISTER const uschar *eptr, REGISTER const uschar *ecode,
int offset_top, match_data *md, unsigned long int ims, eptrblock *eptrb,
int flags)
{
/* These variables do not need to be preserved over recursion in this function,
so they can be ordinary variables in all cases. Mark them with "register"
because they are used a lot in loops. */
register int rrc; /* Returns from recursive calls */
register int i; /* Used for loops not involving calls to RMATCH() */
register int c; /* Character values not kept over RMATCH() calls */
register BOOL utf8; /* Local copy of UTF-8 flag for speed */
/* When recursion is not being used, all "local" variables that have to be
preserved over calls to RMATCH() are part of a "frame" which is obtained from
heap storage. Set up the top-level frame here; others are obtained from the
heap whenever RMATCH() does a "recursion". See the macro definitions above. */
#ifdef NO_RECURSE
heapframe *frame = (heapframe*) (pcre_stack_malloc)(sizeof(heapframe));
frame->Xprevframe = NULL; /* Marks the top level */
/* Copy in the original argument variables */
frame->Xeptr = eptr;
frame->Xecode = ecode;
frame->Xoffset_top = offset_top;
frame->Xims = ims;
frame->Xeptrb = eptrb;
frame->Xflags = flags;
/* This is where control jumps back to to effect "recursion" */
HEAP_RECURSE:
/* Macros make the argument variables come from the current frame */
#define eptr frame->Xeptr
#define ecode frame->Xecode
#define offset_top frame->Xoffset_top
#define ims frame->Xims
#define eptrb frame->Xeptrb
#define flags frame->Xflags
/* Ditto for the local variables */
#ifdef SUPPORT_UTF8
#define charptr frame->Xcharptr
#endif
#define callpat frame->Xcallpat
#define data frame->Xdata
#define next frame->Xnext
#define pp frame->Xpp
#define prev frame->Xprev
#define saved_eptr frame->Xsaved_eptr
#define new_recursive frame->Xnew_recursive
#define cur_is_word frame->Xcur_is_word
#define condition frame->Xcondition
#define minimize frame->Xminimize
#define prev_is_word frame->Xprev_is_word
#define original_ims frame->Xoriginal_ims
#ifdef SUPPORT_UCP
#define prop_type frame->Xprop_type
#define prop_fail_result frame->Xprop_fail_result
#define prop_category frame->Xprop_category
#define prop_chartype frame->Xprop_chartype
#define prop_othercase frame->Xprop_othercase
#define prop_test_against frame->Xprop_test_against
#define prop_test_variable frame->Xprop_test_variable
#endif
#define ctype frame->Xctype
#define fc frame->Xfc
#define fi frame->Xfi
#define length frame->Xlength
#define max frame->Xmax
#define min frame->Xmin
#define number frame->Xnumber
#define offset frame->Xoffset
#define op frame->Xop
#define save_capture_last frame->Xsave_capture_last
#define save_offset1 frame->Xsave_offset1
#define save_offset2 frame->Xsave_offset2
#define save_offset3 frame->Xsave_offset3
#define savedElems frame->XsavedElems
#define stacksave frame->Xstacksave
#define offsetStackSave frame->XoffsetStackSave
#define newptrb frame->Xnewptrb
/* When recursion is being used, local variables are allocated on the stack and
get preserved during recursion in the normal way. In this environment, fi and
i, and fc and c, can be the same variables. */
#else
#define fi i
#define fc c
#ifdef SUPPORT_UTF8 /* Many of these variables are used ony */
const uschar *charptr; /* small blocks of the code. My normal */
#endif /* style of coding would have declared */
const uschar *callpat; /* them within each of those blocks. */
const uschar *data; /* However, in order to accommodate the */
const uschar *next; /* version of this code that uses an */
const uschar *pp; /* external "stack" implemented on the */
const uschar *prev; /* heap, it is easier to declare them */
const uschar *saved_eptr; /* all here, so the declarations can */
/* be cut out in a block. The only */
recursion_info new_recursive; /* declarations within blocks below are */
/* for variables that do not have to */
BOOL cur_is_word; /* be preserved over a recursive call */
BOOL condition; /* to RMATCH(). */
BOOL minimize;
BOOL prev_is_word;
unsigned long int original_ims;
#ifdef SUPPORT_UCP
int prop_type;
int prop_fail_result;
int prop_category;
int prop_chartype;
int prop_othercase;
int prop_test_against;
int *prop_test_variable;
#endif
int ctype;
int length;
int max;
int min;
int number;
int offset;
int op;
int save_capture_last;
int save_offset1, save_offset2, save_offset3;
int stacksave[REC_STACK_SAVE_MAX];
int offsetStackSave[REC_STACK_SAVE_MAX];
int savedElems;
eptrblock newptrb;
#endif
/* These statements are here to stop the compiler complaining about unitialized
variables. */
#ifdef SUPPORT_UCP
prop_fail_result = 0;
prop_test_against = 0;
prop_test_variable = NULL;
#endif
/* OK, now we can get on with the real code of the function. Recursion is
specified by the macros RMATCH and RRETURN. When NO_RECURSE is *not* defined,
these just turn into a recursive call to match() and a "return", respectively.
However, RMATCH isn't like a function call because it's quite a complicated
macro. It has to be used in one particular way. This shouldn't, however, impact
performance when true recursion is being used. */
if (md->match_call_count++ >= md->match_limit) RRETURN(PCRE_ERROR_MATCHLIMIT);
original_ims = ims; /* Save for resetting on ')' */
utf8 = md->utf8; /* Local copy of the flag */
/* At the start of a bracketed group, add the current subject pointer to the
stack of such pointers, to be re-instated at the end of the group when we hit
the closing ket. When match() is called in other circumstances, we don't add to
this stack. */
if ((flags & match_isgroup) != 0)
{
newptrb.epb_prev = eptrb;
newptrb.epb_saved_eptr = eptr;
eptrb = &newptrb;
}
/* Now start processing the operations. */
for (;;)
{
op = *ecode;
minimize = FALSE;
/* For partial matching, remember if we ever hit the end of the subject after
matching at least one subject character. */
if (md->partial &&
eptr >= md->end_subject &&
eptr > md->start_match)
md->hitend = TRUE;
/* Opening capturing bracket. If there is space in the offset vector, save
the current subject position in the working slot at the top of the vector. We
mustn't change the current values of the data slot, because they may be set
from a previous iteration of this group, and be referred to by a reference
inside the group.
If the bracket fails to match, we need to restore this value and also the
values of the final offsets, in case they were set by a previous iteration of
the same bracket.
If there isn't enough space in the offset vector, treat this as if it were a
non-capturing bracket. Don't worry about setting the flag for the error case
here; that is handled in the code for KET. */
if (op > OP_BRA)
{
number = op - OP_BRA;
/* For extended extraction brackets (large number), we have to fish out the
number from a dummy opcode at the start. */
if (number > EXTRACT_BASIC_MAX)
number = GET2(ecode, 2+LINK_SIZE);
offset = number << 1;
#ifdef DEBUG
printf("start bracket %d subject=", number);
pchars(eptr, 16, TRUE, md);
printf("\n");
#endif
if (offset < md->offset_max)
{
save_offset3 = md->offset_vector[md->offset_end - number];
save_capture_last = md->capture_last;
if (ES3_Compatible_Behavior) // clear all matches for groups > than this one
{ // (we only really need to reset all enclosed groups, but covering all groups > this is harmless because
// we interpret from left to right)
savedElems = (offset_top > offset ? offset_top - offset : 2);
memcpy(offsetStackSave, md->offset_vector+offset, (savedElems * sizeof(int)));
for(int resetOffset = offset+2; resetOffset < offset_top; resetOffset++)
md->offset_vector[resetOffset] = -1;
}
else
{
offsetStackSave[1] = md->offset_vector[offset];
offsetStackSave[2] = md->offset_vector[offset+1];
savedElems = 0;
}
DPRINTF(("saving %d %d %d\n", save_offset1, save_offset2, save_offset3));
md->offset_vector[md->offset_end - number] = eptr - md->start_subject;
do
{
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb,
match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
md->capture_last = save_capture_last;
ecode += GET(ecode, 1);
}
while (*ecode == OP_ALT);
DPRINTF(("bracket %d failed\n", number));
if (ES3_Compatible_Behavior)
{
memcpy(md->offset_vector+offset, offsetStackSave, (savedElems * sizeof(int)));
}
else
{
md->offset_vector[offset] = stacksave[1];
md->offset_vector[offset+1] = stacksave[2];
}
md->offset_vector[md->offset_end - number] = save_offset3;
RRETURN(MATCH_NOMATCH);
}
/* Insufficient room for saving captured contents */
else op = OP_BRA;
}
/* Other types of node can be handled by a switch */
switch(op)
{
case OP_BRA: /* Non-capturing bracket: optimized */
DPRINTF(("start bracket 0\n"));
do
{
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb,
match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
ecode += GET(ecode, 1);
}
while (*ecode == OP_ALT);
DPRINTF(("bracket 0 failed\n"));
RRETURN(MATCH_NOMATCH);
/* Conditional group: compilation checked that there are no more than
two branches. If the condition is false, skipping the first branch takes us
past the end if there is only one branch, but that's OK because that is
exactly what going to the ket would do. */
case OP_COND:
if (ecode[LINK_SIZE+1] == OP_CREF) /* Condition extract or recurse test */
{
offset = GET2(ecode, LINK_SIZE+2) << 1; /* Doubled ref number */
condition = (offset == CREF_RECURSE * 2)?
(md->recursive != NULL) :
(offset < offset_top && md->offset_vector[offset] >= 0);
RMATCH(rrc, eptr, ecode + (condition?
(LINK_SIZE + 4) : (LINK_SIZE + 1 + GET(ecode, 1))),
offset_top, md, ims, eptrb, match_isgroup);
RRETURN(rrc);
}
/* The condition is an assertion. Call match() to evaluate it - setting
the final argument TRUE causes it to stop at the end of an assertion. */
else
{
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL,
match_condassert | match_isgroup);
if (rrc == MATCH_MATCH)
{
ecode += 1 + LINK_SIZE + GET(ecode, LINK_SIZE+2);
while (*ecode == OP_ALT) ecode += GET(ecode, 1);
}
else if (rrc != MATCH_NOMATCH)
{
RRETURN(rrc); /* Need braces because of following else */
}
else ecode += GET(ecode, 1);
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb,
match_isgroup);
RRETURN(rrc);
}
/* Control never reaches here */
/* Skip over conditional reference or large extraction number data if
encountered. */
case OP_CREF:
case OP_BRANUMBER:
ecode += 3;
break;
/* End of the pattern. If we are in a recursion, we should restore the
offsets appropriately and continue from after the call. */
case OP_END:
if (md->recursive != NULL && md->recursive->group_num == 0)
{
recursion_info *rec = md->recursive;
DPRINTF(("Hit the end in a (?0) recursion\n"));
md->recursive = rec->prevrec;
memmove(md->offset_vector, rec->offset_save,
rec->saved_max * sizeof(int));
md->start_match = rec->save_start;
ims = original_ims;
ecode = rec->after_call;
break;
}
/* Otherwise, if PCRE_NOTEMPTY is set, fail if we have matched an empty
string - backtracking will then try other alternatives, if any. */
if (md->notempty && eptr == md->start_match) RRETURN(MATCH_NOMATCH);
md->end_match_ptr = eptr; /* Record where we ended */
if (!ES3_Compatible_Behavior)
md->end_offset_top = offset_top; /* and how many extracts were taken */
RRETURN(MATCH_MATCH);
/* Change option settings */
case OP_OPT:
ims = ecode[1];
ecode += 2;
DPRINTF(("ims set to %02lx\n", ims));
break;
/* Assertion brackets. Check the alternative branches in turn - the
matching won't pass the KET for an assertion. If any one branch matches,
the assertion is true. Lookbehind assertions have an OP_REVERSE item at the
start of each branch to move the current point backwards, so the code at
this level is identical to the lookahead case. */
case OP_ASSERT:
case OP_ASSERTBACK:
do
{
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL,
match_isgroup);
if (rrc == MATCH_MATCH) break;
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
ecode += GET(ecode, 1);
}
while (*ecode == OP_ALT);
if (*ecode == OP_KET) RRETURN(MATCH_NOMATCH);
/* If checking an assertion for a condition, return MATCH_MATCH. */
if ((flags & match_condassert) != 0) RRETURN(MATCH_MATCH);
/* Continue from after the assertion, updating the offsets high water
mark, since extracts may have been taken during the assertion. */
do ecode += GET(ecode,1); while (*ecode == OP_ALT);
ecode += 1 + LINK_SIZE;
offset_top = md->end_offset_top;
continue;
/* Negative assertion: all branches must fail to match */
case OP_ASSERT_NOT:
case OP_ASSERTBACK_NOT:
do
{
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL,
match_isgroup);
if (rrc == MATCH_MATCH) RRETURN(MATCH_NOMATCH);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
ecode += GET(ecode,1);
}
while (*ecode == OP_ALT);
if ((flags & match_condassert) != 0) RRETURN(MATCH_MATCH);
ecode += 1 + LINK_SIZE;
continue;
/* Move the subject pointer back. This occurs only at the start of
each branch of a lookbehind assertion. If we are too close to the start to
move back, this match function fails. When working with UTF-8 we move
back a number of characters, not bytes. */
case OP_REVERSE:
#ifdef SUPPORT_UTF8
if (utf8)
{
c = GET(ecode,1);
for (i = 0; i < c; i++)
{
eptr--;
if (eptr < md->start_subject) RRETURN(MATCH_NOMATCH);
BACKCHAR(eptr)
}
}
else
#endif
/* No UTF-8 support, or not in UTF-8 mode: count is byte count */
{
eptr -= GET(ecode,1);
if (eptr < md->start_subject) RRETURN(MATCH_NOMATCH);
}
/* Skip to next op code */
ecode += 1 + LINK_SIZE;
break;
/* The callout item calls an external function, if one is provided, passing
details of the match so far. This is mainly for debugging, though the
function is able to force a failure. */
case OP_CALLOUT:
if (pcre_callout != NULL)
{
pcre_callout_block cb;
cb.version = 1; /* Version 1 of the callout block */
cb.callout_number = ecode[1];
cb.offset_vector = md->offset_vector;
cb.subject = (const char *)md->start_subject;
cb.subject_length = md->end_subject - md->start_subject;
cb.start_match = md->start_match - md->start_subject;
cb.current_position = eptr - md->start_subject;
cb.pattern_position = GET(ecode, 2);
cb.next_item_length = GET(ecode, 2 + LINK_SIZE);
cb.capture_top = offset_top/2;
cb.capture_last = md->capture_last;
cb.callout_data = md->callout_data;
if ((rrc = (*pcre_callout)(&cb)) > 0) RRETURN(MATCH_NOMATCH);
if (rrc < 0) RRETURN(rrc);
}
ecode += 2 + 2*LINK_SIZE;
break;
/* Recursion either matches the current regex, or some subexpression. The
offset data is the offset to the starting bracket from the start of the
whole pattern. (This is so that it works from duplicated subpatterns.)
If there are any capturing brackets started but not finished, we have to
save their starting points and reinstate them after the recursion. However,
we don't know how many such there are (offset_top records the completed
total) so we just have to save all the potential data. There may be up to
65535 such values, which is too large to put on the stack, but using malloc
for small numbers seems expensive. As a compromise, the stack is used when
there are no more than REC_STACK_SAVE_MAX values to store; otherwise malloc
is used. A problem is what to do if the malloc fails ... there is no way of
returning to the top level with an error. Save the top REC_STACK_SAVE_MAX
values on the stack, and accept that the rest may be wrong.
There are also other values that have to be saved. We use a chained
sequence of blocks that actually live on the stack. Thanks to Robin Houston
for the original version of this logic. */
case OP_RECURSE:
{
callpat = md->start_code + GET(ecode, 1);
new_recursive.group_num = *callpat - OP_BRA;
/* For extended extraction brackets (large number), we have to fish out
the number from a dummy opcode at the start. */
if (new_recursive.group_num > EXTRACT_BASIC_MAX)
new_recursive.group_num = GET2(callpat, 2+LINK_SIZE);
/* Add to "recursing stack" */
new_recursive.prevrec = md->recursive;
md->recursive = &new_recursive;
/* Find where to continue from afterwards */
ecode += 1 + LINK_SIZE;
new_recursive.after_call = ecode;
/* Now save the offset data. */
new_recursive.saved_max = md->offset_end;
if (new_recursive.saved_max <= REC_STACK_SAVE_MAX)
new_recursive.offset_save = stacksave;
else
{
new_recursive.offset_save =
(int *)(pcre_malloc)(new_recursive.saved_max * sizeof(int));
if (new_recursive.offset_save == NULL) RRETURN(PCRE_ERROR_NOMEMORY);
}
memcpy(new_recursive.offset_save, md->offset_vector,
new_recursive.saved_max * sizeof(int));
new_recursive.save_start = md->start_match;
md->start_match = eptr;
/* OK, now we can do the recursion. For each top-level alternative we
restore the offset and recursion data. */
DPRINTF(("Recursing into group %d\n", new_recursive.group_num));
do
{
RMATCH(rrc, eptr, callpat + 1 + LINK_SIZE, offset_top, md, ims,
eptrb, match_isgroup);
if (rrc == MATCH_MATCH)
{
md->recursive = new_recursive.prevrec;
if (new_recursive.offset_save != stacksave)
(pcre_free)(new_recursive.offset_save);
RRETURN(MATCH_MATCH);
}
else if (rrc != MATCH_NOMATCH) RRETURN(rrc);
md->recursive = &new_recursive;
memcpy(md->offset_vector, new_recursive.offset_save,
new_recursive.saved_max * sizeof(int));
callpat += GET(callpat, 1);
}
while (*callpat == OP_ALT);
DPRINTF(("Recursion didn't match\n"));
md->recursive = new_recursive.prevrec;
if (new_recursive.offset_save != stacksave)
(pcre_free)(new_recursive.offset_save);
RRETURN(MATCH_NOMATCH);
}
/* Control never reaches here */
/* "Once" brackets are like assertion brackets except that after a match,
the point in the subject string is not moved back. Thus there can never be
a move back into the brackets. Friedl calls these "atomic" subpatterns.
Check the alternative branches in turn - the matching won't pass the KET
for this kind of subpattern. If any one branch matches, we carry on as at
the end of a normal bracket, leaving the subject pointer. */
case OP_ONCE:
{
prev = ecode;
saved_eptr = eptr;
do
{
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims,
eptrb, match_isgroup);
if (rrc == MATCH_MATCH) break;
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
ecode += GET(ecode,1);
}
while (*ecode == OP_ALT);
/* If hit the end of the group (which could be repeated), fail */
if (*ecode != OP_ONCE && *ecode != OP_ALT) RRETURN(MATCH_NOMATCH);
/* Continue as from after the assertion, updating the offsets high water
mark, since extracts may have been taken. */
do ecode += GET(ecode,1); while (*ecode == OP_ALT);
offset_top = md->end_offset_top;
eptr = md->end_match_ptr;
/* For a non-repeating ket, just continue at this level. This also
happens for a repeating ket if no characters were matched in the group.
This is the forcible breaking of infinite loops as implemented in Perl
5.005. If there is an options reset, it will get obeyed in the normal
course of events. */
if (*ecode == OP_KET || eptr == saved_eptr)
{
ecode += 1+LINK_SIZE;
break;
}
/* The repeating kets try the rest of the pattern or restart from the
preceding bracket, in the appropriate order. We need to reset any options
that changed within the bracket before re-running it, so check the next
opcode. */
if (ecode[1+LINK_SIZE] == OP_OPT)
{
ims = (ims & ~PCRE_IMS) | ecode[4];
DPRINTF(("ims set to %02lx at group repeat\n", ims));
}
if (*ecode == OP_KETRMIN)
{
RMATCH(rrc, eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
RMATCH(rrc, eptr, prev, offset_top, md, ims, eptrb, match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
else /* OP_KETRMAX */
{
RMATCH(rrc, eptr, prev, offset_top, md, ims, eptrb, match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
RMATCH(rrc, eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
}
RRETURN(MATCH_NOMATCH);
/* An alternation is the end of a branch; scan along to find the end of the
bracketed group and go to there. */
case OP_ALT:
do ecode += GET(ecode,1); while (*ecode == OP_ALT);
break;
/* BRAZERO and BRAMINZERO occur just before a bracket group, indicating
that it may occur zero times. It may repeat infinitely, or not at all -
i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper
repeat limits are compiled as a number of copies, with the optional ones
preceded by BRAZERO or BRAMINZERO. */
case OP_BRAZERO:
{
next = ecode+1;
RMATCH(rrc, eptr, next, offset_top, md, ims, eptrb, match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
do next += GET(next,1); while (*next == OP_ALT);
ecode = next + 1+LINK_SIZE;
}
break;
case OP_BRAMINZERO:
{
next = ecode+1;
do next += GET(next,1); while (*next == OP_ALT);
RMATCH(rrc, eptr, next + 1+LINK_SIZE, offset_top, md, ims, eptrb,
match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
ecode++;
}
break;
/* End of a group, repeated or non-repeating. If we are at the end of
an assertion "group", stop matching and return MATCH_MATCH, but record the
current high water mark for use by positive assertions. Do this also
for the "once" (not-backup up) groups. */
case OP_KET:
case OP_KETRMIN:
case OP_KETRMAX:
{
prev = ecode - GET(ecode, 1);
saved_eptr = eptrb->epb_saved_eptr;
/* Back up the stack of bracket start pointers. */
eptrb = eptrb->epb_prev;
if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT ||
*prev == OP_ASSERTBACK || *prev == OP_ASSERTBACK_NOT ||
*prev == OP_ONCE)
{
md->end_match_ptr = eptr; /* For ONCE */
if (!ES3_Compatible_Behavior)
md->end_offset_top = offset_top;
else if(*prev != OP_ONCE)
{
// clear matches in zero width negative lookaheads, see ECMA section 15.10.2.8
bool prev_op_was_negative = (*prev == OP_ASSERT_NOT || *prev == OP_ASSERTBACK_NOT);
while(prev < ecode) {
if(*prev >= OP_BRA) {
offset = (*prev-OP_BRA)<< 1;
if (prev_op_was_negative)
{
md->offset_vector[offset] = -1;
md->offset_vector[offset+1] = -1;
}
prev += _pcre_OP_lengths[OP_BRA];
} else
prev += _pcre_OP_lengths[*prev];
}
// reset prev
prev = ecode - GET(ecode, 1);
}
RRETURN(MATCH_MATCH);
}
/* In all other cases except a conditional group we have to check the
group number back at the start and if necessary complete handling an
extraction by setting the offsets and bumping the high water mark. */
if (*prev != OP_COND)
{
number = *prev - OP_BRA;
/* For extended extraction brackets (large number), we have to fish out
the number from a dummy opcode at the start. */
if (number > EXTRACT_BASIC_MAX) number = GET2(prev, 2+LINK_SIZE);
offset = number << 1;
#ifdef DEBUG
printf("end bracket %d", number);
printf("\n");
#endif
/* Test for a numbered group. This includes groups called as a result
of recursion. Note that whole-pattern recursion is coded as a recurse
into group 0, so it won't be picked up here. Instead, we catch it when
the OP_END is reached. */
if (number > 0)
{
md->capture_last = number;
if (offset >= md->offset_max) md->offset_overflow = TRUE; else
{
md->offset_vector[offset] =
md->offset_vector[md->offset_end - number];
md->offset_vector[offset+1] = eptr - md->start_subject;
if (offset_top <= offset) offset_top = offset + 2;
if (ES3_Compatible_Behavior && (offset_top > md->end_offset_top))
md->end_offset_top = offset_top;
}
/* Handle a recursively called group. Restore the offsets
appropriately and continue from after the call. */
if (md->recursive != NULL && md->recursive->group_num == number)
{
recursion_info *rec = md->recursive;
DPRINTF(("Recursion (%d) succeeded - continuing\n", number));
md->recursive = rec->prevrec;
md->start_match = rec->save_start;
memcpy(md->offset_vector, rec->offset_save,
rec->saved_max * sizeof(int));
ecode = rec->after_call;
ims = original_ims;
break;
}
}
}
/* Reset the value of the ims flags, in case they got changed during
the group. */
ims = original_ims;
DPRINTF(("ims reset to %02lx\n", ims));
/* For a non-repeating ket, just continue at this level. This also
happens for a repeating ket if no characters were matched in the group.
This is the forcible breaking of infinite loops as implemented in Perl
5.005. If there is an options reset, it will get obeyed in the normal
course of events. */
if (*ecode == OP_KET || eptr == saved_eptr)
{
ecode += 1 + LINK_SIZE;
break;
}
/* The repeating kets try the rest of the pattern or restart from the
preceding bracket, in the appropriate order. */
if (*ecode == OP_KETRMIN)
{
RMATCH(rrc, eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
RMATCH(rrc, eptr, prev, offset_top, md, ims, eptrb, match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
else /* OP_KETRMAX */
{
RMATCH(rrc, eptr, prev, offset_top, md, ims, eptrb, match_isgroup);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
RMATCH(rrc, eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
}
RRETURN(MATCH_NOMATCH);
/* Start of subject unless notbol, or after internal newline if multiline */
case OP_CIRC:
if (md->notbol && eptr == md->start_subject) RRETURN(MATCH_NOMATCH);
if ((ims & PCRE_MULTILINE) != 0)
{
if (eptr != md->start_subject && !isECMALineTerminator(eptr[-1]))
RRETURN(MATCH_NOMATCH);
ecode++;
break;
}
/* ... else fall through */
/* Start of subject assertion */
case OP_SOD:
if (eptr != md->start_subject) RRETURN(MATCH_NOMATCH);
ecode++;
break;
/* Start of match assertion */
case OP_SOM:
if (eptr != md->start_subject + md->start_offset) RRETURN(MATCH_NOMATCH);
ecode++;
break;
/* Assert before internal newline if multiline, or before a terminating
newline unless endonly is set, else end of subject unless noteol is set. */
case OP_DOLL:
if ((ims & PCRE_MULTILINE) != 0)
{
if (eptr < md->end_subject)
{ if (!isECMALineTerminator(*eptr)) RRETURN(MATCH_NOMATCH); }
else
{ if (md->noteol) RRETURN(MATCH_NOMATCH); }
ecode++;
break;
}
else
{
if (md->noteol) RRETURN(MATCH_NOMATCH);
if (!md->endonly)
{
if (eptr < md->end_subject - 1 ||
(eptr == md->end_subject - 1 && !isECMALineTerminator(*eptr)))
RRETURN(MATCH_NOMATCH);
ecode++;
break;
}
}
/* ... else fall through */
/* End of subject assertion (\z) */
case OP_EOD:
if (eptr < md->end_subject) RRETURN(MATCH_NOMATCH);
ecode++;
break;
/* End of subject or ending \n assertion (\Z) */
case OP_EODN:
{
if (eptr < md->end_subject - 1 ||
(eptr == md->end_subject - 1 && !isECMALineTerminator(*eptr))) RRETURN(MATCH_NOMATCH);
ecode++;
break;
}
/* Word boundary assertions */
case OP_NOT_WORD_BOUNDARY:
case OP_WORD_BOUNDARY:
{
/* Find out if the previous and current characters are "word" characters.
It takes a bit more work in UTF-8 mode. Characters > 255 are assumed to
be "non-word" characters. */
#ifdef SUPPORT_UTF8
if (utf8)
{
if (eptr == md->start_subject) prev_is_word = FALSE; else
{
const uschar *lastptr = eptr - 1;
while((*lastptr & 0xc0) == 0x80) lastptr--;
GETCHAR(c, lastptr);
prev_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0;
}
if (eptr >= md->end_subject) cur_is_word = FALSE; else
{
GETCHAR(c, eptr);
cur_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0;
}
}
else
#endif
/* More streamlined when not in UTF-8 mode */
{
prev_is_word = (eptr != md->start_subject) &&
((md->ctypes[eptr[-1]] & ctype_word) != 0);
cur_is_word = (eptr < md->end_subject) &&
((md->ctypes[*eptr] & ctype_word) != 0);
}
/* Now see if the situation is what we want */
if ((*ecode++ == OP_WORD_BOUNDARY)?
cur_is_word == prev_is_word : cur_is_word != prev_is_word)
RRETURN(MATCH_NOMATCH);
}
break;
/* Match a single character type; inline for speed */
case OP_ANY:
{
if ((ims & PCRE_DOTALL) == 0 && eptr < md->end_subject && isECMALineTerminator(*eptr))
RRETURN(MATCH_NOMATCH);
if (eptr++ >= md->end_subject) RRETURN(MATCH_NOMATCH);
#ifdef SUPPORT_UTF8
if (utf8)
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
#endif
ecode++;
break;
}
/* Match a single byte, even in UTF-8 mode. This opcode really does match
any byte, even newline, independent of the setting of PCRE_DOTALL. */
case OP_ANYBYTE:
if (eptr++ >= md->end_subject) RRETURN(MATCH_NOMATCH);
ecode++;
break;
case OP_NOT_DIGIT:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
if (
#ifdef SUPPORT_UTF8
c < 256 &&
#endif
(md->ctypes[c] & ctype_digit) != 0
)
RRETURN(MATCH_NOMATCH);
ecode++;
break;
case OP_DIGIT:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
if (
#ifdef SUPPORT_UTF8
c >= 256 ||
#endif
(md->ctypes[c] & ctype_digit) == 0
)
RRETURN(MATCH_NOMATCH);
ecode++;
break;
case OP_NOT_WHITESPACE:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) != 0)
{
RRETURN(MATCH_NOMATCH);
}
}
else if (isUnicodeWhiteSpace(c) == true)
{
RRETURN(MATCH_NOMATCH);
}
ecode++;
break;
case OP_WHITESPACE:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) == 0)
{
RRETURN(MATCH_NOMATCH);
}
}
else if (isUnicodeWhiteSpace(c) == false)
{
RRETURN(MATCH_NOMATCH);
}
ecode++;
break;
case OP_NOT_WORDCHAR:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
if (
#ifdef SUPPORT_UTF8
c < 256 &&
#endif
(md->ctypes[c] & ctype_word) != 0
)
RRETURN(MATCH_NOMATCH);
ecode++;
break;
case OP_WORDCHAR:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
if (
#ifdef SUPPORT_UTF8
c >= 256 ||
#endif
(md->ctypes[c] & ctype_word) == 0
)
RRETURN(MATCH_NOMATCH);
ecode++;
break;
#ifdef SUPPORT_UCP
/* Check the next character by Unicode property. We will get here only
if the support is in the binary; otherwise a compile-time error occurs. */
case OP_PROP:
case OP_NOTPROP:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
{
int chartype, rqdtype;
int othercase;
int category = _pcre_ucp_findchar(c, &chartype, &othercase);
rqdtype = *(++ecode);
ecode++;
if (rqdtype >= 128)
{
if ((rqdtype - 128 != category) == (op == OP_PROP))
RRETURN(MATCH_NOMATCH);
}
else
{
if ((rqdtype != chartype) == (op == OP_PROP))
RRETURN(MATCH_NOMATCH);
}
}
break;
/* Match an extended Unicode sequence. We will get here only if the support
is in the binary; otherwise a compile-time error occurs. */
case OP_EXTUNI:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
{
int chartype;
int othercase;
int category = _pcre_ucp_findchar(c, &chartype, &othercase);
if (category == ucp_M) RRETURN(MATCH_NOMATCH);
while (eptr < md->end_subject)
{
int len = 1;
if (!utf8) c = *eptr; else
{
GETCHARLEN(c, eptr, len);
}
category = _pcre_ucp_findchar(c, &chartype, &othercase);
if (category != ucp_M) break;
eptr += len;
}
}
ecode++;
break;
#endif
/* Match a back reference, possibly repeatedly. Look past the end of the
item to see if there is repeat information following. The code is similar
to that for character classes, but repeated for efficiency. Then obey
similar code to character type repeats - written out again for speed.
However, if the referenced string is the empty string, always treat
it as matched, any number of times (otherwise there could be infinite
loops). */
case OP_REF:
{
offset = GET2(ecode, 1) << 1; /* Doubled ref number */
ecode += 3; /* Advance past item */
/* If the reference is unset, set the length to be longer than the amount
of subject left; this ensures that every attempt at a match fails. We
can't just fail here, because of the possibility of quantifiers with zero
minima. */
if (ES3_Compatible_Behavior && md->offset_vector[offset] < 0)
length = 0;
else
length = (offset >= offset_top || md->offset_vector[offset] < 0)?
md->end_subject - eptr + 1 :
md->offset_vector[offset+1] - md->offset_vector[offset];
/* Set up for repetition, or handle the non-repeated case */
switch (*ecode)
{
case OP_CRSTAR:
case OP_CRMINSTAR:
case OP_CRPLUS:
case OP_CRMINPLUS:
case OP_CRQUERY:
case OP_CRMINQUERY:
c = *ecode++ - OP_CRSTAR;
minimize = (c & 1) != 0;
min = rep_min[c]; /* Pick up values from tables; */
max = rep_max[c]; /* zero for max => infinity */
if (max == 0) max = INT_MAX;
break;
case OP_CRRANGE:
case OP_CRMINRANGE:
minimize = (*ecode == OP_CRMINRANGE);
min = GET2(ecode, 1);
max = GET2(ecode, 3);
if (max == 0) max = INT_MAX;
ecode += 5;
break;
default: /* No repeat follows */
if (!match_ref(offset, eptr, length, md, ims)) RRETURN(MATCH_NOMATCH);
eptr += length;
continue; /* With the main loop */
}
/* If the length of the reference is zero, just continue with the
main loop. */
if (length == 0) continue;
/* First, ensure the minimum number of matches are present. We get back
the length of the reference string explicitly rather than passing the
address of eptr, so that eptr can be a register variable. */
for (i = 1; i <= min; i++)
{
if (!match_ref(offset, eptr, length, md, ims)) RRETURN(MATCH_NOMATCH);
eptr += length;
}
/* If min = max, continue at the same level without recursion.
They are not both allowed to be zero. */
if (min == max) continue;
/* If minimizing, keep trying and advancing the pointer */
if (minimize)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || !match_ref(offset, eptr, length, md, ims))
RRETURN(MATCH_NOMATCH);
eptr += length;
}
/* Control never gets here */
}
/* If maximizing, find the longest string and work backwards */
else
{
pp = eptr;
for (i = min; i < max; i++)
{
if (!match_ref(offset, eptr, length, md, ims)) break;
eptr += length;
}
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
eptr -= length;
}
RRETURN(MATCH_NOMATCH);
}
}
/* Control never gets here */
/* Match a bit-mapped character class, possibly repeatedly. This op code is
used when all the characters in the class have values in the range 0-255,
and either the matching is caseful, or the characters are in the range
0-127 when UTF-8 processing is enabled. The only difference between
OP_CLASS and OP_NCLASS occurs when a data character outside the range is
encountered.
First, look past the end of the item to see if there is repeat information
following. Then obey similar code to character type repeats - written out
again for speed. */
case OP_NCLASS:
case OP_CLASS:
{
data = ecode + 1; /* Save for matching */
ecode += 33; /* Advance past the item */
switch (*ecode)
{
case OP_CRSTAR:
case OP_CRMINSTAR:
case OP_CRPLUS:
case OP_CRMINPLUS:
case OP_CRQUERY:
case OP_CRMINQUERY:
c = *ecode++ - OP_CRSTAR;
minimize = (c & 1) != 0;
min = rep_min[c]; /* Pick up values from tables; */
max = rep_max[c]; /* zero for max => infinity */
if (max == 0) max = INT_MAX;
break;
case OP_CRRANGE:
case OP_CRMINRANGE:
minimize = (*ecode == OP_CRMINRANGE);
min = GET2(ecode, 1);
max = GET2(ecode, 3);
if (max == 0) max = INT_MAX;
ecode += 5;
break;
default: /* No repeat follows */
min = max = 1;
break;
}
/* First, ensure the minimum number of matches are present. */
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINC(c, eptr);
if (c > 255)
{
if (op == OP_CLASS) RRETURN(MATCH_NOMATCH);
}
else
{
if ((data[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
}
}
}
else
#endif
/* Not UTF-8 mode */
{
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
c = *eptr++;
if ((data[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
}
}
/* If max == min we can continue with the main loop without the
need to recurse. */
if (min == max) continue;
/* If minimizing, keep testing the rest of the expression and advancing
the pointer while it matches the class. */
if (minimize)
{
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINC(c, eptr);
if (c > 255)
{
if (op == OP_CLASS) RRETURN(MATCH_NOMATCH);
}
else
{
if ((data[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
}
}
}
else
#endif
/* Not UTF-8 mode */
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
c = *eptr++;
if ((data[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
}
}
/* Control never gets here */
}
/* If maximizing, find the longest possible run, then work backwards. */
else
{
pp = eptr;
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
if (c > 255)
{
if (op == OP_CLASS) break;
}
else
{
if ((data[c/8] & (1 << (c&7))) == 0) break;
}
eptr += len;
}
for (;;)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (eptr-- == pp) break; /* Stop if tried at original pos */
BACKCHAR(eptr);
}
}
else
#endif
/* Not UTF-8 mode */
{
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject) break;
c = *eptr;
if ((data[c/8] & (1 << (c&7))) == 0) break;
eptr++;
}
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
eptr--;
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
}
RRETURN(MATCH_NOMATCH);
}
}
/* Control never gets here */
/* Match an extended character class. This opcode is encountered only
in UTF-8 mode, because that's the only time it is compiled. */
#ifdef SUPPORT_UTF8
case OP_XCLASS:
{
data = ecode + 1 + LINK_SIZE; /* Save for matching */
ecode += GET(ecode, 1); /* Advance past the item */
switch (*ecode)
{
case OP_CRSTAR:
case OP_CRMINSTAR:
case OP_CRPLUS:
case OP_CRMINPLUS:
case OP_CRQUERY:
case OP_CRMINQUERY:
c = *ecode++ - OP_CRSTAR;
minimize = (c & 1) != 0;
min = rep_min[c]; /* Pick up values from tables; */
max = rep_max[c]; /* zero for max => infinity */
if (max == 0) max = INT_MAX;
break;
case OP_CRRANGE:
case OP_CRMINRANGE:
minimize = (*ecode == OP_CRMINRANGE);
min = GET2(ecode, 1);
max = GET2(ecode, 3);
if (max == 0) max = INT_MAX;
ecode += 5;
break;
default: /* No repeat follows */
min = max = 1;
break;
}
/* First, ensure the minimum number of matches are present. */
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINC(c, eptr);
if (!_pcre_xclass(c, data)) RRETURN(MATCH_NOMATCH);
}
/* If max == min we can continue with the main loop without the
need to recurse. */
if (min == max) continue;
/* If minimizing, keep testing the rest of the expression and advancing
the pointer while it matches the class. */
if (minimize)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINC(c, eptr);
if (!_pcre_xclass(c, data)) RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
}
/* If maximizing, find the longest possible run, then work backwards. */
else
{
pp = eptr;
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
if (!_pcre_xclass(c, data)) break;
eptr += len;
}
for(;;)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (eptr-- == pp) break; /* Stop if tried at original pos */
BACKCHAR(eptr)
}
RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
}
#endif /* End of XCLASS */
/* Match a single character, casefully */
case OP_CHAR:
#ifdef SUPPORT_UTF8
if (utf8)
{
length = 1;
ecode++;
GETCHARLEN(fc, ecode, length);
if (length > md->end_subject - eptr) RRETURN(MATCH_NOMATCH);
while (length-- > 0) if (*ecode++ != *eptr++) RRETURN(MATCH_NOMATCH);
}
else
#endif
/* Non-UTF-8 mode */
{
if (md->end_subject - eptr < 1) RRETURN(MATCH_NOMATCH);
if (ecode[1] != *eptr++) RRETURN(MATCH_NOMATCH);
ecode += 2;
}
break;
/* Match a single character, caselessly */
case OP_CHARNC:
#ifdef SUPPORT_UTF8
if (utf8)
{
length = 1;
ecode++;
GETCHARLEN(fc, ecode, length);
if (length > md->end_subject - eptr) RRETURN(MATCH_NOMATCH);
/* If the pattern character's value is < 128, we have only one byte, and
can use the fast lookup table. */
if (fc < 128)
{
if (md->lcc[*ecode++] != md->lcc[*eptr++]) RRETURN(MATCH_NOMATCH);
}
/* Otherwise we must pick up the subject character */
else
{
int dc;
GETCHARINC(dc, eptr);
ecode += length;
/* If we have Unicode property support, we can use it to test the other
case of the character, if there is one. The result of _pcre_ucp_findchar() is
< 0 if the char isn't found, and othercase is returned as zero if there
isn't one. */
if (fc != dc)
{
#ifdef SUPPORT_UCP
int chartype;
int othercase;
if (_pcre_ucp_findchar(fc, &chartype, &othercase) < 0 || dc != othercase)
#endif
RRETURN(MATCH_NOMATCH);
}
}
}
else
#endif /* SUPPORT_UTF8 */
/* Non-UTF-8 mode */
{
if (md->end_subject - eptr < 1) RRETURN(MATCH_NOMATCH);
if (md->lcc[ecode[1]] != md->lcc[*eptr++]) RRETURN(MATCH_NOMATCH);
ecode += 2;
}
break;
/* Match a single character repeatedly; different opcodes share code. */
case OP_EXACT:
min = max = GET2(ecode, 1);
ecode += 3;
goto REPEATCHAR;
case OP_UPTO:
case OP_MINUPTO:
min = 0;
max = GET2(ecode, 1);
minimize = *ecode == OP_MINUPTO;
ecode += 3;
goto REPEATCHAR;
case OP_STAR:
case OP_MINSTAR:
case OP_PLUS:
case OP_MINPLUS:
case OP_QUERY:
case OP_MINQUERY:
c = *ecode++ - OP_STAR;
minimize = (c & 1) != 0;
min = rep_min[c]; /* Pick up values from tables; */
max = rep_max[c]; /* zero for max => infinity */
if (max == 0) max = INT_MAX;
/* Common code for all repeated single-character matches. We can give
up quickly if there are fewer than the minimum number of characters left in
the subject. */
REPEATCHAR:
#ifdef SUPPORT_UTF8
if (utf8)
{
length = 1;
charptr = ecode;
GETCHARLEN(fc, ecode, length);
if (min * length > md->end_subject - eptr) RRETURN(MATCH_NOMATCH);
ecode += length;
/* Handle multibyte character matching specially here. There is
support for caseless matching if UCP support is present. */
if (length > 1)
{
int oclength = 0;
uschar occhars[8];
#ifdef SUPPORT_UCP
int othercase;
int chartype;
if ((ims & PCRE_CASELESS) != 0 &&
_pcre_ucp_findchar(fc, &chartype, &othercase) >= 0 &&
othercase > 0)
oclength = _pcre_ord2utf8(othercase, occhars);
#endif /* SUPPORT_UCP */
for (i = 1; i <= min; i++)
{
if (memcmp(eptr, charptr, length) == 0) eptr += length;
/* Need braces because of following else */
else if (oclength == 0) { RRETURN(MATCH_NOMATCH); }
else
{
if (memcmp(eptr, occhars, oclength) != 0) RRETURN(MATCH_NOMATCH);
eptr += oclength;
}
}
if (min == max) continue;
if (minimize)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
if (memcmp(eptr, charptr, length) == 0) eptr += length;
/* Need braces because of following else */
else if (oclength == 0) { RRETURN(MATCH_NOMATCH); }
else
{
if (memcmp(eptr, occhars, oclength) != 0) RRETURN(MATCH_NOMATCH);
eptr += oclength;
}
}
/* Control never gets here */
}
else
{
pp = eptr;
for (i = min; i < max; i++)
{
if (eptr > md->end_subject - length) break;
if (memcmp(eptr, charptr, length) == 0) eptr += length;
else if (oclength == 0) break;
else
{
if (memcmp(eptr, occhars, oclength) != 0) break;
eptr += oclength;
}
}
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
eptr -= length;
}
RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
}
/* If the length of a UTF-8 character is 1, we fall through here, and
obey the code as for non-UTF-8 characters below, though in this case the
value of fc will always be < 128. */
}
else
#endif /* SUPPORT_UTF8 */
/* When not in UTF-8 mode, load a single-byte character. */
{
if (min > md->end_subject - eptr) RRETURN(MATCH_NOMATCH);
fc = *ecode++;
}
/* The value of fc at this point is always less than 256, though we may or
may not be in UTF-8 mode. The code is duplicated for the caseless and
caseful cases, for speed, since matching characters is likely to be quite
common. First, ensure the minimum number of matches are present. If min =
max, continue at the same level without recursing. Otherwise, if
minimizing, keep trying the rest of the expression and advancing one
matching character if failing, up to the maximum. Alternatively, if
maximizing, find the maximum number of characters and work backwards. */
DPRINTF(("matching %c{%d,%d} against subject %.*s\n", fc, min, max,
max, eptr));
if ((ims & PCRE_CASELESS) != 0)
{
fc = md->lcc[fc];
for (i = 1; i <= min; i++)
if (fc != md->lcc[*eptr++]) RRETURN(MATCH_NOMATCH);
if (min == max) continue;
if (minimize)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject ||
fc != md->lcc[*eptr++])
RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
}
else
{
pp = eptr;
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || fc != md->lcc[*eptr]) break;
eptr++;
}
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
eptr--;
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
}
/* Caseful comparisons (includes all multi-byte characters) */
else
{
for (i = 1; i <= min; i++) if (fc != *eptr++) RRETURN(MATCH_NOMATCH);
if (min == max) continue;
if (minimize)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject || fc != *eptr++)
RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
}
else
{
pp = eptr;
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || fc != *eptr) break;
eptr++;
}
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
eptr--;
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
RRETURN(MATCH_NOMATCH);
}
}
/* Control never gets here */
/* Match a negated single one-byte character. The character we are
checking can be multibyte. */
case OP_NOT:
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
ecode++;
GETCHARINCTEST(c, eptr);
if ((ims & PCRE_CASELESS) != 0)
{
#ifdef SUPPORT_UTF8
if (c < 256)
#endif
c = md->lcc[c];
if (md->lcc[*ecode++] == c) RRETURN(MATCH_NOMATCH);
}
else
{
if (*ecode++ == c) RRETURN(MATCH_NOMATCH);
}
break;
/* Match a negated single one-byte character repeatedly. This is almost a
repeat of the code for a repeated single character, but I haven't found a
nice way of commoning these up that doesn't require a test of the
positive/negative option for each character match. Maybe that wouldn't add
very much to the time taken, but character matching *is* what this is all
about... */
case OP_NOTEXACT:
min = max = GET2(ecode, 1);
ecode += 3;
goto REPEATNOTCHAR;
case OP_NOTUPTO:
case OP_NOTMINUPTO:
min = 0;
max = GET2(ecode, 1);
minimize = *ecode == OP_NOTMINUPTO;
ecode += 3;
goto REPEATNOTCHAR;
case OP_NOTSTAR:
case OP_NOTMINSTAR:
case OP_NOTPLUS:
case OP_NOTMINPLUS:
case OP_NOTQUERY:
case OP_NOTMINQUERY:
c = *ecode++ - OP_NOTSTAR;
minimize = (c & 1) != 0;
min = rep_min[c]; /* Pick up values from tables; */
max = rep_max[c]; /* zero for max => infinity */
if (max == 0) max = INT_MAX;
/* Common code for all repeated single-byte matches. We can give up quickly
if there are fewer than the minimum number of bytes left in the
subject. */
REPEATNOTCHAR:
if (min > md->end_subject - eptr) RRETURN(MATCH_NOMATCH);
fc = *ecode++;
/* The code is duplicated for the caseless and caseful cases, for speed,
since matching characters is likely to be quite common. First, ensure the
minimum number of matches are present. If min = max, continue at the same
level without recursing. Otherwise, if minimizing, keep trying the rest of
the expression and advancing one matching character if failing, up to the
maximum. Alternatively, if maximizing, find the maximum number of
characters and work backwards. */
DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", fc, min, max,
max, eptr));
if ((ims & PCRE_CASELESS) != 0)
{
fc = md->lcc[fc];
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
register int d;
for (i = 1; i <= min; i++)
{
GETCHARINC(d, eptr);
if (d < 256) d = md->lcc[d];
if (fc == d) RRETURN(MATCH_NOMATCH);
}
}
else
#endif
/* Not UTF-8 mode */
{
for (i = 1; i <= min; i++)
if (fc == md->lcc[*eptr++]) RRETURN(MATCH_NOMATCH);
}
if (min == max) continue;
if (minimize)
{
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
register int d;
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
GETCHARINC(d, eptr);
if (d < 256) d = md->lcc[d];
if (fi >= max || eptr >= md->end_subject || fc == d)
RRETURN(MATCH_NOMATCH);
}
}
else
#endif
/* Not UTF-8 mode */
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject || fc == md->lcc[*eptr++])
RRETURN(MATCH_NOMATCH);
}
}
/* Control never gets here */
}
/* Maximize case */
else
{
pp = eptr;
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
register int d;
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(d, eptr, len);
if (d < 256) d = md->lcc[d];
if (fc == d) break;
eptr += len;
}
for(;;)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (eptr-- == pp) break; /* Stop if tried at original pos */
BACKCHAR(eptr);
}
}
else
#endif
/* Not UTF-8 mode */
{
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || fc == md->lcc[*eptr]) break;
eptr++;
}
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
eptr--;
}
}
RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
}
/* Caseful comparisons */
else
{
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
register int d;
for (i = 1; i <= min; i++)
{
GETCHARINC(d, eptr);
if (fc == d) RRETURN(MATCH_NOMATCH);
}
}
else
#endif
/* Not UTF-8 mode */
{
for (i = 1; i <= min; i++)
if (fc == *eptr++) RRETURN(MATCH_NOMATCH);
}
if (min == max) continue;
if (minimize)
{
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
register int d;
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
GETCHARINC(d, eptr);
if (fi >= max || eptr >= md->end_subject || fc == d)
RRETURN(MATCH_NOMATCH);
}
}
else
#endif
/* Not UTF-8 mode */
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject || fc == *eptr++)
RRETURN(MATCH_NOMATCH);
}
}
/* Control never gets here */
}
/* Maximize case */
else
{
pp = eptr;
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
register int d;
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(d, eptr, len);
if (fc == d) break;
eptr += len;
}
for(;;)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (eptr-- == pp) break; /* Stop if tried at original pos */
BACKCHAR(eptr);
}
}
else
#endif
/* Not UTF-8 mode */
{
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || fc == *eptr) break;
eptr++;
}
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
eptr--;
}
}
RRETURN(MATCH_NOMATCH);
}
}
/* Control never gets here */
/* Match a single character type repeatedly; several different opcodes
share code. This is very similar to the code for single characters, but we
repeat it in the interests of efficiency. */
case OP_TYPEEXACT:
min = max = GET2(ecode, 1);
minimize = TRUE;
ecode += 3;
goto REPEATTYPE;
case OP_TYPEUPTO:
case OP_TYPEMINUPTO:
min = 0;
max = GET2(ecode, 1);
minimize = *ecode == OP_TYPEMINUPTO;
ecode += 3;
goto REPEATTYPE;
case OP_TYPESTAR:
case OP_TYPEMINSTAR:
case OP_TYPEPLUS:
case OP_TYPEMINPLUS:
case OP_TYPEQUERY:
case OP_TYPEMINQUERY:
c = *ecode++ - OP_TYPESTAR;
minimize = (c & 1) != 0;
min = rep_min[c]; /* Pick up values from tables; */
max = rep_max[c]; /* zero for max => infinity */
if (max == 0) max = INT_MAX;
/* Common code for all repeated single character type matches. Note that
in UTF-8 mode, '.' matches a character of any length, but for the other
character types, the valid characters are all one-byte long. */
REPEATTYPE:
ctype = *ecode++; /* Code for the character type */
#ifdef SUPPORT_UCP
if (ctype == OP_PROP || ctype == OP_NOTPROP)
{
prop_fail_result = ctype == OP_NOTPROP;
prop_type = *ecode++;
if (prop_type >= 128)
{
prop_test_against = prop_type - 128;
prop_test_variable = &prop_category;
}
else
{
prop_test_against = prop_type;
prop_test_variable = &prop_chartype;
}
}
else prop_type = -1;
#endif
/* First, ensure the minimum number of matches are present. Use inline
code for maximizing the speed, and do the type test once at the start
(i.e. keep it out of the loop). Also we can test that there are at least
the minimum number of bytes before we start. This isn't as effective in
UTF-8 mode, but it does no harm. Separate the UTF-8 code completely as that
is tidier. Also separate the UCP code, which can be the same for both UTF-8
and single-bytes. */
if (min > md->end_subject - eptr) RRETURN(MATCH_NOMATCH);
if (min > 0)
{
#ifdef SUPPORT_UCP
if (prop_type > 0)
{
for (i = 1; i <= min; i++)
{
GETCHARINC(c, eptr);
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if ((*prop_test_variable == prop_test_against) == prop_fail_result)
RRETURN(MATCH_NOMATCH);
}
}
/* Match extended Unicode sequences. We will get here only if the
support is in the binary; otherwise a compile-time error occurs. */
else if (ctype == OP_EXTUNI)
{
for (i = 1; i <= min; i++)
{
GETCHARINCTEST(c, eptr);
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if (prop_category == ucp_M) RRETURN(MATCH_NOMATCH);
while (eptr < md->end_subject)
{
int len = 1;
if (!utf8) c = *eptr; else
{
GETCHARLEN(c, eptr, len);
}
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if (prop_category != ucp_M) break;
eptr += len;
}
}
}
else
#endif /* SUPPORT_UCP */
/* Handle all other cases when the coding is UTF-8 */
#ifdef SUPPORT_UTF8
if (utf8) switch(ctype)
{
case OP_ANY:
for (i = 1; i <= min; i++)
{
/* cn start code added for ECMA compliance */
if (eptr >= md->end_subject)
RRETURN(MATCH_NOMATCH);
int d;
GETCHARINC(d, eptr);
if (isECMALineTerminator(d) && (ims & PCRE_DOTALL) == 0)
RRETURN(MATCH_NOMATCH);
/* cn end code added for ECMA compliance */
// cn: original code
//if (eptr >= md->end_subject ||
// (*eptr++ == NEWLINE && (ims & PCRE_DOTALL) == 0))
// RRETURN(MATCH_NOMATCH);
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
}
break;
case OP_ANYBYTE:
eptr += min;
break;
case OP_NOT_DIGIT:
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINC(c, eptr);
if (c < 128 && (md->ctypes[c] & ctype_digit) != 0)
RRETURN(MATCH_NOMATCH);
}
break;
case OP_DIGIT:
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject ||
*eptr >= 128 || (md->ctypes[*eptr++] & ctype_digit) == 0)
RRETURN(MATCH_NOMATCH);
/* No need to skip more bytes - we know it's a 1-byte character */
}
break;
case OP_NOT_WHITESPACE:
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject)
RRETURN(MATCH_NOMATCH);
if (*eptr < 128)
{
if ((md->ctypes[*eptr++] & ctype_space) != 0)
RRETURN(MATCH_NOMATCH);
}
else
{
int d;
GETCHARINC(d, eptr);
if (isUnicodeWhiteSpace(d) == true)
{
RRETURN(MATCH_NOMATCH);
}
}
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
}
break;
case OP_WHITESPACE:
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject)
{
RRETURN(MATCH_NOMATCH);
}
if (*eptr < 128)
{
if ((md->ctypes[*eptr++] & ctype_space) == 0)
RRETURN(MATCH_NOMATCH);
}
else
{
int d;
GETCHARINC(d, eptr);
if (isUnicodeWhiteSpace(d) == false)
{
RRETURN(MATCH_NOMATCH);
}
}
}
break;
case OP_NOT_WORDCHAR:
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject ||
(*eptr < 128 && (md->ctypes[*eptr++] & ctype_word) != 0))
RRETURN(MATCH_NOMATCH);
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
}
break;
case OP_WORDCHAR:
for (i = 1; i <= min; i++)
{
if (eptr >= md->end_subject ||
*eptr >= 128 || (md->ctypes[*eptr++] & ctype_word) == 0)
RRETURN(MATCH_NOMATCH);
/* No need to skip more bytes - we know it's a 1-byte character */
}
break;
default:
RRETURN(PCRE_ERROR_INTERNAL);
} /* End switch(ctype) */
else
#endif /* SUPPORT_UTF8 */
/* Code for the non-UTF-8 case for minimum matching of operators other
than OP_PROP and OP_NOTPROP. */
switch(ctype)
{
case OP_ANY:
if ((ims & PCRE_DOTALL) == 0)
{
for (i = 1; i <= min; i++)
{
int d;
GETCHARINC(d, eptr);
if (isECMALineTerminator(d)) RRETURN(MATCH_NOMATCH);
//if (*eptr++ == NEWLINE) RRETURN(MATCH_NOMATCH);
}
}
else eptr += min;
break;
case OP_ANYBYTE:
eptr += min;
break;
case OP_NOT_DIGIT:
for (i = 1; i <= min; i++)
if ((md->ctypes[*eptr++] & ctype_digit) != 0) RRETURN(MATCH_NOMATCH);
break;
case OP_DIGIT:
for (i = 1; i <= min; i++)
if ((md->ctypes[*eptr++] & ctype_digit) == 0) RRETURN(MATCH_NOMATCH);
break;
case OP_NOT_WHITESPACE: // cn: no need for isUnicodeWhiteSpace() checks, this is the non-utf8 #ifdef'd code
for (i = 1; i <= min; i++)
if ((md->ctypes[*eptr++] & ctype_space) != 0) RRETURN(MATCH_NOMATCH);
break;
case OP_WHITESPACE: // cn: no need for isUnicodeWhiteSpace() checks, this is the non-utf8 #ifdef'd code
for (i = 1; i <= min; i++)
if ((md->ctypes[*eptr++] & ctype_space) == 0) RRETURN(MATCH_NOMATCH);
break;
case OP_NOT_WORDCHAR:
for (i = 1; i <= min; i++)
if ((md->ctypes[*eptr++] & ctype_word) != 0)
RRETURN(MATCH_NOMATCH);
break;
case OP_WORDCHAR:
for (i = 1; i <= min; i++)
if ((md->ctypes[*eptr++] & ctype_word) == 0)
RRETURN(MATCH_NOMATCH);
break;
default:
RRETURN(PCRE_ERROR_INTERNAL);
}
}
/* If min = max, continue at the same level without recursing */
if (min == max) continue;
/* If minimizing, we have to test the rest of the pattern before each
subsequent match. Again, separate the UTF-8 case for speed, and also
separate the UCP cases. */
if (minimize)
{
#ifdef SUPPORT_UCP
if (prop_type > 0)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINC(c, eptr);
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if ((*prop_test_variable == prop_test_against) == prop_fail_result)
RRETURN(MATCH_NOMATCH);
}
}
/* Match extended Unicode sequences. We will get here only if the
support is in the binary; otherwise a compile-time error occurs. */
else if (ctype == OP_EXTUNI)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINCTEST(c, eptr);
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if (prop_category == ucp_M) RRETURN(MATCH_NOMATCH);
while (eptr < md->end_subject)
{
int len = 1;
if (!utf8) c = *eptr; else
{
GETCHARLEN(c, eptr, len);
}
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if (prop_category != ucp_M) break;
eptr += len;
}
}
}
else
#endif /* SUPPORT_UCP */
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
GETCHARINC(c, eptr);
switch(ctype)
{
case OP_ANY:
if ((ims & PCRE_DOTALL) == 0 && isECMALineTerminator(c)) RRETURN(MATCH_NOMATCH);
break;
case OP_ANYBYTE:
break;
case OP_NOT_DIGIT:
if (c < 256 && (md->ctypes[c] & ctype_digit) != 0)
RRETURN(MATCH_NOMATCH);
break;
case OP_DIGIT:
if (c >= 256 || (md->ctypes[c] & ctype_digit) == 0)
RRETURN(MATCH_NOMATCH);
break;
case OP_NOT_WHITESPACE:
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) != 0)
RRETURN(MATCH_NOMATCH);
}
else if (isUnicodeWhiteSpace(c) == true)
{
RRETURN(MATCH_NOMATCH);
}
break;
case OP_WHITESPACE:
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) == 0)
RRETURN(MATCH_NOMATCH);
}
else if (isUnicodeWhiteSpace(c) == false)
{
RRETURN(MATCH_NOMATCH);
}
break;
case OP_NOT_WORDCHAR:
if (c < 256 && (md->ctypes[c] & ctype_word) != 0)
RRETURN(MATCH_NOMATCH);
break;
case OP_WORDCHAR:
if (c >= 256 || (md->ctypes[c] & ctype_word) == 0)
RRETURN(MATCH_NOMATCH);
break;
default:
RRETURN(PCRE_ERROR_INTERNAL);
}
}
}
else
#endif
/* Not UTF-8 mode */
{
for (fi = min;; fi++)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (fi >= max || eptr >= md->end_subject) RRETURN(MATCH_NOMATCH);
c = *eptr++;
switch(ctype)
{
case OP_ANY:
if ((ims & PCRE_DOTALL) == 0 && isECMALineTerminator(c)) RRETURN(MATCH_NOMATCH);
break;
case OP_ANYBYTE:
break;
case OP_NOT_DIGIT:
if ((md->ctypes[c] & ctype_digit) != 0) RRETURN(MATCH_NOMATCH);
break;
case OP_DIGIT:
if ((md->ctypes[c] & ctype_digit) == 0) RRETURN(MATCH_NOMATCH);
break;
case OP_NOT_WHITESPACE:
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) != 0)
RRETURN(MATCH_NOMATCH);
}
else if (isUnicodeWhiteSpace(c) == true)
{
RRETURN(MATCH_NOMATCH);
}
break;
case OP_WHITESPACE:
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) == 0)
RRETURN(MATCH_NOMATCH);
}
else if (isUnicodeWhiteSpace(c) == false)
{
RRETURN(MATCH_NOMATCH);
}
break;
case OP_NOT_WORDCHAR:
if ((md->ctypes[c] & ctype_word) != 0) RRETURN(MATCH_NOMATCH);
break;
case OP_WORDCHAR:
if ((md->ctypes[c] & ctype_word) == 0) RRETURN(MATCH_NOMATCH);
break;
default:
RRETURN(PCRE_ERROR_INTERNAL);
}
}
}
/* Control never gets here */
}
/* If maximizing it is worth using inline code for speed, doing the type
test once at the start (i.e. keep it out of the loop). Again, keep the
UTF-8 and UCP stuff separate. */
else
{
pp = eptr; /* Remember where we started */
#ifdef SUPPORT_UCP
if (prop_type > 0)
{
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if ((*prop_test_variable == prop_test_against) == prop_fail_result)
break;
eptr+= len;
}
/* eptr is now past the end of the maximum run */
for(;;)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (eptr-- == pp) break; /* Stop if tried at original pos */
BACKCHAR(eptr);
}
}
/* Match extended Unicode sequences. We will get here only if the
support is in the binary; otherwise a compile-time error occurs. */
else if (ctype == OP_EXTUNI)
{
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject) break;
GETCHARINCTEST(c, eptr);
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if (prop_category == ucp_M) break;
while (eptr < md->end_subject)
{
int len = 1;
if (!utf8) c = *eptr; else
{
GETCHARLEN(c, eptr, len);
}
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if (prop_category != ucp_M) break;
eptr += len;
}
}
/* eptr is now past the end of the maximum run */
for(;;)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (eptr-- == pp) break; /* Stop if tried at original pos */
for (;;) /* Move back over one extended */
{
int len = 1;
BACKCHAR(eptr);
if (!utf8) c = *eptr; else
{
GETCHARLEN(c, eptr, len);
}
prop_category = _pcre_ucp_findchar(c, &prop_chartype, &prop_othercase);
if (prop_category != ucp_M) break;
eptr--;
}
}
}
else
#endif /* SUPPORT_UCP */
#ifdef SUPPORT_UTF8
/* UTF-8 mode */
if (utf8)
{
switch(ctype)
{
case OP_ANY:
/* Special code is required for UTF8, but when the maximum is unlimited
we don't need it, so we repeat the non-UTF8 code. This is probably
worth it, because .* is quite a common idiom. */
if (max < INT_MAX)
{
if ((ims & PCRE_DOTALL) == 0)
{
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || isECMALineTerminator(*eptr)) break;
eptr++;
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
}
}
else
{
for (i = min; i < max; i++)
{
eptr++;
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
}
}
}
/* Handle unlimited UTF-8 repeat */
else
{
if ((ims & PCRE_DOTALL) == 0)
{
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || isECMALineTerminator(*eptr)) break;
eptr++;
}
break;
}
else
{
c = max - min;
if (c > md->end_subject - eptr) c = md->end_subject - eptr;
eptr += c;
}
}
break;
/* The byte case is the same as non-UTF8 */
case OP_ANYBYTE:
c = max - min;
if (c > md->end_subject - eptr) c = md->end_subject - eptr;
eptr += c;
break;
case OP_NOT_DIGIT:
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
if (c < 256 && (md->ctypes[c] & ctype_digit) != 0) break;
eptr+= len;
}
break;
case OP_DIGIT:
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
if (c >= 256 ||(md->ctypes[c] & ctype_digit) == 0) break;
eptr+= len;
}
break;
case OP_NOT_WHITESPACE:
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) != 0)
break;
}
else if (isUnicodeWhiteSpace(c) == true)
{
break;
}
eptr+= len;
}
break;
case OP_WHITESPACE:
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject)
break;
GETCHARLEN(c, eptr, len);
if (c < 256)
{
if ((md->ctypes[c] & ctype_space) == 0)
break;
}
else if (isUnicodeWhiteSpace(c) == false)
{
break;
}
eptr+= len;
}
break;
case OP_NOT_WORDCHAR:
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
if (c < 256 && (md->ctypes[c] & ctype_word) != 0) break;
eptr+= len;
}
break;
case OP_WORDCHAR:
for (i = min; i < max; i++)
{
int len = 1;
if (eptr >= md->end_subject) break;
GETCHARLEN(c, eptr, len);
if (c >= 256 || (md->ctypes[c] & ctype_word) == 0) break;
eptr+= len;
}
break;
default:
RRETURN(PCRE_ERROR_INTERNAL);
}
/* eptr is now past the end of the maximum run */
for(;;)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
if (eptr-- == pp) break; /* Stop if tried at original pos */
BACKCHAR(eptr);
}
}
else
#endif
/* Not UTF-8 mode */
{
switch(ctype)
{
case OP_ANY:
if ((ims & PCRE_DOTALL) == 0)
{
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || isECMALineTerminator(*eptr)) break;
eptr++;
}
break;
}
/* For DOTALL case, fall through and treat as \C */
case OP_ANYBYTE:
c = max - min;
if (c > md->end_subject - eptr) c = md->end_subject - eptr;
eptr += c;
break;
case OP_NOT_DIGIT:
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) != 0)
break;
eptr++;
}
break;
case OP_DIGIT:
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) == 0)
break;
eptr++;
}
break;
case OP_NOT_WHITESPACE:
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) != 0) // cn: not in the utf-8 #define, so no need to check isUnicodeWhiteSpace()
break;
eptr++;
}
break;
case OP_WHITESPACE:
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) == 0) // cn: not in the utf-8 #define, so no need to check isUnicodeWhiteSpace()
break;
eptr++;
}
break;
case OP_NOT_WORDCHAR:
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) != 0)
break;
eptr++;
}
break;
case OP_WORDCHAR:
for (i = min; i < max; i++)
{
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) == 0)
break;
eptr++;
}
break;
default:
RRETURN(PCRE_ERROR_INTERNAL);
}
/* eptr is now past the end of the maximum run */
while (eptr >= pp)
{
RMATCH(rrc, eptr, ecode, offset_top, md, ims, eptrb, 0);
eptr--;
if (rrc != MATCH_NOMATCH) RRETURN(rrc);
}
}
/* Get here if we can't make it match with any permitted repetitions */
RRETURN(MATCH_NOMATCH);
}
/* Control never gets here */
/* There's been some horrible disaster. Since all codes > OP_BRA are
for capturing brackets, and there shouldn't be any gaps between 0 and
OP_BRA, arrival here can only mean there is something seriously wrong
in the code above or the OP_xxx definitions. */
default:
DPRINTF(("Unknown opcode %d\n", *ecode));
RRETURN(PCRE_ERROR_UNKNOWN_NODE);
}
/* Do not stick any code in here without much thought; it is assumed
that "continue" in the code above comes out to here to repeat the main
loop. */
} /* End of main loop */
/* Control never reaches here */
}
/***************************************************************************
****************************************************************************
RECURSION IN THE match() FUNCTION
Undefine all the macros that were defined above to handle this. */
#ifdef NO_RECURSE
#undef eptr
#undef ecode
#undef offset_top
#undef ims
#undef eptrb
#undef flags
#undef callpat
#undef charptr
#undef data
#undef next
#undef pp
#undef prev
#undef saved_eptr
#undef new_recursive
#undef cur_is_word
#undef condition
#undef minimize
#undef prev_is_word
#undef original_ims
#undef ctype
#undef length
#undef max
#undef min
#undef number
#undef offset
#undef op
#undef save_capture_last
#undef save_offset1
#undef save_offset2
#undef save_offset3
#undef stacksave
#undef newptrb
#endif
/* These two are defined as macros in both cases */
#undef fc
#undef fi
/***************************************************************************
***************************************************************************/
/*************************************************
* Execute a Regular Expression *
*************************************************/
/* This function applies a compiled re to a subject string and picks out
portions of the string if it matches. Two elements in the vector are set for
each substring: the offsets to the start and end of the substring.
Arguments:
argument_re points to the compiled expression
extra_data points to extra data or is NULL
subject points to the subject string
length length of subject string (may contain binary zeros)
start_offset where to start in the subject string
options option bits
offsets points to a vector of ints to be filled in with offsets
offsetcount the number of elements in the vector
Returns: > 0 => success; value is the number of elements filled in
= 0 => success, but offsets is not big enough
-1 => failed to match
< -1 => some kind of unexpected problem
*/
PCRE_EXPORT int
pcre_exec(const pcre *argument_re, const pcre_extra *extra_data,
const char *subject, int length, int start_offset, int options, int *offsets,
int offsetcount)
{
int rc, resetcount, ocount;
int first_byte = -1;
int req_byte = -1;
int req_byte2 = -1;
unsigned long int ims = 0;
BOOL using_temporary_offsets = FALSE;
BOOL anchored;
BOOL startline;
BOOL firstline;
BOOL first_byte_caseless = FALSE;
BOOL req_byte_caseless = FALSE;
match_data match_block;
const uschar *tables;
const uschar *start_bits = NULL;
const uschar *start_match = (const uschar *)subject + start_offset;
const uschar *end_subject;
const uschar *req_byte_ptr = start_match - 1;
pcre_study_data internal_study;
const pcre_study_data *study;
real_pcre internal_re;
const real_pcre *external_re = (const real_pcre *)argument_re;
const real_pcre *re = external_re;
/* Plausibility checks */
if ((options & ~PUBLIC_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION;
if (re == NULL || subject == NULL ||
(offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL;
if (offsetcount < 0) return PCRE_ERROR_BADCOUNT;
/* Fish out the optional data from the extra_data structure, first setting
the default values. */
study = NULL;
match_block.match_limit = MATCH_LIMIT;
match_block.callout_data = NULL;
/* The table pointer is always in native byte order. */
tables = external_re->tables;
if (extra_data != NULL)
{
register unsigned int flags = extra_data->flags;
if ((flags & PCRE_EXTRA_STUDY_DATA) != 0)
study = (const pcre_study_data *)extra_data->study_data;
if ((flags & PCRE_EXTRA_MATCH_LIMIT) != 0)
match_block.match_limit = extra_data->match_limit;
if ((flags & PCRE_EXTRA_CALLOUT_DATA) != 0)
match_block.callout_data = extra_data->callout_data;
if ((flags & PCRE_EXTRA_TABLES) != 0) tables = extra_data->tables;
}
/* If the exec call supplied NULL for tables, use the inbuilt ones. This
is a feature that makes it possible to save compiled regex and re-use them
in other programs later. */
if (tables == NULL) tables = _pcre_default_tables;
/* Check that the first field in the block is the magic number. If it is not,
test for a regex that was compiled on a host of opposite endianness. If this is
the case, flipped values are put in internal_re and internal_study if there was
study data too. */
if (re->magic_number != MAGIC_NUMBER)
{
re = _pcre_try_flipped(re, &internal_re, study, &internal_study);
if (re == NULL) return PCRE_ERROR_BADMAGIC;
if (study != NULL) study = &internal_study;
}
/* Set up other data */
anchored = ((re->options | options) & PCRE_ANCHORED) != 0;
startline = (re->options & PCRE_STARTLINE) != 0;
firstline = (re->options & PCRE_FIRSTLINE) != 0;
/* The code starts after the real_pcre block and the capture name table. */
match_block.start_code = (const uschar *)external_re + re->name_table_offset +
re->name_count * re->name_entry_size;
match_block.start_subject = (const uschar *)subject;
match_block.start_offset = start_offset;
match_block.end_subject = match_block.start_subject + length;
end_subject = match_block.end_subject;
match_block.endonly = (re->options & PCRE_DOLLAR_ENDONLY) != 0;
match_block.utf8 = (re->options & PCRE_UTF8) != 0;
match_block.notbol = (options & PCRE_NOTBOL) != 0;
match_block.noteol = (options & PCRE_NOTEOL) != 0;
match_block.notempty = (options & PCRE_NOTEMPTY) != 0;
match_block.partial = (options & PCRE_PARTIAL) != 0;
match_block.hitend = FALSE;
match_block.recursive = NULL; /* No recursion at top level */
match_block.lcc = tables + lcc_offset;
match_block.ctypes = tables + ctypes_offset;
/* Partial matching is supported only for a restricted set of regexes at the
moment. */
if (match_block.partial && (re->options & PCRE_NOPARTIAL) != 0)
return PCRE_ERROR_BADPARTIAL;
/* Check a UTF-8 string if required. Unfortunately there's no way of passing
back the character offset. */
#ifdef SUPPORT_UTF8
if (match_block.utf8 && (options & PCRE_NO_UTF8_CHECK) == 0)
{
if (_pcre_valid_utf8((uschar *)subject, length) >= 0)
return PCRE_ERROR_BADUTF8;
if (start_offset > 0 && start_offset < length)
{
int tb = ((uschar *)subject)[start_offset];
if (tb > 127)
{
tb &= 0xc0;
if (tb != 0 && tb != 0xc0) return PCRE_ERROR_BADUTF8_OFFSET;
}
}
}
#endif
/* The ims options can vary during the matching as a result of the presence
of (?ims) items in the pattern. They are kept in a local variable so that
restoring at the exit of a group is easy. */
ims = re->options & (PCRE_CASELESS|PCRE_MULTILINE|PCRE_DOTALL);
/* If the expression has got more back references than the offsets supplied can
hold, we get a temporary chunk of working store to use during the matching.
Otherwise, we can use the vector supplied, rounding down its size to a multiple
of 3. */
ocount = offsetcount - (offsetcount % 3);
if (re->top_backref > 0 && re->top_backref >= ocount/3)
{
ocount = re->top_backref * 3 + 3;
match_block.offset_vector = (int *)(pcre_malloc)(ocount * sizeof(int));
if (match_block.offset_vector == NULL) return PCRE_ERROR_NOMEMORY;
using_temporary_offsets = TRUE;
DPRINTF(("Got memory to hold back references\n"));
}
else match_block.offset_vector = offsets;
match_block.offset_end = ocount;
match_block.offset_max = (2*ocount)/3;
match_block.offset_overflow = FALSE;
match_block.capture_last = -1;
if (ES3_Compatible_Behavior)
match_block.end_offset_top = 2;
/* Compute the minimum number of offsets that we need to reset each time. Doing
this makes a huge difference to execution time when there aren't many brackets
in the pattern. */
resetcount = 2 + re->top_bracket * 2;
if (resetcount > offsetcount) resetcount = ocount;
/* Reset the working variable associated with each extraction. These should
never be used unless previously set, but they get saved and restored, and so we
initialize them to avoid reading uninitialized locations. */
if (match_block.offset_vector != NULL)
{
register int *iptr = match_block.offset_vector + ocount;
register int *iend = iptr - resetcount/2 + 1;
while (--iptr >= iend) *iptr = -1;
}
/* Set up the first character to match, if available. The first_byte value is
never set for an anchored regular expression, but the anchoring may be forced
at run time, so we have to test for anchoring. The first char may be unset for
an unanchored pattern, of course. If there's no first char and the pattern was
studied, there may be a bitmap of possible first characters. */
if (!anchored)
{
if ((re->options & PCRE_FIRSTSET) != 0)
{
first_byte = re->first_byte & 255;
if ((first_byte_caseless = ((re->first_byte & REQ_CASELESS) != 0)) == TRUE)
first_byte = match_block.lcc[first_byte];
}
else
if (!startline && study != NULL &&
(study->options & PCRE_STUDY_MAPPED) != 0)
start_bits = study->start_bits;
}
/* For anchored or unanchored matches, there may be a "last known required
character" set. */
if ((re->options & PCRE_REQCHSET) != 0)
{
req_byte = re->req_byte & 255;
req_byte_caseless = (re->req_byte & REQ_CASELESS) != 0;
req_byte2 = (tables + fcc_offset)[req_byte]; /* case flipped */
}
/* Loop for handling unanchored repeated matching attempts; for anchored regexs
the loop runs just once. */
do
{
const uschar *save_end_subject = end_subject;
/* Reset the maximum number of extractions we might see. */
if (match_block.offset_vector != NULL)
{
register int *iptr = match_block.offset_vector;
register int *iend = iptr + resetcount;
while (iptr < iend) *iptr++ = -1;
}
/* Advance to a unique first char if possible. If firstline is TRUE, the
start of the match is constrained to the first line of a multiline string.
Implement this by temporarily adjusting end_subject so that we stop scanning
at a newline. If the match fails at the newline, later code breaks this loop.
*/
if (firstline)
{
const uschar *t = start_match;
while (t < save_end_subject && *t != '\n') t++;
end_subject = t;
}
/* Now test for a unique first byte */
if (first_byte >= 0)
{
if (first_byte_caseless)
while (start_match < end_subject &&
match_block.lcc[*start_match] != first_byte)
start_match++;
else
while (start_match < end_subject && *start_match != first_byte)
start_match++;
}
/* Or to just after \n for a multiline match if possible */
else if (startline)
{
if (start_match > match_block.start_subject + start_offset)
{
while (start_match < end_subject && !isECMALineTerminator(start_match[-1]))
start_match++;
}
}
/* Or to a non-unique first char after study */
else if (start_bits != NULL)
{
while (start_match < end_subject)
{
register unsigned int c = *start_match;
if ((start_bits[c/8] & (1 << (c&7))) == 0) start_match++; else break;
}
}
/* Restore fudged end_subject */
end_subject = save_end_subject;
#ifdef DEBUG /* Sigh. Some compilers never learn. */
printf(">>>> Match against: ");
pchars(start_match, end_subject - start_match, TRUE, &match_block);
printf("\n");
#endif
/* If req_byte is set, we know that that character must appear in the subject
for the match to succeed. If the first character is set, req_byte must be
later in the subject; otherwise the test starts at the match point. This
optimization can save a huge amount of backtracking in patterns with nested
unlimited repeats that aren't going to match. Writing separate code for
cased/caseless versions makes it go faster, as does using an autoincrement
and backing off on a match.
HOWEVER: when the subject string is very, very long, searching to its end can
take a long time, and give bad performance on quite ordinary patterns. This
showed up when somebody was matching /^C/ on a 32-megabyte string... so we
don't do this when the string is sufficiently long.
ALSO: this processing is disabled when partial matching is requested.
*/
if (req_byte >= 0 &&
end_subject - start_match < REQ_BYTE_MAX &&
!match_block.partial)
{
register const uschar *p = start_match + ((first_byte >= 0)? 1 : 0);
/* We don't need to repeat the search if we haven't yet reached the
place we found it at last time. */
if (p > req_byte_ptr)
{
if (req_byte_caseless)
{
while (p < end_subject)
{
register int pp = *p++;
if (pp == req_byte || pp == req_byte2) { p--; break; }
}
}
else
{
while (p < end_subject)
{
if (*p++ == req_byte) { p--; break; }
}
}
/* If we can't find the required character, break the matching loop */
if (p >= end_subject) break;
/* If we have found the required character, save the point where we
found it, so that we don't search again next time round the loop if
the start hasn't passed this character yet. */
req_byte_ptr = p;
}
}
/* When a match occurs, substrings will be set for all internal extractions;
we just need to set up the whole thing as substring 0 before returning. If
there were too many extractions, set the return code to zero. In the case
where we had to get some local store to hold offsets for backreferences, copy
those back references that we can. In this case there need not be overflow
if certain parts of the pattern were not used. */
match_block.start_match = start_match;
match_block.match_call_count = 0;
rc = match(start_match, match_block.start_code, 2, &match_block, ims, NULL,
match_isgroup);
/* When the result is no match, if the subject's first character was a
newline and the PCRE_FIRSTLINE option is set, break (which will return
PCRE_ERROR_NOMATCH). The option requests that a match occur before the first
newline in the subject. Otherwise, advance the pointer to the next character
and continue - but the continuation will actually happen only when the
pattern is not anchored. */
if (rc == MATCH_NOMATCH)
{
int ac = *start_match;
if (firstline && isECMALineTerminator(ac)) break;
start_match++;
#ifdef SUPPORT_UTF8
if (match_block.utf8)
while(start_match < end_subject && (*start_match & 0xc0) == 0x80)
start_match++;
#endif
continue;
}
if (rc != MATCH_MATCH)
{
DPRINTF((">>>> error: returning %d\n", rc));
return rc;
}
/* We have a match! Copy the offset information from temporary store if
necessary */
if (using_temporary_offsets)
{
if (offsetcount >= 4)
{
memcpy(offsets + 2, match_block.offset_vector + 2,
(offsetcount - 2) * sizeof(int));
DPRINTF(("Copied offsets from temporary memory\n"));
}
if (match_block.end_offset_top > offsetcount)
match_block.offset_overflow = TRUE;
DPRINTF(("Freeing temporary memory\n"));
(pcre_free)(match_block.offset_vector);
}
// ECMAScript compatible behavior means always returning as many elements as there were groups (+1). PERL behavior is to return only as many results as the number of groups actually visited (+1)
rc = match_block.offset_overflow? 0 : (ES3_Compatible_Behavior ? resetcount/2 : match_block.end_offset_top/2);
if (offsetcount < 2) rc = 0; else
{
offsets[0] = start_match - match_block.start_subject;
offsets[1] = match_block.end_match_ptr - match_block.start_subject;
}
DPRINTF((">>>> returning %d\n", rc));
return rc;
}
/* This "while" is the end of the "do" above */
while (!anchored && start_match <= end_subject);
if (using_temporary_offsets)
{
DPRINTF(("Freeing temporary memory\n"));
(pcre_free)(match_block.offset_vector);
}
if (match_block.partial && match_block.hitend)
{
DPRINTF((">>>> returning PCRE_ERROR_PARTIAL\n"));
return PCRE_ERROR_PARTIAL;
}
else
{
DPRINTF((">>>> returning PCRE_ERROR_NOMATCH\n"));
return PCRE_ERROR_NOMATCH;
}
}
/* End of pcre_exec.c */