gecko-dev/other-licenses/libart_lgpl/art_svp_vpath_stroke.c
bbaetz%cs.mcgill.ca 0382578602 Importing libart_lgpl from cvs.gnome.org. Version 2.3.7, plus Raph's
2001-11-07 changes to use the new intersector code.

These files are licensed under the LGPL.

a=brendan@mozilla.org
2001-11-16 21:08:16 +00:00

730 lines
21 KiB
C

/* Libart_LGPL - library of basic graphic primitives
* Copyright (C) 1998-2000 Raph Levien
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include <stdlib.h>
#include <math.h>
#include "art_misc.h"
#include "art_vpath.h"
#include "art_svp.h"
#ifdef ART_USE_NEW_INTERSECTOR
#include "art_svp_intersect.h"
#else
#include "art_svp_wind.h"
#endif
#include "art_svp_vpath.h"
#include "art_svp_vpath_stroke.h"
#define EPSILON 1e-6
#define EPSILON_2 1e-12
#define yes_OPTIMIZE_INNER
/* Render an arc segment starting at (xc + x0, yc + y0) to (xc + x1,
yc + y1), centered at (xc, yc), and with given radius. Both x0^2 +
y0^2 and x1^2 + y1^2 should be equal to radius^2.
A positive value of radius means curve to the left, negative means
curve to the right.
*/
static void
art_svp_vpath_stroke_arc (ArtVpath **p_vpath, int *pn, int *pn_max,
double xc, double yc,
double x0, double y0,
double x1, double y1,
double radius,
double flatness)
{
double theta;
double th_0, th_1;
int n_pts;
int i;
double aradius;
aradius = fabs (radius);
theta = 2 * M_SQRT2 * sqrt (flatness / aradius);
th_0 = atan2 (y0, x0);
th_1 = atan2 (y1, x1);
if (radius > 0)
{
/* curve to the left */
if (th_0 < th_1) th_0 += M_PI * 2;
n_pts = ceil ((th_0 - th_1) / theta);
}
else
{
/* curve to the right */
if (th_1 < th_0) th_1 += M_PI * 2;
n_pts = ceil ((th_1 - th_0) / theta);
}
#ifdef VERBOSE
printf ("start %f %f; th_0 = %f, th_1 = %f, r = %f, theta = %f\n", x0, y0, th_0, th_1, radius, theta);
#endif
art_vpath_add_point (p_vpath, pn, pn_max,
ART_LINETO, xc + x0, yc + y0);
for (i = 1; i < n_pts; i++)
{
theta = th_0 + (th_1 - th_0) * i / n_pts;
art_vpath_add_point (p_vpath, pn, pn_max,
ART_LINETO, xc + cos (theta) * aradius,
yc + sin (theta) * aradius);
#ifdef VERBOSE
printf ("mid %f %f\n", cos (theta) * radius, sin (theta) * radius);
#endif
}
art_vpath_add_point (p_vpath, pn, pn_max,
ART_LINETO, xc + x1, yc + y1);
#ifdef VERBOSE
printf ("end %f %f\n", x1, y1);
#endif
}
/* Assume that forw and rev are at point i0. Bring them to i1,
joining with the vector i1 - i2.
This used to be true, but isn't now that the stroke_raw code is
filtering out (near)zero length vectors: {It so happens that all
invocations of this function maintain the precondition i1 = i0 + 1,
so we could decrease the number of arguments by one. We haven't
done that here, though.}
forw is to the line's right and rev is to its left.
Precondition: no zero-length vectors, otherwise a divide by
zero will happen. */
static void
render_seg (ArtVpath **p_forw, int *pn_forw, int *pn_forw_max,
ArtVpath **p_rev, int *pn_rev, int *pn_rev_max,
ArtVpath *vpath, int i0, int i1, int i2,
ArtPathStrokeJoinType join,
double line_width, double miter_limit, double flatness)
{
double dx0, dy0;
double dx1, dy1;
double dlx0, dly0;
double dlx1, dly1;
double dmx, dmy;
double dmr2;
double scale;
double cross;
#ifdef VERBOSE
printf ("join style = %d\n", join);
#endif
/* The vectors of the lines from i0 to i1 and i1 to i2. */
dx0 = vpath[i1].x - vpath[i0].x;
dy0 = vpath[i1].y - vpath[i0].y;
dx1 = vpath[i2].x - vpath[i1].x;
dy1 = vpath[i2].y - vpath[i1].y;
/* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
90 degrees, and scaled to the length of line_width. */
scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0);
dlx0 = dy0 * scale;
dly0 = -dx0 * scale;
/* Set dl[xy]1 to the vector from i1 to i2, rotated counterclockwise
90 degrees, and scaled to the length of line_width. */
scale = line_width / sqrt (dx1 * dx1 + dy1 * dy1);
dlx1 = dy1 * scale;
dly1 = -dx1 * scale;
#ifdef VERBOSE
printf ("%% render_seg: (%g, %g) - (%g, %g) - (%g, %g)\n",
vpath[i0].x, vpath[i0].y,
vpath[i1].x, vpath[i1].y,
vpath[i2].x, vpath[i2].y);
printf ("%% render_seg: d[xy]0 = (%g, %g), dl[xy]0 = (%g, %g)\n",
dx0, dy0, dlx0, dly0);
printf ("%% render_seg: d[xy]1 = (%g, %g), dl[xy]1 = (%g, %g)\n",
dx1, dy1, dlx1, dly1);
#endif
/* now, forw's last point is expected to be colinear along d[xy]0
to point i0 - dl[xy]0, and rev with i0 + dl[xy]0. */
/* positive for positive area (i.e. left turn) */
cross = dx1 * dy0 - dx0 * dy1;
dmx = (dlx0 + dlx1) * 0.5;
dmy = (dly0 + dly1) * 0.5;
dmr2 = dmx * dmx + dmy * dmy;
if (join == ART_PATH_STROKE_JOIN_MITER &&
dmr2 * miter_limit * miter_limit < line_width * line_width)
join = ART_PATH_STROKE_JOIN_BEVEL;
/* the case when dmr2 is zero or very small bothers me
(i.e. near a 180 degree angle) */
scale = line_width * line_width / dmr2;
dmx *= scale;
dmy *= scale;
if (cross * cross < EPSILON_2 && dx0 * dx1 + dy0 * dy1 >= 0)
{
/* going straight */
#ifdef VERBOSE
printf ("%% render_seg: straight\n");
#endif
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
}
else if (cross > 0)
{
/* left turn, forw is outside and rev is inside */
#ifdef VERBOSE
printf ("%% render_seg: left\n");
#endif
if (
#ifdef NO_OPTIMIZE_INNER
0 &&
#endif
/* check that i1 + dm[xy] is inside i0-i1 rectangle */
(dx0 + dmx) * dx0 + (dy0 + dmy) * dy0 > 0 &&
/* and that i1 + dm[xy] is inside i1-i2 rectangle */
((dx1 - dmx) * dx1 + (dy1 - dmy) * dy1 > 0)
#ifdef PEDANTIC_INNER
&&
/* check that i1 + dl[xy]1 is inside i0-i1 rectangle */
(dx0 + dlx1) * dx0 + (dy0 + dly1) * dy0 > 0 &&
/* and that i1 + dl[xy]0 is inside i1-i2 rectangle */
((dx1 - dlx0) * dx1 + (dy1 - dly0) * dy1 > 0)
#endif
)
{
/* can safely add single intersection point */
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
}
else
{
/* need to loop-de-loop the inside */
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x, vpath[i1].y);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
}
if (join == ART_PATH_STROKE_JOIN_BEVEL)
{
/* bevel */
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
}
else if (join == ART_PATH_STROKE_JOIN_MITER)
{
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
}
else if (join == ART_PATH_STROKE_JOIN_ROUND)
art_svp_vpath_stroke_arc (p_forw, pn_forw, pn_forw_max,
vpath[i1].x, vpath[i1].y,
-dlx0, -dly0,
-dlx1, -dly1,
line_width,
flatness);
}
else
{
/* right turn, rev is outside and forw is inside */
#ifdef VERBOSE
printf ("%% render_seg: right\n");
#endif
if (
#ifdef NO_OPTIMIZE_INNER
0 &&
#endif
/* check that i1 - dm[xy] is inside i0-i1 rectangle */
(dx0 - dmx) * dx0 + (dy0 - dmy) * dy0 > 0 &&
/* and that i1 - dm[xy] is inside i1-i2 rectangle */
((dx1 + dmx) * dx1 + (dy1 + dmy) * dy1 > 0)
#ifdef PEDANTIC_INNER
&&
/* check that i1 - dl[xy]1 is inside i0-i1 rectangle */
(dx0 - dlx1) * dx0 + (dy0 - dly1) * dy0 > 0 &&
/* and that i1 - dl[xy]0 is inside i1-i2 rectangle */
((dx1 + dlx0) * dx1 + (dy1 + dly0) * dy1 > 0)
#endif
)
{
/* can safely add single intersection point */
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy);
}
else
{
/* need to loop-de-loop the inside */
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x, vpath[i1].y);
art_vpath_add_point (p_forw, pn_forw, pn_forw_max,
ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1);
}
if (join == ART_PATH_STROKE_JOIN_BEVEL)
{
/* bevel */
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1);
}
else if (join == ART_PATH_STROKE_JOIN_MITER)
{
art_vpath_add_point (p_rev, pn_rev, pn_rev_max,
ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy);
}
else if (join == ART_PATH_STROKE_JOIN_ROUND)
art_svp_vpath_stroke_arc (p_rev, pn_rev, pn_rev_max,
vpath[i1].x, vpath[i1].y,
dlx0, dly0,
dlx1, dly1,
-line_width,
flatness);
}
}
/* caps i1, under the assumption of a vector from i0 */
static void
render_cap (ArtVpath **p_result, int *pn_result, int *pn_result_max,
ArtVpath *vpath, int i0, int i1,
ArtPathStrokeCapType cap, double line_width, double flatness)
{
double dx0, dy0;
double dlx0, dly0;
double scale;
int n_pts;
int i;
dx0 = vpath[i1].x - vpath[i0].x;
dy0 = vpath[i1].y - vpath[i0].y;
/* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise
90 degrees, and scaled to the length of line_width. */
scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0);
dlx0 = dy0 * scale;
dly0 = -dx0 * scale;
#ifdef VERBOSE
printf ("cap style = %d\n", cap);
#endif
switch (cap)
{
case ART_PATH_STROKE_CAP_BUTT:
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
break;
case ART_PATH_STROKE_CAP_ROUND:
n_pts = ceil (M_PI / (2.0 * M_SQRT2 * sqrt (flatness / line_width)));
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0);
for (i = 1; i < n_pts; i++)
{
double theta, c_th, s_th;
theta = M_PI * i / n_pts;
c_th = cos (theta);
s_th = sin (theta);
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO,
vpath[i1].x - dlx0 * c_th - dly0 * s_th,
vpath[i1].y - dly0 * c_th + dlx0 * s_th);
}
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0);
break;
case ART_PATH_STROKE_CAP_SQUARE:
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO,
vpath[i1].x - dlx0 - dly0,
vpath[i1].y - dly0 + dlx0);
art_vpath_add_point (p_result, pn_result, pn_result_max,
ART_LINETO,
vpath[i1].x + dlx0 - dly0,
vpath[i1].y + dly0 + dlx0);
break;
}
}
/**
* art_svp_from_vpath_raw: Stroke a vector path, raw version
* @vpath: #ArtVPath to stroke.
* @join: Join style.
* @cap: Cap style.
* @line_width: Width of stroke.
* @miter_limit: Miter limit.
* @flatness: Flatness.
*
* Exactly the same as art_svp_vpath_stroke(), except that the resulting
* stroke outline may self-intersect and have regions of winding number
* greater than 1.
*
* Return value: Resulting raw stroked outline in svp format.
**/
ArtVpath *
art_svp_vpath_stroke_raw (ArtVpath *vpath,
ArtPathStrokeJoinType join,
ArtPathStrokeCapType cap,
double line_width,
double miter_limit,
double flatness)
{
int begin_idx, end_idx;
int i;
ArtVpath *forw, *rev;
int n_forw, n_rev;
int n_forw_max, n_rev_max;
ArtVpath *result;
int n_result, n_result_max;
double half_lw = 0.5 * line_width;
int closed;
int last, this, next, second;
double dx, dy;
n_forw_max = 16;
forw = art_new (ArtVpath, n_forw_max);
n_rev_max = 16;
rev = art_new (ArtVpath, n_rev_max);
n_result = 0;
n_result_max = 16;
result = art_new (ArtVpath, n_result_max);
for (begin_idx = 0; vpath[begin_idx].code != ART_END; begin_idx = end_idx)
{
n_forw = 0;
n_rev = 0;
closed = (vpath[begin_idx].code == ART_MOVETO);
/* we don't know what the first point joins with until we get to the
last point and see if it's closed. So we start with the second
line in the path.
Note: this is not strictly true (we now know it's closed from
the opening pathcode), but why fix code that isn't broken?
*/
this = begin_idx;
/* skip over identical points at the beginning of the subpath */
for (i = this + 1; vpath[i].code == ART_LINETO; i++)
{
dx = vpath[i].x - vpath[this].x;
dy = vpath[i].y - vpath[this].y;
if (dx * dx + dy * dy > EPSILON_2)
break;
}
next = i;
second = next;
/* invariant: this doesn't coincide with next */
while (vpath[next].code == ART_LINETO)
{
last = this;
this = next;
/* skip over identical points after the beginning of the subpath */
for (i = this + 1; vpath[i].code == ART_LINETO; i++)
{
dx = vpath[i].x - vpath[this].x;
dy = vpath[i].y - vpath[this].y;
if (dx * dx + dy * dy > EPSILON_2)
break;
}
next = i;
if (vpath[next].code != ART_LINETO)
{
/* reached end of path */
/* make "closed" detection conform to PostScript
semantics (i.e. explicit closepath code rather than
just the fact that end of the path is the beginning) */
if (closed &&
vpath[this].x == vpath[begin_idx].x &&
vpath[this].y == vpath[begin_idx].y)
{
int j;
/* path is closed, render join to beginning */
render_seg (&forw, &n_forw, &n_forw_max,
&rev, &n_rev, &n_rev_max,
vpath, last, this, second,
join, half_lw, miter_limit, flatness);
#ifdef VERBOSE
printf ("%% forw %d, rev %d\n", n_forw, n_rev);
#endif
/* do forward path */
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_MOVETO, forw[n_forw - 1].x,
forw[n_forw - 1].y);
for (j = 0; j < n_forw; j++)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, forw[j].x,
forw[j].y);
/* do reverse path, reversed */
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_MOVETO, rev[0].x,
rev[0].y);
for (j = n_rev - 1; j >= 0; j--)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, rev[j].x,
rev[j].y);
}
else
{
/* path is open */
int j;
/* add to forw rather than result to ensure that
forw has at least one point. */
render_cap (&forw, &n_forw, &n_forw_max,
vpath, last, this,
cap, half_lw, flatness);
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_MOVETO, forw[0].x,
forw[0].y);
for (j = 1; j < n_forw; j++)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, forw[j].x,
forw[j].y);
for (j = n_rev - 1; j >= 0; j--)
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, rev[j].x,
rev[j].y);
render_cap (&result, &n_result, &n_result_max,
vpath, second, begin_idx,
cap, half_lw, flatness);
art_vpath_add_point (&result, &n_result, &n_result_max,
ART_LINETO, forw[0].x,
forw[0].y);
}
}
else
render_seg (&forw, &n_forw, &n_forw_max,
&rev, &n_rev, &n_rev_max,
vpath, last, this, next,
join, half_lw, miter_limit, flatness);
}
end_idx = next;
}
art_free (forw);
art_free (rev);
#ifdef VERBOSE
printf ("%% n_result = %d\n", n_result);
#endif
art_vpath_add_point (&result, &n_result, &n_result_max, ART_END, 0, 0);
return result;
}
#define noVERBOSE
#ifdef VERBOSE
#define XOFF 50
#define YOFF 700
static void
print_ps_vpath (ArtVpath *vpath)
{
int i;
for (i = 0; vpath[i].code != ART_END; i++)
{
switch (vpath[i].code)
{
case ART_MOVETO:
printf ("%g %g moveto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
break;
case ART_LINETO:
printf ("%g %g lineto\n", XOFF + vpath[i].x, YOFF - vpath[i].y);
break;
default:
break;
}
}
printf ("stroke showpage\n");
}
static void
print_ps_svp (ArtSVP *vpath)
{
int i, j;
printf ("%% begin\n");
for (i = 0; i < vpath->n_segs; i++)
{
printf ("%g setgray\n", vpath->segs[i].dir ? 0.7 : 0);
for (j = 0; j < vpath->segs[i].n_points; j++)
{
printf ("%g %g %s\n",
XOFF + vpath->segs[i].points[j].x,
YOFF - vpath->segs[i].points[j].y,
j ? "lineto" : "moveto");
}
printf ("stroke\n");
}
printf ("showpage\n");
}
#endif
/* Render a vector path into a stroked outline.
Status of this routine:
Basic correctness: Only miter and bevel line joins are implemented,
and only butt line caps. Otherwise, seems to be fine.
Numerical stability: We cheat (adding random perturbation). Thus,
it seems very likely that no numerical stability problems will be
seen in practice.
Speed: Should be pretty good.
Precision: The perturbation fuzzes the coordinates slightly,
but not enough to be visible. */
/**
* art_svp_vpath_stroke: Stroke a vector path.
* @vpath: #ArtVPath to stroke.
* @join: Join style.
* @cap: Cap style.
* @line_width: Width of stroke.
* @miter_limit: Miter limit.
* @flatness: Flatness.
*
* Computes an svp representing the stroked outline of @vpath. The
* width of the stroked line is @line_width.
*
* Lines are joined according to the @join rule. Possible values are
* ART_PATH_STROKE_JOIN_MITER (for mitered joins),
* ART_PATH_STROKE_JOIN_ROUND (for round joins), and
* ART_PATH_STROKE_JOIN_BEVEL (for bevelled joins). The mitered join
* is converted to a bevelled join if the miter would extend to a
* distance of more than @miter_limit * @line_width from the actual
* join point.
*
* If there are open subpaths, the ends of these subpaths are capped
* according to the @cap rule. Possible values are
* ART_PATH_STROKE_CAP_BUTT (squared cap, extends exactly to end
* point), ART_PATH_STROKE_CAP_ROUND (rounded half-circle centered at
* the end point), and ART_PATH_STROKE_CAP_SQUARE (squared cap,
* extending half @line_width past the end point).
*
* The @flatness parameter controls the accuracy of the rendering. It
* is most important for determining the number of points to use to
* approximate circular arcs for round lines and joins. In general, the
* resulting vector path will be within @flatness pixels of the "ideal"
* path containing actual circular arcs. I reserve the right to use
* the @flatness parameter to convert bevelled joins to miters for very
* small turn angles, as this would reduce the number of points in the
* resulting outline path.
*
* The resulting path is "clean" with respect to self-intersections, i.e.
* the winding number is 0 or 1 at each point.
*
* Return value: Resulting stroked outline in svp format.
**/
ArtSVP *
art_svp_vpath_stroke (ArtVpath *vpath,
ArtPathStrokeJoinType join,
ArtPathStrokeCapType cap,
double line_width,
double miter_limit,
double flatness)
{
#ifdef ART_USE_NEW_INTERSECTOR
ArtVpath *vpath_stroke;
ArtSVP *svp, *svp2;
ArtSvpWriter *swr;
vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap,
line_width, miter_limit, flatness);
#ifdef VERBOSE
print_ps_vpath (vpath_stroke);
#endif
svp = art_svp_from_vpath (vpath_stroke);
#ifdef VERBOSE
print_ps_svp (svp);
#endif
art_free (vpath_stroke);
swr = art_svp_writer_rewind_new (ART_WIND_RULE_NONZERO);
art_svp_intersector (svp, swr);
svp2 = art_svp_writer_rewind_reap (swr);
#ifdef VERBOSE
print_ps_svp (svp2);
#endif
art_svp_free (svp);
return svp2;
#else
ArtVpath *vpath_stroke, *vpath2;
ArtSVP *svp, *svp2, *svp3;
vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap,
line_width, miter_limit, flatness);
#ifdef VERBOSE
print_ps_vpath (vpath_stroke);
#endif
vpath2 = art_vpath_perturb (vpath_stroke);
#ifdef VERBOSE
print_ps_vpath (vpath2);
#endif
art_free (vpath_stroke);
svp = art_svp_from_vpath (vpath2);
#ifdef VERBOSE
print_ps_svp (svp);
#endif
art_free (vpath2);
svp2 = art_svp_uncross (svp);
#ifdef VERBOSE
print_ps_svp (svp2);
#endif
art_svp_free (svp);
svp3 = art_svp_rewind_uncrossed (svp2, ART_WIND_RULE_NONZERO);
#ifdef VERBOSE
print_ps_svp (svp3);
#endif
art_svp_free (svp2);
return svp3;
#endif
}