gecko-dev/servo/components/layout/traversal.rs
Emilio Cobos Álvarez e47cb58448 servo: Merge #20117 - style: Somewhat miscelaneous cleanup (from emilio:misc-cleanup); r=nox
Source-Repo: https://github.com/servo/servo
Source-Revision: bbfca28a4f3770896955375d01f1c489b4632fd3

--HG--
extra : subtree_source : https%3A//hg.mozilla.org/projects/converted-servo-linear
extra : subtree_revision : cca02ea2c160395889cfd6eb60c62a065d490300
2018-02-24 17:28:20 -05:00

335 lines
11 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Traversals over the DOM and flow trees, running the layout computations.
use construct::FlowConstructor;
use context::LayoutContext;
use display_list::DisplayListBuildState;
use flow::{FlowFlags, Flow, GetBaseFlow, ImmutableFlowUtils};
use script_layout_interface::wrapper_traits::{LayoutNode, ThreadSafeLayoutNode};
use servo_config::opts;
use style::context::{SharedStyleContext, StyleContext};
use style::data::ElementData;
use style::dom::{NodeInfo, TElement, TNode};
use style::selector_parser::RestyleDamage;
use style::servo::restyle_damage::ServoRestyleDamage;
use style::traversal::{DomTraversal, recalc_style_at};
use style::traversal::PerLevelTraversalData;
use wrapper::{GetRawData, LayoutNodeLayoutData};
use wrapper::ThreadSafeLayoutNodeHelpers;
pub struct RecalcStyleAndConstructFlows<'a> {
context: LayoutContext<'a>,
}
impl<'a> RecalcStyleAndConstructFlows<'a> {
pub fn layout_context(&self) -> &LayoutContext<'a> {
&self.context
}
}
impl<'a> RecalcStyleAndConstructFlows<'a> {
/// Creates a traversal context, taking ownership of the shared layout context.
pub fn new(context: LayoutContext<'a>) -> Self {
RecalcStyleAndConstructFlows {
context: context,
}
}
/// Consumes this traversal context, returning ownership of the shared layout
/// context to the caller.
pub fn destroy(self) -> LayoutContext<'a> {
self.context
}
}
#[allow(unsafe_code)]
impl<'a, E> DomTraversal<E> for RecalcStyleAndConstructFlows<'a>
where
E: TElement,
E::ConcreteNode: LayoutNode,
E::FontMetricsProvider: Send,
{
fn process_preorder<F>(
&self,
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>, node: E::ConcreteNode,
note_child: F,
)
where
F: FnMut(E::ConcreteNode)
{
// FIXME(pcwalton): Stop allocating here. Ideally this should just be
// done by the HTML parser.
unsafe { node.initialize_data() };
if !node.is_text_node() {
let el = node.as_element().unwrap();
let mut data = el.mutate_data().unwrap();
recalc_style_at(self, traversal_data, context, el, &mut data, note_child);
}
}
fn process_postorder(&self, _style_context: &mut StyleContext<E>, node: E::ConcreteNode) {
construct_flows_at(&self.context, node);
}
fn text_node_needs_traversal(node: E::ConcreteNode, parent_data: &ElementData) -> bool {
// Text nodes never need styling. However, there are two cases they may need
// flow construction:
// (1) They child doesn't yet have layout data (preorder traversal initializes it).
// (2) The parent element has restyle damage (so the text flow also needs fixup).
node.get_raw_data().is_none() || !parent_data.damage.is_empty()
}
fn shared_context(&self) -> &SharedStyleContext {
&self.context.style_context
}
}
/// A top-down traversal.
pub trait PreorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, flow: &mut Flow);
/// Returns true if this node should be processed and false if neither this node nor its
/// descendants should be processed.
fn should_process_subtree(&self, _flow: &mut Flow) -> bool {
true
}
/// Returns true if this node must be processed in-order. If this returns false,
/// we skip the operation for this node, but continue processing the descendants.
/// This is called *after* parent nodes are visited.
fn should_process(&self, _flow: &mut Flow) -> bool {
true
}
/// Traverses the tree in preorder.
fn traverse(&self, flow: &mut Flow) {
if !self.should_process_subtree(flow) {
return;
}
if self.should_process(flow) {
self.process(flow);
}
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid);
}
}
/// Traverse the Absolute flow tree in preorder.
///
/// Traverse all your direct absolute descendants, who will then traverse
/// their direct absolute descendants.
///
/// Return true if the traversal is to continue or false to stop.
fn traverse_absolute_flows(&self, flow: &mut Flow) {
if self.should_process(flow) {
self.process(flow);
}
for descendant_link in flow.mut_base().abs_descendants.iter() {
self.traverse_absolute_flows(descendant_link)
}
}
}
/// A bottom-up traversal, with a optional in-order pass.
pub trait PostorderFlowTraversal {
/// The operation to perform. Return true to continue or false to stop.
fn process(&self, flow: &mut Flow);
/// Returns false if this node must be processed in-order. If this returns false, we skip the
/// operation for this node, but continue processing the ancestors. This is called *after*
/// child nodes are visited.
fn should_process(&self, _flow: &mut Flow) -> bool {
true
}
/// Traverses the tree in postorder.
fn traverse(&self, flow: &mut Flow) {
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid);
}
if self.should_process(flow) {
self.process(flow);
}
}
}
/// An in-order (sequential only) traversal.
pub trait InorderFlowTraversal {
/// The operation to perform. Returns the level of the tree we're at.
fn process(&mut self, flow: &mut Flow, level: u32);
/// Returns true if this node should be processed and false if neither this node nor its
/// descendants should be processed.
fn should_process_subtree(&mut self, _flow: &mut Flow) -> bool {
true
}
/// Traverses the tree in-order.
fn traverse(&mut self, flow: &mut Flow, level: u32) {
if !self.should_process_subtree(flow) {
return;
}
self.process(flow, level);
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid, level + 1);
}
}
}
/// A bottom-up, parallelizable traversal.
pub trait PostorderNodeMutTraversal<ConcreteThreadSafeLayoutNode: ThreadSafeLayoutNode> {
/// The operation to perform. Return true to continue or false to stop.
fn process(&mut self, node: &ConcreteThreadSafeLayoutNode);
}
/// The flow construction traversal, which builds flows for styled nodes.
#[inline]
#[allow(unsafe_code)]
fn construct_flows_at<N>(context: &LayoutContext, node: N)
where N: LayoutNode,
{
debug!("construct_flows_at: {:?}", node);
// Construct flows for this node.
{
let tnode = node.to_threadsafe();
// Always reconstruct if incremental layout is turned off.
let nonincremental_layout = opts::get().nonincremental_layout;
if nonincremental_layout || tnode.restyle_damage() != RestyleDamage::empty() ||
node.as_element().map_or(false, |el| el.has_dirty_descendants()) {
let mut flow_constructor = FlowConstructor::new(context);
if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) {
flow_constructor.process(&tnode);
debug!("Constructed flow for {:?}: {:x}",
tnode,
tnode.flow_debug_id());
}
}
tnode.mutate_layout_data().unwrap().flags.insert(::data::LayoutDataFlags::HAS_BEEN_TRAVERSED);
}
if let Some(el) = node.as_element() {
unsafe { el.unset_dirty_descendants(); }
}
}
/// The bubble-inline-sizes traversal, the first part of layout computation. This computes
/// preferred and intrinsic inline-sizes and bubbles them up the tree.
pub struct BubbleISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for BubbleISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.bubble_inline_sizes();
flow.mut_base().restyle_damage.remove(ServoRestyleDamage::BUBBLE_ISIZES);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow.base().restyle_damage.contains(ServoRestyleDamage::BUBBLE_ISIZES)
}
}
/// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`.
#[derive(Clone, Copy)]
pub struct AssignISizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for AssignISizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
flow.assign_inline_sizes(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
flow.base().restyle_damage.intersects(ServoRestyleDamage::REFLOW_OUT_OF_FLOW | ServoRestyleDamage::REFLOW)
}
}
/// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of
/// layout computation. Determines the final block-sizes for all layout objects and computes
/// positions. In Gecko this corresponds to `Reflow`.
#[derive(Clone, Copy)]
pub struct AssignBSizes<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PostorderFlowTraversal for AssignBSizes<'a> {
#[inline]
fn process(&self, flow: &mut Flow) {
// Can't do anything with anything that floats might flow through until we reach their
// inorder parent.
//
// NB: We must return without resetting the restyle bits for these, as we haven't actually
// reflowed anything!
if flow.floats_might_flow_through() {
return
}
flow.assign_block_size(self.layout_context);
}
#[inline]
fn should_process(&self, flow: &mut Flow) -> bool {
let base = flow.base();
base.restyle_damage.intersects(ServoRestyleDamage::REFLOW_OUT_OF_FLOW | ServoRestyleDamage::REFLOW) &&
// The fragmentation countainer is responsible for calling
// Flow::fragment recursively
!base.flags.contains(FlowFlags::CAN_BE_FRAGMENTED)
}
}
pub struct ComputeStackingRelativePositions<'a> {
pub layout_context: &'a LayoutContext<'a>,
}
impl<'a> PreorderFlowTraversal for ComputeStackingRelativePositions<'a> {
#[inline]
fn should_process_subtree(&self, flow: &mut Flow) -> bool {
flow.base().restyle_damage.contains(ServoRestyleDamage::REPOSITION)
}
#[inline]
fn process(&self, flow: &mut Flow) {
flow.compute_stacking_relative_position(self.layout_context);
flow.mut_base().restyle_damage.remove(ServoRestyleDamage::REPOSITION)
}
}
pub struct BuildDisplayList<'a> {
pub state: DisplayListBuildState<'a>,
}
impl<'a> BuildDisplayList<'a> {
#[inline]
pub fn traverse(&mut self, flow: &mut Flow) {
let parent_stacking_context_id = self.state.current_stacking_context_id;
self.state.current_stacking_context_id = flow.base().stacking_context_id;
let parent_clipping_and_scrolling = self.state.current_clipping_and_scrolling;
self.state.current_clipping_and_scrolling = flow.clipping_and_scrolling();
flow.build_display_list(&mut self.state);
flow.mut_base().restyle_damage.remove(ServoRestyleDamage::REPAINT);
for kid in flow.mut_base().child_iter_mut() {
self.traverse(kid);
}
self.state.current_stacking_context_id = parent_stacking_context_id;
self.state.current_clipping_and_scrolling = parent_clipping_and_scrolling;
}
}