mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-03 02:25:34 +00:00
1544 lines
49 KiB
C++
1544 lines
49 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
// We're dividing JS objects into 3 categories:
|
|
//
|
|
// 1. "real" roots, held by the JS engine itself or rooted through the root
|
|
// and lock JS APIs. Roots from this category are considered black in the
|
|
// cycle collector, any cycle they participate in is uncollectable.
|
|
//
|
|
// 2. certain roots held by C++ objects that are guaranteed to be alive.
|
|
// Roots from this category are considered black in the cycle collector,
|
|
// and any cycle they participate in is uncollectable. These roots are
|
|
// traced from TraceNativeBlackRoots.
|
|
//
|
|
// 3. all other roots held by C++ objects that participate in cycle
|
|
// collection, held by us (see TraceNativeGrayRoots). Roots from this
|
|
// category are considered grey in the cycle collector; whether or not
|
|
// they are collected depends on the objects that hold them.
|
|
//
|
|
// Note that if a root is in multiple categories the fact that it is in
|
|
// category 1 or 2 that takes precedence, so it will be considered black.
|
|
//
|
|
// During garbage collection we switch to an additional mark color (gray)
|
|
// when tracing inside TraceNativeGrayRoots. This allows us to walk those
|
|
// roots later on and add all objects reachable only from them to the
|
|
// cycle collector.
|
|
//
|
|
// Phases:
|
|
//
|
|
// 1. marking of the roots in category 1 by having the JS GC do its marking
|
|
// 2. marking of the roots in category 2 by having the JS GC call us back
|
|
// (via JS_SetExtraGCRootsTracer) and running TraceNativeBlackRoots
|
|
// 3. marking of the roots in category 3 by TraceNativeGrayRoots using an
|
|
// additional color (gray).
|
|
// 4. end of GC, GC can sweep its heap
|
|
//
|
|
// At some later point, when the cycle collector runs:
|
|
//
|
|
// 5. walk gray objects and add them to the cycle collector, cycle collect
|
|
//
|
|
// JS objects that are part of cycles the cycle collector breaks will be
|
|
// collected by the next JS GC.
|
|
//
|
|
// If WantAllTraces() is false the cycle collector will not traverse roots
|
|
// from category 1 or any JS objects held by them. Any JS objects they hold
|
|
// will already be marked by the JS GC and will thus be colored black
|
|
// themselves. Any C++ objects they hold will have a missing (untraversed)
|
|
// edge from the JS object to the C++ object and so it will be marked black
|
|
// too. This decreases the number of objects that the cycle collector has to
|
|
// deal with.
|
|
// To improve debugging, if WantAllTraces() is true all JS objects are
|
|
// traversed.
|
|
|
|
#include "mozilla/CycleCollectedJSRuntime.h"
|
|
#include <algorithm>
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "mozilla/AutoRestore.h"
|
|
#include "mozilla/CycleCollectedJSContext.h"
|
|
#include "mozilla/Move.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/Sprintf.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "mozilla/TimelineConsumers.h"
|
|
#include "mozilla/TimelineMarker.h"
|
|
#include "mozilla/Unused.h"
|
|
#include "mozilla/DebuggerOnGCRunnable.h"
|
|
#include "mozilla/dom/DOMJSClass.h"
|
|
#include "mozilla/dom/ProfileTimelineMarkerBinding.h"
|
|
#include "mozilla/dom/Promise.h"
|
|
#include "mozilla/dom/PromiseBinding.h"
|
|
#include "mozilla/dom/PromiseDebugging.h"
|
|
#include "mozilla/dom/ScriptSettings.h"
|
|
#include "jsprf.h"
|
|
#include "js/Debug.h"
|
|
#include "js/GCAPI.h"
|
|
#include "nsContentUtils.h"
|
|
#include "nsCycleCollectionNoteRootCallback.h"
|
|
#include "nsCycleCollectionParticipant.h"
|
|
#include "nsCycleCollector.h"
|
|
#include "nsDOMJSUtils.h"
|
|
#include "nsJSUtils.h"
|
|
#include "nsWrapperCache.h"
|
|
#include "nsStringBuffer.h"
|
|
#include "GeckoProfiler.h"
|
|
#include "ProfilerMarkerPayload.h"
|
|
|
|
#ifdef MOZ_CRASHREPORTER
|
|
#include "nsExceptionHandler.h"
|
|
#endif
|
|
|
|
#include "nsIException.h"
|
|
#include "nsIPlatformInfo.h"
|
|
#include "nsThread.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "xpcpublic.h"
|
|
|
|
using namespace mozilla;
|
|
using namespace mozilla::dom;
|
|
|
|
namespace mozilla {
|
|
|
|
struct DeferredFinalizeFunctionHolder
|
|
{
|
|
DeferredFinalizeFunction run;
|
|
void* data;
|
|
};
|
|
|
|
class IncrementalFinalizeRunnable : public CancelableRunnable
|
|
{
|
|
typedef AutoTArray<DeferredFinalizeFunctionHolder, 16> DeferredFinalizeArray;
|
|
typedef CycleCollectedJSRuntime::DeferredFinalizerTable DeferredFinalizerTable;
|
|
|
|
CycleCollectedJSRuntime* mRuntime;
|
|
DeferredFinalizeArray mDeferredFinalizeFunctions;
|
|
uint32_t mFinalizeFunctionToRun;
|
|
bool mReleasing;
|
|
|
|
static const PRTime SliceMillis = 5; /* ms */
|
|
|
|
public:
|
|
IncrementalFinalizeRunnable(CycleCollectedJSRuntime* aRt,
|
|
DeferredFinalizerTable& aFinalizerTable);
|
|
virtual ~IncrementalFinalizeRunnable();
|
|
|
|
void ReleaseNow(bool aLimited);
|
|
|
|
NS_DECL_NSIRUNNABLE
|
|
};
|
|
|
|
} // namespace mozilla
|
|
|
|
struct NoteWeakMapChildrenTracer : public JS::CallbackTracer
|
|
{
|
|
NoteWeakMapChildrenTracer(JSRuntime* aRt,
|
|
nsCycleCollectionNoteRootCallback& aCb)
|
|
: JS::CallbackTracer(aRt), mCb(aCb), mTracedAny(false), mMap(nullptr),
|
|
mKey(nullptr), mKeyDelegate(nullptr)
|
|
{
|
|
}
|
|
void onChild(const JS::GCCellPtr& aThing) override;
|
|
nsCycleCollectionNoteRootCallback& mCb;
|
|
bool mTracedAny;
|
|
JSObject* mMap;
|
|
JS::GCCellPtr mKey;
|
|
JSObject* mKeyDelegate;
|
|
};
|
|
|
|
void
|
|
NoteWeakMapChildrenTracer::onChild(const JS::GCCellPtr& aThing)
|
|
{
|
|
if (aThing.is<JSString>()) {
|
|
return;
|
|
}
|
|
|
|
if (!JS::GCThingIsMarkedGray(aThing) && !mCb.WantAllTraces()) {
|
|
return;
|
|
}
|
|
|
|
if (AddToCCKind(aThing.kind())) {
|
|
mCb.NoteWeakMapping(mMap, mKey, mKeyDelegate, aThing);
|
|
mTracedAny = true;
|
|
} else {
|
|
JS::TraceChildren(this, aThing);
|
|
}
|
|
}
|
|
|
|
struct NoteWeakMapsTracer : public js::WeakMapTracer
|
|
{
|
|
NoteWeakMapsTracer(JSRuntime* aRt, nsCycleCollectionNoteRootCallback& aCccb)
|
|
: js::WeakMapTracer(aRt), mCb(aCccb), mChildTracer(aRt, aCccb)
|
|
{
|
|
}
|
|
void trace(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue) override;
|
|
nsCycleCollectionNoteRootCallback& mCb;
|
|
NoteWeakMapChildrenTracer mChildTracer;
|
|
};
|
|
|
|
void
|
|
NoteWeakMapsTracer::trace(JSObject* aMap, JS::GCCellPtr aKey,
|
|
JS::GCCellPtr aValue)
|
|
{
|
|
// If nothing that could be held alive by this entry is marked gray, return.
|
|
if ((!aKey || !JS::GCThingIsMarkedGray(aKey)) &&
|
|
MOZ_LIKELY(!mCb.WantAllTraces())) {
|
|
if (!aValue || !JS::GCThingIsMarkedGray(aValue) || aValue.is<JSString>()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// The cycle collector can only properly reason about weak maps if it can
|
|
// reason about the liveness of their keys, which in turn requires that
|
|
// the key can be represented in the cycle collector graph. All existing
|
|
// uses of weak maps use either objects or scripts as keys, which are okay.
|
|
MOZ_ASSERT(AddToCCKind(aKey.kind()));
|
|
|
|
// As an emergency fallback for non-debug builds, if the key is not
|
|
// representable in the cycle collector graph, we treat it as marked. This
|
|
// can cause leaks, but is preferable to ignoring the binding, which could
|
|
// cause the cycle collector to free live objects.
|
|
if (!AddToCCKind(aKey.kind())) {
|
|
aKey = nullptr;
|
|
}
|
|
|
|
JSObject* kdelegate = nullptr;
|
|
if (aKey.is<JSObject>()) {
|
|
kdelegate = js::GetWeakmapKeyDelegate(&aKey.as<JSObject>());
|
|
}
|
|
|
|
if (AddToCCKind(aValue.kind())) {
|
|
mCb.NoteWeakMapping(aMap, aKey, kdelegate, aValue);
|
|
} else {
|
|
mChildTracer.mTracedAny = false;
|
|
mChildTracer.mMap = aMap;
|
|
mChildTracer.mKey = aKey;
|
|
mChildTracer.mKeyDelegate = kdelegate;
|
|
|
|
if (!aValue.is<JSString>()) {
|
|
JS::TraceChildren(&mChildTracer, aValue);
|
|
}
|
|
|
|
// The delegate could hold alive the key, so report something to the CC
|
|
// if we haven't already.
|
|
if (!mChildTracer.mTracedAny &&
|
|
aKey && JS::GCThingIsMarkedGray(aKey) && kdelegate) {
|
|
mCb.NoteWeakMapping(aMap, aKey, kdelegate, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Report whether the key or value of a weak mapping entry are gray but need to
|
|
// be marked black.
|
|
static void
|
|
ShouldWeakMappingEntryBeBlack(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue,
|
|
bool* aKeyShouldBeBlack, bool* aValueShouldBeBlack)
|
|
{
|
|
*aKeyShouldBeBlack = false;
|
|
*aValueShouldBeBlack = false;
|
|
|
|
// If nothing that could be held alive by this entry is marked gray, return.
|
|
bool keyMightNeedMarking = aKey && JS::GCThingIsMarkedGray(aKey);
|
|
bool valueMightNeedMarking = aValue && JS::GCThingIsMarkedGray(aValue) &&
|
|
aValue.kind() != JS::TraceKind::String;
|
|
if (!keyMightNeedMarking && !valueMightNeedMarking) {
|
|
return;
|
|
}
|
|
|
|
if (!AddToCCKind(aKey.kind())) {
|
|
aKey = nullptr;
|
|
}
|
|
|
|
if (keyMightNeedMarking && aKey.is<JSObject>()) {
|
|
JSObject* kdelegate = js::GetWeakmapKeyDelegate(&aKey.as<JSObject>());
|
|
if (kdelegate && !JS::ObjectIsMarkedGray(kdelegate) &&
|
|
(!aMap || !JS::ObjectIsMarkedGray(aMap)))
|
|
{
|
|
*aKeyShouldBeBlack = true;
|
|
}
|
|
}
|
|
|
|
if (aValue && JS::GCThingIsMarkedGray(aValue) &&
|
|
(!aKey || !JS::GCThingIsMarkedGray(aKey)) &&
|
|
(!aMap || !JS::ObjectIsMarkedGray(aMap)) &&
|
|
aValue.kind() != JS::TraceKind::Shape) {
|
|
*aValueShouldBeBlack = true;
|
|
}
|
|
}
|
|
|
|
struct FixWeakMappingGrayBitsTracer : public js::WeakMapTracer
|
|
{
|
|
explicit FixWeakMappingGrayBitsTracer(JSRuntime* aRt)
|
|
: js::WeakMapTracer(aRt)
|
|
{
|
|
}
|
|
|
|
void
|
|
FixAll()
|
|
{
|
|
do {
|
|
mAnyMarked = false;
|
|
js::TraceWeakMaps(this);
|
|
} while (mAnyMarked);
|
|
}
|
|
|
|
void trace(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue) override
|
|
{
|
|
bool keyShouldBeBlack;
|
|
bool valueShouldBeBlack;
|
|
ShouldWeakMappingEntryBeBlack(aMap, aKey, aValue,
|
|
&keyShouldBeBlack, &valueShouldBeBlack);
|
|
if (keyShouldBeBlack && JS::UnmarkGrayGCThingRecursively(aKey)) {
|
|
mAnyMarked = true;
|
|
}
|
|
|
|
if (valueShouldBeBlack && JS::UnmarkGrayGCThingRecursively(aValue)) {
|
|
mAnyMarked = true;
|
|
}
|
|
}
|
|
|
|
MOZ_INIT_OUTSIDE_CTOR bool mAnyMarked;
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
// Check whether weak maps are marked correctly according to the logic above.
|
|
struct CheckWeakMappingGrayBitsTracer : public js::WeakMapTracer
|
|
{
|
|
explicit CheckWeakMappingGrayBitsTracer(JSRuntime* aRt)
|
|
: js::WeakMapTracer(aRt), mFailed(false)
|
|
{
|
|
}
|
|
|
|
static bool
|
|
Check(JSRuntime* aRt)
|
|
{
|
|
CheckWeakMappingGrayBitsTracer tracer(aRt);
|
|
js::TraceWeakMaps(&tracer);
|
|
return !tracer.mFailed;
|
|
}
|
|
|
|
void trace(JSObject* aMap, JS::GCCellPtr aKey, JS::GCCellPtr aValue) override
|
|
{
|
|
bool keyShouldBeBlack;
|
|
bool valueShouldBeBlack;
|
|
ShouldWeakMappingEntryBeBlack(aMap, aKey, aValue,
|
|
&keyShouldBeBlack, &valueShouldBeBlack);
|
|
|
|
if (keyShouldBeBlack) {
|
|
fprintf(stderr, "Weak mapping key %p of map %p should be black\n",
|
|
aKey.asCell(), aMap);
|
|
mFailed = true;
|
|
}
|
|
|
|
if (valueShouldBeBlack) {
|
|
fprintf(stderr, "Weak mapping value %p of map %p should be black\n",
|
|
aValue.asCell(), aMap);
|
|
mFailed = true;
|
|
}
|
|
}
|
|
|
|
bool mFailed;
|
|
};
|
|
#endif // DEBUG
|
|
|
|
static void
|
|
CheckParticipatesInCycleCollection(JS::GCCellPtr aThing, const char* aName,
|
|
void* aClosure)
|
|
{
|
|
bool* cycleCollectionEnabled = static_cast<bool*>(aClosure);
|
|
|
|
if (*cycleCollectionEnabled) {
|
|
return;
|
|
}
|
|
|
|
if (AddToCCKind(aThing.kind()) && JS::GCThingIsMarkedGray(aThing)) {
|
|
*cycleCollectionEnabled = true;
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
JSGCThingParticipant::TraverseNative(void* aPtr,
|
|
nsCycleCollectionTraversalCallback& aCb)
|
|
{
|
|
auto runtime = reinterpret_cast<CycleCollectedJSRuntime*>(
|
|
reinterpret_cast<char*>(this) - offsetof(CycleCollectedJSRuntime,
|
|
mGCThingCycleCollectorGlobal));
|
|
|
|
JS::GCCellPtr cellPtr(aPtr, JS::GCThingTraceKind(aPtr));
|
|
runtime->TraverseGCThing(CycleCollectedJSRuntime::TRAVERSE_FULL, cellPtr, aCb);
|
|
return NS_OK;
|
|
}
|
|
|
|
// NB: This is only used to initialize the participant in
|
|
// CycleCollectedJSRuntime. It should never be used directly.
|
|
static JSGCThingParticipant sGCThingCycleCollectorGlobal;
|
|
|
|
NS_IMETHODIMP
|
|
JSZoneParticipant::TraverseNative(void* aPtr,
|
|
nsCycleCollectionTraversalCallback& aCb)
|
|
{
|
|
auto runtime = reinterpret_cast<CycleCollectedJSRuntime*>(
|
|
reinterpret_cast<char*>(this) - offsetof(CycleCollectedJSRuntime,
|
|
mJSZoneCycleCollectorGlobal));
|
|
|
|
MOZ_ASSERT(!aCb.WantAllTraces());
|
|
JS::Zone* zone = static_cast<JS::Zone*>(aPtr);
|
|
|
|
runtime->TraverseZone(zone, aCb);
|
|
return NS_OK;
|
|
}
|
|
|
|
struct TraversalTracer : public JS::CallbackTracer
|
|
{
|
|
TraversalTracer(JSRuntime* aRt, nsCycleCollectionTraversalCallback& aCb)
|
|
: JS::CallbackTracer(aRt, DoNotTraceWeakMaps), mCb(aCb)
|
|
{
|
|
}
|
|
void onChild(const JS::GCCellPtr& aThing) override;
|
|
nsCycleCollectionTraversalCallback& mCb;
|
|
};
|
|
|
|
void
|
|
TraversalTracer::onChild(const JS::GCCellPtr& aThing)
|
|
{
|
|
// Don't traverse non-gray objects, unless we want all traces.
|
|
if (!JS::GCThingIsMarkedGray(aThing) && !mCb.WantAllTraces()) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This function needs to be careful to avoid stack overflow. Normally, when
|
|
* AddToCCKind is true, the recursion terminates immediately as we just add
|
|
* |thing| to the CC graph. So overflow is only possible when there are long
|
|
* or cyclic chains of non-AddToCCKind GC things. Places where this can occur
|
|
* use special APIs to handle such chains iteratively.
|
|
*/
|
|
if (AddToCCKind(aThing.kind())) {
|
|
if (MOZ_UNLIKELY(mCb.WantDebugInfo())) {
|
|
char buffer[200];
|
|
getTracingEdgeName(buffer, sizeof(buffer));
|
|
mCb.NoteNextEdgeName(buffer);
|
|
}
|
|
mCb.NoteJSChild(aThing);
|
|
} else if (aThing.is<js::Shape>()) {
|
|
// The maximum depth of traversal when tracing a Shape is unbounded, due to
|
|
// the parent pointers on the shape.
|
|
JS_TraceShapeCycleCollectorChildren(this, aThing);
|
|
} else if (aThing.is<js::ObjectGroup>()) {
|
|
// The maximum depth of traversal when tracing an ObjectGroup is unbounded,
|
|
// due to information attached to the groups which can lead other groups to
|
|
// be traced.
|
|
JS_TraceObjectGroupCycleCollectorChildren(this, aThing);
|
|
} else if (!aThing.is<JSString>()) {
|
|
JS::TraceChildren(this, aThing);
|
|
}
|
|
}
|
|
|
|
static void
|
|
NoteJSChildGrayWrapperShim(void* aData, JS::GCCellPtr aThing)
|
|
{
|
|
TraversalTracer* trc = static_cast<TraversalTracer*>(aData);
|
|
trc->onChild(aThing);
|
|
}
|
|
|
|
/*
|
|
* The cycle collection participant for a Zone is intended to produce the same
|
|
* results as if all of the gray GCthings in a zone were merged into a single node,
|
|
* except for self-edges. This avoids the overhead of representing all of the GCthings in
|
|
* the zone in the cycle collector graph, which should be much faster if many of
|
|
* the GCthings in the zone are gray.
|
|
*
|
|
* Zone merging should not always be used, because it is a conservative
|
|
* approximation of the true cycle collector graph that can incorrectly identify some
|
|
* garbage objects as being live. For instance, consider two cycles that pass through a
|
|
* zone, where one is garbage and the other is live. If we merge the entire
|
|
* zone, the cycle collector will think that both are alive.
|
|
*
|
|
* We don't have to worry about losing track of a garbage cycle, because any such garbage
|
|
* cycle incorrectly identified as live must contain at least one C++ to JS edge, and
|
|
* XPConnect will always add the C++ object to the CC graph. (This is in contrast to pure
|
|
* C++ garbage cycles, which must always be properly identified, because we clear the
|
|
* purple buffer during every CC, which may contain the last reference to a garbage
|
|
* cycle.)
|
|
*/
|
|
|
|
// NB: This is only used to initialize the participant in
|
|
// CycleCollectedJSRuntime. It should never be used directly.
|
|
static const JSZoneParticipant sJSZoneCycleCollectorGlobal;
|
|
|
|
static
|
|
void JSObjectsTenuredCb(JSContext* aContext, void* aData)
|
|
{
|
|
static_cast<CycleCollectedJSRuntime*>(aData)->JSObjectsTenured();
|
|
}
|
|
|
|
bool
|
|
mozilla::GetBuildId(JS::BuildIdCharVector* aBuildID)
|
|
{
|
|
nsCOMPtr<nsIPlatformInfo> info = do_GetService("@mozilla.org/xre/app-info;1");
|
|
if (!info) {
|
|
return false;
|
|
}
|
|
|
|
nsCString buildID;
|
|
nsresult rv = info->GetPlatformBuildID(buildID);
|
|
NS_ENSURE_SUCCESS(rv, false);
|
|
|
|
if (!aBuildID->resize(buildID.Length())) {
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < buildID.Length(); i++) {
|
|
(*aBuildID)[i] = buildID[i];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
MozCrashWarningReporter(JSContext*, JSErrorReport*)
|
|
{
|
|
MOZ_CRASH("Why is someone touching JSAPI without an AutoJSAPI?");
|
|
}
|
|
|
|
CycleCollectedJSRuntime::CycleCollectedJSRuntime(JSContext* aCx)
|
|
: mGCThingCycleCollectorGlobal(sGCThingCycleCollectorGlobal)
|
|
, mJSZoneCycleCollectorGlobal(sJSZoneCycleCollectorGlobal)
|
|
, mJSRuntime(JS_GetRuntime(aCx))
|
|
, mPrevGCSliceCallback(nullptr)
|
|
, mPrevGCNurseryCollectionCallback(nullptr)
|
|
, mJSHolderMap(256)
|
|
, mOutOfMemoryState(OOMState::OK)
|
|
, mLargeAllocationFailureState(OOMState::OK)
|
|
{
|
|
MOZ_COUNT_CTOR(CycleCollectedJSRuntime);
|
|
MOZ_ASSERT(aCx);
|
|
MOZ_ASSERT(mJSRuntime);
|
|
|
|
if (!JS_AddExtraGCRootsTracer(aCx, TraceBlackJS, this)) {
|
|
MOZ_CRASH("JS_AddExtraGCRootsTracer failed");
|
|
}
|
|
JS_SetGrayGCRootsTracer(aCx, TraceGrayJS, this);
|
|
JS_SetGCCallback(aCx, GCCallback, this);
|
|
mPrevGCSliceCallback = JS::SetGCSliceCallback(aCx, GCSliceCallback);
|
|
|
|
if (NS_IsMainThread()) {
|
|
// We would like to support all threads here, but the way timeline consumers
|
|
// are set up currently, you can either add a marker for one specific
|
|
// docshell, or for every consumer globally. We would like to add a marker
|
|
// for every consumer observing anything on this thread, but that is not
|
|
// currently possible. For now, add global markers only when we are on the
|
|
// main thread, since the UI for this tracing data only displays data
|
|
// relevant to the main-thread.
|
|
mPrevGCNurseryCollectionCallback = JS::SetGCNurseryCollectionCallback(
|
|
aCx, GCNurseryCollectionCallback);
|
|
}
|
|
|
|
JS_SetObjectsTenuredCallback(aCx, JSObjectsTenuredCb, this);
|
|
JS::SetOutOfMemoryCallback(aCx, OutOfMemoryCallback, this);
|
|
JS_SetExternalStringSizeofCallback(aCx, SizeofExternalStringCallback);
|
|
JS::SetBuildIdOp(aCx, GetBuildId);
|
|
JS::SetWarningReporter(aCx, MozCrashWarningReporter);
|
|
#ifdef MOZ_CRASHREPORTER
|
|
js::AutoEnterOOMUnsafeRegion::setAnnotateOOMAllocationSizeCallback(
|
|
CrashReporter::AnnotateOOMAllocationSize);
|
|
#endif
|
|
|
|
static js::DOMCallbacks DOMcallbacks = {
|
|
InstanceClassHasProtoAtDepth
|
|
};
|
|
SetDOMCallbacks(aCx, &DOMcallbacks);
|
|
js::SetScriptEnvironmentPreparer(aCx, &mEnvironmentPreparer);
|
|
|
|
JS::dbg::SetDebuggerMallocSizeOf(aCx, moz_malloc_size_of);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::Shutdown(JSContext* cx)
|
|
{
|
|
JS_RemoveExtraGCRootsTracer(cx, TraceBlackJS, this);
|
|
JS_RemoveExtraGCRootsTracer(cx, TraceGrayJS, this);
|
|
}
|
|
|
|
CycleCollectedJSRuntime::~CycleCollectedJSRuntime()
|
|
{
|
|
MOZ_COUNT_DTOR(CycleCollectedJSRuntime);
|
|
MOZ_ASSERT(!mDeferredFinalizerTable.Count());
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::AddContext(CycleCollectedJSContext* aContext)
|
|
{
|
|
mContexts.insertBack(aContext);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::RemoveContext(CycleCollectedJSContext* aContext)
|
|
{
|
|
aContext->removeFrom(mContexts);
|
|
}
|
|
|
|
size_t
|
|
CycleCollectedJSRuntime::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
size_t n = 0;
|
|
|
|
// We're deliberately not measuring anything hanging off the entries in
|
|
// mJSHolders.
|
|
n += mJSHolders.SizeOfExcludingThis(aMallocSizeOf);
|
|
n += mJSHolderMap.ShallowSizeOfExcludingThis(aMallocSizeOf);
|
|
|
|
return n;
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::UnmarkSkippableJSHolders()
|
|
{
|
|
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
|
|
void* holder = iter.Get().mHolder;
|
|
nsScriptObjectTracer* tracer = iter.Get().mTracer;
|
|
tracer->CanSkip(holder, true);
|
|
}
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::DescribeGCThing(bool aIsMarked, JS::GCCellPtr aThing,
|
|
nsCycleCollectionTraversalCallback& aCb) const
|
|
{
|
|
if (!aCb.WantDebugInfo()) {
|
|
aCb.DescribeGCedNode(aIsMarked, "JS Object");
|
|
return;
|
|
}
|
|
|
|
char name[72];
|
|
uint64_t compartmentAddress = 0;
|
|
if (aThing.is<JSObject>()) {
|
|
JSObject* obj = &aThing.as<JSObject>();
|
|
compartmentAddress = (uint64_t)js::GetObjectCompartment(obj);
|
|
const js::Class* clasp = js::GetObjectClass(obj);
|
|
|
|
// Give the subclass a chance to do something
|
|
if (DescribeCustomObjects(obj, clasp, name)) {
|
|
// Nothing else to do!
|
|
} else if (js::IsFunctionObject(obj)) {
|
|
JSFunction* fun = JS_GetObjectFunction(obj);
|
|
JSString* str = JS_GetFunctionDisplayId(fun);
|
|
if (str) {
|
|
JSFlatString* flat = JS_ASSERT_STRING_IS_FLAT(str);
|
|
nsAutoString chars;
|
|
AssignJSFlatString(chars, flat);
|
|
NS_ConvertUTF16toUTF8 fname(chars);
|
|
SprintfLiteral(name, "JS Object (Function - %s)", fname.get());
|
|
} else {
|
|
SprintfLiteral(name, "JS Object (Function)");
|
|
}
|
|
} else {
|
|
SprintfLiteral(name, "JS Object (%s)", clasp->name);
|
|
}
|
|
} else {
|
|
SprintfLiteral(name, "JS %s", JS::GCTraceKindToAscii(aThing.kind()));
|
|
}
|
|
|
|
// Disable printing global for objects while we figure out ObjShrink fallout.
|
|
aCb.DescribeGCedNode(aIsMarked, name, compartmentAddress);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::NoteGCThingJSChildren(JS::GCCellPtr aThing,
|
|
nsCycleCollectionTraversalCallback& aCb) const
|
|
{
|
|
TraversalTracer trc(mJSRuntime, aCb);
|
|
JS::TraceChildren(&trc, aThing);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::NoteGCThingXPCOMChildren(const js::Class* aClasp,
|
|
JSObject* aObj,
|
|
nsCycleCollectionTraversalCallback& aCb) const
|
|
{
|
|
MOZ_ASSERT(aClasp);
|
|
MOZ_ASSERT(aClasp == js::GetObjectClass(aObj));
|
|
|
|
if (NoteCustomGCThingXPCOMChildren(aClasp, aObj, aCb)) {
|
|
// Nothing else to do!
|
|
return;
|
|
}
|
|
// XXX This test does seem fragile, we should probably whitelist classes
|
|
// that do hold a strong reference, but that might not be possible.
|
|
else if (aClasp->flags & JSCLASS_HAS_PRIVATE &&
|
|
aClasp->flags & JSCLASS_PRIVATE_IS_NSISUPPORTS) {
|
|
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(aCb, "js::GetObjectPrivate(obj)");
|
|
aCb.NoteXPCOMChild(static_cast<nsISupports*>(js::GetObjectPrivate(aObj)));
|
|
} else {
|
|
const DOMJSClass* domClass = GetDOMClass(aObj);
|
|
if (domClass) {
|
|
NS_CYCLE_COLLECTION_NOTE_EDGE_NAME(aCb, "UnwrapDOMObject(obj)");
|
|
// It's possible that our object is an unforgeable holder object, in
|
|
// which case it doesn't actually have a C++ DOM object associated with
|
|
// it. Use UnwrapPossiblyNotInitializedDOMObject, which produces null in
|
|
// that case, since NoteXPCOMChild/NoteNativeChild are null-safe.
|
|
if (domClass->mDOMObjectIsISupports) {
|
|
aCb.NoteXPCOMChild(UnwrapPossiblyNotInitializedDOMObject<nsISupports>(aObj));
|
|
} else if (domClass->mParticipant) {
|
|
aCb.NoteNativeChild(UnwrapPossiblyNotInitializedDOMObject<void>(aObj),
|
|
domClass->mParticipant);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::TraverseGCThing(TraverseSelect aTs, JS::GCCellPtr aThing,
|
|
nsCycleCollectionTraversalCallback& aCb)
|
|
{
|
|
bool isMarkedGray = JS::GCThingIsMarkedGray(aThing);
|
|
|
|
if (aTs == TRAVERSE_FULL) {
|
|
DescribeGCThing(!isMarkedGray, aThing, aCb);
|
|
}
|
|
|
|
// If this object is alive, then all of its children are alive. For JS objects,
|
|
// the black-gray invariant ensures the children are also marked black. For C++
|
|
// objects, the ref count from this object will keep them alive. Thus we don't
|
|
// need to trace our children, unless we are debugging using WantAllTraces.
|
|
if (!isMarkedGray && !aCb.WantAllTraces()) {
|
|
return;
|
|
}
|
|
|
|
if (aTs == TRAVERSE_FULL) {
|
|
NoteGCThingJSChildren(aThing, aCb);
|
|
}
|
|
|
|
if (aThing.is<JSObject>()) {
|
|
JSObject* obj = &aThing.as<JSObject>();
|
|
NoteGCThingXPCOMChildren(js::GetObjectClass(obj), obj, aCb);
|
|
}
|
|
}
|
|
|
|
struct TraverseObjectShimClosure
|
|
{
|
|
nsCycleCollectionTraversalCallback& cb;
|
|
CycleCollectedJSRuntime* self;
|
|
};
|
|
|
|
void
|
|
CycleCollectedJSRuntime::TraverseZone(JS::Zone* aZone,
|
|
nsCycleCollectionTraversalCallback& aCb)
|
|
{
|
|
/*
|
|
* We treat the zone as being gray. We handle non-gray GCthings in the
|
|
* zone by not reporting their children to the CC. The black-gray invariant
|
|
* ensures that any JS children will also be non-gray, and thus don't need to be
|
|
* added to the graph. For C++ children, not representing the edge from the
|
|
* non-gray JS GCthings to the C++ object will keep the child alive.
|
|
*
|
|
* We don't allow zone merging in a WantAllTraces CC, because then these
|
|
* assumptions don't hold.
|
|
*/
|
|
aCb.DescribeGCedNode(false, "JS Zone");
|
|
|
|
/*
|
|
* Every JS child of everything in the zone is either in the zone
|
|
* or is a cross-compartment wrapper. In the former case, we don't need to
|
|
* represent these edges in the CC graph because JS objects are not ref counted.
|
|
* In the latter case, the JS engine keeps a map of these wrappers, which we
|
|
* iterate over. Edges between compartments in the same zone will add
|
|
* unnecessary loop edges to the graph (bug 842137).
|
|
*/
|
|
TraversalTracer trc(mJSRuntime, aCb);
|
|
js::VisitGrayWrapperTargets(aZone, NoteJSChildGrayWrapperShim, &trc);
|
|
|
|
/*
|
|
* To find C++ children of things in the zone, we scan every JS Object in
|
|
* the zone. Only JS Objects can have C++ children.
|
|
*/
|
|
TraverseObjectShimClosure closure = { aCb, this };
|
|
js::IterateGrayObjects(aZone, TraverseObjectShim, &closure);
|
|
}
|
|
|
|
/* static */ void
|
|
CycleCollectedJSRuntime::TraverseObjectShim(void* aData, JS::GCCellPtr aThing)
|
|
{
|
|
TraverseObjectShimClosure* closure =
|
|
static_cast<TraverseObjectShimClosure*>(aData);
|
|
|
|
MOZ_ASSERT(aThing.is<JSObject>());
|
|
closure->self->TraverseGCThing(CycleCollectedJSRuntime::TRAVERSE_CPP,
|
|
aThing, closure->cb);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::TraverseNativeRoots(nsCycleCollectionNoteRootCallback& aCb)
|
|
{
|
|
// NB: This is here just to preserve the existing XPConnect order. I doubt it
|
|
// would hurt to do this after the JS holders.
|
|
TraverseAdditionalNativeRoots(aCb);
|
|
|
|
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
|
|
void* holder = iter.Get().mHolder;
|
|
nsScriptObjectTracer* tracer = iter.Get().mTracer;
|
|
|
|
bool noteRoot = false;
|
|
if (MOZ_UNLIKELY(aCb.WantAllTraces())) {
|
|
noteRoot = true;
|
|
} else {
|
|
tracer->Trace(holder,
|
|
TraceCallbackFunc(CheckParticipatesInCycleCollection),
|
|
¬eRoot);
|
|
}
|
|
|
|
if (noteRoot) {
|
|
aCb.NoteNativeRoot(holder, tracer);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* static */ void
|
|
CycleCollectedJSRuntime::TraceBlackJS(JSTracer* aTracer, void* aData)
|
|
{
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
self->TraceNativeBlackRoots(aTracer);
|
|
}
|
|
|
|
/* static */ void
|
|
CycleCollectedJSRuntime::TraceGrayJS(JSTracer* aTracer, void* aData)
|
|
{
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
// Mark these roots as gray so the CC can walk them later.
|
|
self->TraceNativeGrayRoots(aTracer);
|
|
}
|
|
|
|
/* static */ void
|
|
CycleCollectedJSRuntime::GCCallback(JSContext* aContext,
|
|
JSGCStatus aStatus,
|
|
void* aData)
|
|
{
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Runtime() == self);
|
|
|
|
self->OnGC(aContext, aStatus);
|
|
}
|
|
|
|
/* static */ void
|
|
CycleCollectedJSRuntime::GCSliceCallback(JSContext* aContext,
|
|
JS::GCProgress aProgress,
|
|
const JS::GCDescription& aDesc)
|
|
{
|
|
CycleCollectedJSRuntime* self = CycleCollectedJSRuntime::Get();
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
|
|
if (profiler_is_active()) {
|
|
if (aProgress == JS::GC_CYCLE_END) {
|
|
profiler_add_marker(
|
|
"GCMajor",
|
|
MakeUnique<GCMajorMarkerPayload>(aDesc.startTime(aContext),
|
|
aDesc.endTime(aContext),
|
|
aDesc.summaryToJSON(aContext)));
|
|
} else if (aProgress == JS::GC_SLICE_END) {
|
|
profiler_add_marker(
|
|
"GCSlice",
|
|
MakeUnique<GCSliceMarkerPayload>(aDesc.lastSliceStart(aContext),
|
|
aDesc.lastSliceEnd(aContext),
|
|
aDesc.sliceToJSON(aContext)));
|
|
}
|
|
}
|
|
|
|
if (aProgress == JS::GC_CYCLE_END &&
|
|
JS::dbg::FireOnGarbageCollectionHookRequired(aContext)) {
|
|
JS::gcreason::Reason reason = aDesc.reason_;
|
|
Unused <<
|
|
NS_WARN_IF(NS_FAILED(DebuggerOnGCRunnable::Enqueue(aContext, aDesc)) &&
|
|
reason != JS::gcreason::SHUTDOWN_CC &&
|
|
reason != JS::gcreason::DESTROY_RUNTIME &&
|
|
reason != JS::gcreason::XPCONNECT_SHUTDOWN);
|
|
}
|
|
|
|
if (self->mPrevGCSliceCallback) {
|
|
self->mPrevGCSliceCallback(aContext, aProgress, aDesc);
|
|
}
|
|
}
|
|
|
|
class MinorGCMarker : public TimelineMarker
|
|
{
|
|
private:
|
|
JS::gcreason::Reason mReason;
|
|
|
|
public:
|
|
MinorGCMarker(MarkerTracingType aTracingType,
|
|
JS::gcreason::Reason aReason)
|
|
: TimelineMarker("MinorGC",
|
|
aTracingType,
|
|
MarkerStackRequest::NO_STACK)
|
|
, mReason(aReason)
|
|
{
|
|
MOZ_ASSERT(aTracingType == MarkerTracingType::START ||
|
|
aTracingType == MarkerTracingType::END);
|
|
}
|
|
|
|
MinorGCMarker(JS::GCNurseryProgress aProgress,
|
|
JS::gcreason::Reason aReason)
|
|
: TimelineMarker("MinorGC",
|
|
aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START
|
|
? MarkerTracingType::START
|
|
: MarkerTracingType::END,
|
|
MarkerStackRequest::NO_STACK)
|
|
, mReason(aReason)
|
|
{ }
|
|
|
|
virtual void
|
|
AddDetails(JSContext* aCx,
|
|
dom::ProfileTimelineMarker& aMarker) override
|
|
{
|
|
TimelineMarker::AddDetails(aCx, aMarker);
|
|
|
|
if (GetTracingType() == MarkerTracingType::START) {
|
|
auto reason = JS::gcreason::ExplainReason(mReason);
|
|
aMarker.mCauseName.Construct(NS_ConvertUTF8toUTF16(reason));
|
|
}
|
|
}
|
|
|
|
virtual UniquePtr<AbstractTimelineMarker>
|
|
Clone() override
|
|
{
|
|
auto clone = MakeUnique<MinorGCMarker>(GetTracingType(), mReason);
|
|
clone->SetCustomTime(GetTime());
|
|
return UniquePtr<AbstractTimelineMarker>(Move(clone));
|
|
}
|
|
};
|
|
|
|
/* static */ void
|
|
CycleCollectedJSRuntime::GCNurseryCollectionCallback(JSContext* aContext,
|
|
JS::GCNurseryProgress aProgress,
|
|
JS::gcreason::Reason aReason)
|
|
{
|
|
CycleCollectedJSRuntime* self = CycleCollectedJSRuntime::Get();
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
RefPtr<TimelineConsumers> timelines = TimelineConsumers::Get();
|
|
if (timelines && !timelines->IsEmpty()) {
|
|
UniquePtr<AbstractTimelineMarker> abstractMarker(
|
|
MakeUnique<MinorGCMarker>(aProgress, aReason));
|
|
timelines->AddMarkerForAllObservedDocShells(abstractMarker);
|
|
}
|
|
|
|
if (aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START) {
|
|
self->mLatestNurseryCollectionStart = TimeStamp::Now();
|
|
} else if ((aProgress == JS::GCNurseryProgress::GC_NURSERY_COLLECTION_END) &&
|
|
profiler_is_active())
|
|
{
|
|
profiler_add_marker(
|
|
"GCMinor",
|
|
MakeUnique<GCMinorMarkerPayload>(self->mLatestNurseryCollectionStart,
|
|
TimeStamp::Now(),
|
|
JS::MinorGcToJSON(aContext)));
|
|
}
|
|
|
|
if (self->mPrevGCNurseryCollectionCallback) {
|
|
self->mPrevGCNurseryCollectionCallback(aContext, aProgress, aReason);
|
|
}
|
|
}
|
|
|
|
|
|
/* static */ void
|
|
CycleCollectedJSRuntime::OutOfMemoryCallback(JSContext* aContext,
|
|
void* aData)
|
|
{
|
|
CycleCollectedJSRuntime* self = static_cast<CycleCollectedJSRuntime*>(aData);
|
|
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Context() == aContext);
|
|
MOZ_ASSERT(CycleCollectedJSContext::Get()->Runtime() == self);
|
|
|
|
self->OnOutOfMemory();
|
|
}
|
|
|
|
/* static */ size_t
|
|
CycleCollectedJSRuntime::SizeofExternalStringCallback(JSString* aStr,
|
|
MallocSizeOf aMallocSizeOf)
|
|
{
|
|
// We promised the JS engine we would not GC. Enforce that:
|
|
JS::AutoCheckCannotGC autoCannotGC;
|
|
|
|
if (!XPCStringConvert::IsDOMString(aStr)) {
|
|
// Might be a literal or something we don't understand. Just claim 0.
|
|
return 0;
|
|
}
|
|
|
|
const char16_t* chars = JS_GetTwoByteExternalStringChars(aStr);
|
|
const nsStringBuffer* buf = nsStringBuffer::FromData((void*)chars);
|
|
// We want sizeof including this, because the entire string buffer is owned by
|
|
// the external string. But only report here if we're unshared; if we're
|
|
// shared then we don't know who really owns this data.
|
|
return buf->SizeOfIncludingThisIfUnshared(aMallocSizeOf);
|
|
}
|
|
|
|
struct JsGcTracer : public TraceCallbacks
|
|
{
|
|
virtual void Trace(JS::Heap<JS::Value>* aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<jsid>* aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSObject*>* aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JSObject** aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
js::UnsafeTraceManuallyBarrieredEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::TenuredHeap<JSObject*>* aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSString*>* aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSScript*>* aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
virtual void Trace(JS::Heap<JSFunction*>* aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
JS::TraceEdge(static_cast<JSTracer*>(aClosure), aPtr, aName);
|
|
}
|
|
};
|
|
|
|
void
|
|
mozilla::TraceScriptHolder(nsISupports* aHolder, JSTracer* aTracer)
|
|
{
|
|
nsXPCOMCycleCollectionParticipant* participant = nullptr;
|
|
CallQueryInterface(aHolder, &participant);
|
|
participant->Trace(aHolder, JsGcTracer(), aTracer);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::TraceNativeGrayRoots(JSTracer* aTracer)
|
|
{
|
|
// NB: This is here just to preserve the existing XPConnect order. I doubt it
|
|
// would hurt to do this after the JS holders.
|
|
TraceAdditionalNativeGrayRoots(aTracer);
|
|
|
|
for (auto iter = mJSHolders.Iter(); !iter.Done(); iter.Next()) {
|
|
void* holder = iter.Get().mHolder;
|
|
nsScriptObjectTracer* tracer = iter.Get().mTracer;
|
|
tracer->Trace(holder, JsGcTracer(), aTracer);
|
|
}
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::AddJSHolder(void* aHolder, nsScriptObjectTracer* aTracer)
|
|
{
|
|
JSHolderInfo* info = nullptr;
|
|
if (mJSHolderMap.Get(aHolder, &info)) {
|
|
MOZ_ASSERT(info->mHolder == aHolder);
|
|
info->mTracer = aTracer;
|
|
return;
|
|
}
|
|
|
|
mJSHolders.InfallibleAppend(JSHolderInfo {aHolder, aTracer});
|
|
mJSHolderMap.Put(aHolder, &mJSHolders.GetLast());
|
|
}
|
|
|
|
struct ClearJSHolder : public TraceCallbacks
|
|
{
|
|
virtual void Trace(JS::Heap<JS::Value>* aPtr, const char*, void*) const override
|
|
{
|
|
aPtr->setUndefined();
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<jsid>* aPtr, const char*, void*) const override
|
|
{
|
|
*aPtr = JSID_VOID;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSObject*>* aPtr, const char*, void*) const override
|
|
{
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JSObject** aPtr, const char* aName,
|
|
void* aClosure) const override
|
|
{
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::TenuredHeap<JSObject*>* aPtr, const char*, void*) const override
|
|
{
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSString*>* aPtr, const char*, void*) const override
|
|
{
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSScript*>* aPtr, const char*, void*) const override
|
|
{
|
|
*aPtr = nullptr;
|
|
}
|
|
|
|
virtual void Trace(JS::Heap<JSFunction*>* aPtr, const char*, void*) const override
|
|
{
|
|
*aPtr = nullptr;
|
|
}
|
|
};
|
|
|
|
void
|
|
CycleCollectedJSRuntime::RemoveJSHolder(void* aHolder)
|
|
{
|
|
JSHolderInfo* info = nullptr;
|
|
if (mJSHolderMap.Get(aHolder, &info)) {
|
|
MOZ_ASSERT(info->mHolder == aHolder);
|
|
info->mTracer->Trace(aHolder, ClearJSHolder(), nullptr);
|
|
|
|
JSHolderInfo* lastInfo = &mJSHolders.GetLast();
|
|
if (info != lastInfo) {
|
|
*info = *lastInfo;
|
|
mJSHolderMap.Put(info->mHolder, info);
|
|
}
|
|
|
|
mJSHolders.PopLast();
|
|
mJSHolderMap.Remove(aHolder);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool
|
|
CycleCollectedJSRuntime::IsJSHolder(void* aHolder)
|
|
{
|
|
return mJSHolderMap.Get(aHolder, nullptr);
|
|
}
|
|
|
|
static void
|
|
AssertNoGcThing(JS::GCCellPtr aGCThing, const char* aName, void* aClosure)
|
|
{
|
|
MOZ_ASSERT(!aGCThing);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::AssertNoObjectsToTrace(void* aPossibleJSHolder)
|
|
{
|
|
JSHolderInfo* info = nullptr;
|
|
if (!mJSHolderMap.Get(aPossibleJSHolder, &info)) {
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(info->mHolder == aPossibleJSHolder);
|
|
info->mTracer->Trace(aPossibleJSHolder, TraceCallbackFunc(AssertNoGcThing), nullptr);
|
|
}
|
|
#endif
|
|
|
|
nsCycleCollectionParticipant*
|
|
CycleCollectedJSRuntime::GCThingParticipant()
|
|
{
|
|
return &mGCThingCycleCollectorGlobal;
|
|
}
|
|
|
|
nsCycleCollectionParticipant*
|
|
CycleCollectedJSRuntime::ZoneParticipant()
|
|
{
|
|
return &mJSZoneCycleCollectorGlobal;
|
|
}
|
|
|
|
nsresult
|
|
CycleCollectedJSRuntime::TraverseRoots(nsCycleCollectionNoteRootCallback& aCb)
|
|
{
|
|
TraverseNativeRoots(aCb);
|
|
|
|
NoteWeakMapsTracer trc(mJSRuntime, aCb);
|
|
js::TraceWeakMaps(&trc);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
bool
|
|
CycleCollectedJSRuntime::UsefulToMergeZones() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::FixWeakMappingGrayBits() const
|
|
{
|
|
MOZ_ASSERT(!JS::IsIncrementalGCInProgress(mJSRuntime),
|
|
"Don't call FixWeakMappingGrayBits during a GC.");
|
|
FixWeakMappingGrayBitsTracer fixer(mJSRuntime);
|
|
fixer.FixAll();
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::CheckGrayBits() const
|
|
{
|
|
MOZ_ASSERT(!JS::IsIncrementalGCInProgress(mJSRuntime),
|
|
"Don't call CheckGrayBits during a GC.");
|
|
|
|
#ifndef ANDROID
|
|
// Bug 1346874 - The gray state check is expensive. Android tests are already
|
|
// slow enough that this check can easily push them over the threshold to a
|
|
// timeout.
|
|
|
|
MOZ_ASSERT(js::CheckGrayMarkingState(mJSRuntime));
|
|
MOZ_ASSERT(CheckWeakMappingGrayBitsTracer::Check(mJSRuntime));
|
|
#endif
|
|
}
|
|
|
|
bool
|
|
CycleCollectedJSRuntime::AreGCGrayBitsValid() const
|
|
{
|
|
return js::AreGCGrayBitsValid(mJSRuntime);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::GarbageCollect(uint32_t aReason) const
|
|
{
|
|
MOZ_ASSERT(aReason < JS::gcreason::NUM_REASONS);
|
|
JS::gcreason::Reason gcreason = static_cast<JS::gcreason::Reason>(aReason);
|
|
|
|
JSContext* cx = CycleCollectedJSContext::Get()->Context();
|
|
JS::PrepareForFullGC(cx);
|
|
JS::GCForReason(cx, GC_NORMAL, gcreason);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::JSObjectsTenured()
|
|
{
|
|
for (auto iter = mNurseryObjects.Iter(); !iter.Done(); iter.Next()) {
|
|
nsWrapperCache* cache = iter.Get();
|
|
JSObject* wrapper = cache->GetWrapperMaybeDead();
|
|
MOZ_DIAGNOSTIC_ASSERT(wrapper);
|
|
if (!JS::ObjectIsTenured(wrapper)) {
|
|
MOZ_ASSERT(!cache->PreservingWrapper());
|
|
const JSClass* jsClass = js::GetObjectJSClass(wrapper);
|
|
jsClass->doFinalize(nullptr, wrapper);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
for (auto iter = mPreservedNurseryObjects.Iter(); !iter.Done(); iter.Next()) {
|
|
MOZ_ASSERT(JS::ObjectIsTenured(iter.Get().get()));
|
|
}
|
|
#endif
|
|
|
|
mNurseryObjects.Clear();
|
|
mPreservedNurseryObjects.Clear();
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::NurseryWrapperAdded(nsWrapperCache* aCache)
|
|
{
|
|
MOZ_ASSERT(aCache);
|
|
MOZ_ASSERT(aCache->GetWrapperMaybeDead());
|
|
MOZ_ASSERT(!JS::ObjectIsTenured(aCache->GetWrapperMaybeDead()));
|
|
mNurseryObjects.InfallibleAppend(aCache);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::NurseryWrapperPreserved(JSObject* aWrapper)
|
|
{
|
|
mPreservedNurseryObjects.InfallibleAppend(
|
|
JS::PersistentRooted<JSObject*>(mJSRuntime, aWrapper));
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::DeferredFinalize(DeferredFinalizeAppendFunction aAppendFunc,
|
|
DeferredFinalizeFunction aFunc,
|
|
void* aThing)
|
|
{
|
|
if (auto entry = mDeferredFinalizerTable.LookupForAdd(aFunc)) {
|
|
aAppendFunc(entry.Data(), aThing);
|
|
} else {
|
|
entry.OrInsert(
|
|
[aAppendFunc, aThing] () { return aAppendFunc(nullptr, aThing); });
|
|
}
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::DeferredFinalize(nsISupports* aSupports)
|
|
{
|
|
typedef DeferredFinalizerImpl<nsISupports> Impl;
|
|
DeferredFinalize(Impl::AppendDeferredFinalizePointer, Impl::DeferredFinalize,
|
|
aSupports);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::DumpJSHeap(FILE* aFile)
|
|
{
|
|
JSContext* cx = CycleCollectedJSContext::Get()->Context();
|
|
js::DumpHeap(cx, aFile, js::CollectNurseryBeforeDump);
|
|
}
|
|
|
|
IncrementalFinalizeRunnable::IncrementalFinalizeRunnable(CycleCollectedJSRuntime* aRt,
|
|
DeferredFinalizerTable& aFinalizers)
|
|
: CancelableRunnable("IncrementalFinalizeRunnable")
|
|
, mRuntime(aRt)
|
|
, mFinalizeFunctionToRun(0)
|
|
, mReleasing(false)
|
|
{
|
|
for (auto iter = aFinalizers.Iter(); !iter.Done(); iter.Next()) {
|
|
DeferredFinalizeFunction& function = iter.Key();
|
|
void*& data = iter.Data();
|
|
|
|
DeferredFinalizeFunctionHolder* holder =
|
|
mDeferredFinalizeFunctions.AppendElement();
|
|
holder->run = function;
|
|
holder->data = data;
|
|
|
|
iter.Remove();
|
|
}
|
|
}
|
|
|
|
IncrementalFinalizeRunnable::~IncrementalFinalizeRunnable()
|
|
{
|
|
MOZ_ASSERT(this != mRuntime->mFinalizeRunnable);
|
|
}
|
|
|
|
void
|
|
IncrementalFinalizeRunnable::ReleaseNow(bool aLimited)
|
|
{
|
|
if (mReleasing) {
|
|
NS_WARNING("Re-entering ReleaseNow");
|
|
return;
|
|
}
|
|
{
|
|
mozilla::AutoRestore<bool> ar(mReleasing);
|
|
mReleasing = true;
|
|
MOZ_ASSERT(mDeferredFinalizeFunctions.Length() != 0,
|
|
"We should have at least ReleaseSliceNow to run");
|
|
MOZ_ASSERT(mFinalizeFunctionToRun < mDeferredFinalizeFunctions.Length(),
|
|
"No more finalizers to run?");
|
|
|
|
TimeDuration sliceTime = TimeDuration::FromMilliseconds(SliceMillis);
|
|
TimeStamp started = TimeStamp::Now();
|
|
bool timeout = false;
|
|
do {
|
|
const DeferredFinalizeFunctionHolder& function =
|
|
mDeferredFinalizeFunctions[mFinalizeFunctionToRun];
|
|
if (aLimited) {
|
|
bool done = false;
|
|
while (!timeout && !done) {
|
|
/*
|
|
* We don't want to read the clock too often, so we try to
|
|
* release slices of 100 items.
|
|
*/
|
|
done = function.run(100, function.data);
|
|
timeout = TimeStamp::Now() - started >= sliceTime;
|
|
}
|
|
if (done) {
|
|
++mFinalizeFunctionToRun;
|
|
}
|
|
if (timeout) {
|
|
break;
|
|
}
|
|
} else {
|
|
while (!function.run(UINT32_MAX, function.data));
|
|
++mFinalizeFunctionToRun;
|
|
}
|
|
} while (mFinalizeFunctionToRun < mDeferredFinalizeFunctions.Length());
|
|
}
|
|
|
|
if (mFinalizeFunctionToRun == mDeferredFinalizeFunctions.Length()) {
|
|
MOZ_ASSERT(mRuntime->mFinalizeRunnable == this);
|
|
mDeferredFinalizeFunctions.Clear();
|
|
// NB: This may delete this!
|
|
mRuntime->mFinalizeRunnable = nullptr;
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
IncrementalFinalizeRunnable::Run()
|
|
{
|
|
if (mRuntime->mFinalizeRunnable != this) {
|
|
/* These items were already processed synchronously in JSGC_END. */
|
|
MOZ_ASSERT(!mDeferredFinalizeFunctions.Length());
|
|
return NS_OK;
|
|
}
|
|
|
|
TimeStamp start = TimeStamp::Now();
|
|
ReleaseNow(true);
|
|
|
|
if (mDeferredFinalizeFunctions.Length()) {
|
|
nsresult rv = NS_DispatchToCurrentThread(this);
|
|
if (NS_FAILED(rv)) {
|
|
ReleaseNow(false);
|
|
}
|
|
}
|
|
|
|
uint32_t duration = (uint32_t)((TimeStamp::Now() - start).ToMilliseconds());
|
|
Telemetry::Accumulate(Telemetry::DEFERRED_FINALIZE_ASYNC, duration);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::FinalizeDeferredThings(CycleCollectedJSContext::DeferredFinalizeType aType)
|
|
{
|
|
/*
|
|
* If the previous GC created a runnable to finalize objects
|
|
* incrementally, and if it hasn't finished yet, finish it now. We
|
|
* don't want these to build up. We also don't want to allow any
|
|
* existing incremental finalize runnables to run after a
|
|
* non-incremental GC, since they are often used to detect leaks.
|
|
*/
|
|
if (mFinalizeRunnable) {
|
|
mFinalizeRunnable->ReleaseNow(false);
|
|
if (mFinalizeRunnable) {
|
|
// If we re-entered ReleaseNow, we couldn't delete mFinalizeRunnable and
|
|
// we need to just continue processing it.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (mDeferredFinalizerTable.Count() == 0) {
|
|
return;
|
|
}
|
|
|
|
mFinalizeRunnable = new IncrementalFinalizeRunnable(this,
|
|
mDeferredFinalizerTable);
|
|
|
|
// Everything should be gone now.
|
|
MOZ_ASSERT(mDeferredFinalizerTable.Count() == 0);
|
|
|
|
if (aType == CycleCollectedJSContext::FinalizeIncrementally) {
|
|
NS_DispatchToCurrentThread(mFinalizeRunnable);
|
|
} else {
|
|
mFinalizeRunnable->ReleaseNow(false);
|
|
MOZ_ASSERT(!mFinalizeRunnable);
|
|
}
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::AnnotateAndSetOutOfMemory(OOMState* aStatePtr,
|
|
OOMState aNewState)
|
|
{
|
|
*aStatePtr = aNewState;
|
|
#ifdef MOZ_CRASHREPORTER
|
|
CrashReporter::AnnotateCrashReport(aStatePtr == &mOutOfMemoryState
|
|
? NS_LITERAL_CSTRING("JSOutOfMemory")
|
|
: NS_LITERAL_CSTRING("JSLargeAllocationFailure"),
|
|
aNewState == OOMState::Reporting
|
|
? NS_LITERAL_CSTRING("Reporting")
|
|
: aNewState == OOMState::Reported
|
|
? NS_LITERAL_CSTRING("Reported")
|
|
: NS_LITERAL_CSTRING("Recovered"));
|
|
#endif
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::OnGC(JSContext* aContext,
|
|
JSGCStatus aStatus)
|
|
{
|
|
switch (aStatus) {
|
|
case JSGC_BEGIN:
|
|
nsCycleCollector_prepareForGarbageCollection();
|
|
mZonesWaitingForGC.Clear();
|
|
break;
|
|
case JSGC_END: {
|
|
#ifdef MOZ_CRASHREPORTER
|
|
if (mOutOfMemoryState == OOMState::Reported) {
|
|
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Recovered);
|
|
}
|
|
if (mLargeAllocationFailureState == OOMState::Reported) {
|
|
AnnotateAndSetOutOfMemory(&mLargeAllocationFailureState, OOMState::Recovered);
|
|
}
|
|
#endif
|
|
|
|
// Do any deferred finalization of native objects. Normally we do this
|
|
// incrementally for an incremental GC, and immediately for a
|
|
// non-incremental GC, on the basis that the type of GC reflects how
|
|
// urgently resources should be destroyed. However under some circumstances
|
|
// (such as in js::InternalCallOrConstruct) we can end up running a
|
|
// non-incremental GC when there is a pending exception, and the finalizers
|
|
// are not set up to handle that. In that case, just run them later, after
|
|
// we've returned to the event loop.
|
|
bool finalizeIncrementally = JS::WasIncrementalGC(mJSRuntime) || JS_IsExceptionPending(aContext);
|
|
FinalizeDeferredThings(finalizeIncrementally
|
|
? CycleCollectedJSContext::FinalizeIncrementally
|
|
: CycleCollectedJSContext::FinalizeNow);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
MOZ_CRASH();
|
|
}
|
|
|
|
CustomGCCallback(aStatus);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::OnOutOfMemory()
|
|
{
|
|
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Reporting);
|
|
CustomOutOfMemoryCallback();
|
|
AnnotateAndSetOutOfMemory(&mOutOfMemoryState, OOMState::Reported);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::SetLargeAllocationFailure(OOMState aNewState)
|
|
{
|
|
AnnotateAndSetOutOfMemory(&mLargeAllocationFailureState, aNewState);
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::PrepareWaitingZonesForGC()
|
|
{
|
|
JSContext* cx = CycleCollectedJSContext::Get()->Context();
|
|
if (mZonesWaitingForGC.Count() == 0) {
|
|
JS::PrepareForFullGC(cx);
|
|
} else {
|
|
for (auto iter = mZonesWaitingForGC.Iter(); !iter.Done(); iter.Next()) {
|
|
JS::PrepareZoneForGC(iter.Get()->GetKey());
|
|
}
|
|
mZonesWaitingForGC.Clear();
|
|
}
|
|
}
|
|
|
|
void
|
|
CycleCollectedJSRuntime::EnvironmentPreparer::invoke(JS::HandleObject scope,
|
|
js::ScriptEnvironmentPreparer::Closure& closure)
|
|
{
|
|
nsIGlobalObject* global = xpc::NativeGlobal(scope);
|
|
|
|
// Not much we can do if we simply don't have a usable global here...
|
|
NS_ENSURE_TRUE_VOID(global && global->GetGlobalJSObject());
|
|
|
|
AutoEntryScript aes(global, "JS-engine-initiated execution");
|
|
|
|
MOZ_ASSERT(!JS_IsExceptionPending(aes.cx()));
|
|
|
|
DebugOnly<bool> ok = closure(aes.cx());
|
|
|
|
MOZ_ASSERT_IF(ok, !JS_IsExceptionPending(aes.cx()));
|
|
|
|
// The AutoEntryScript will check for JS_IsExceptionPending on the
|
|
// JSContext and report it as needed as it comes off the stack.
|
|
}
|
|
|
|
/* static */ CycleCollectedJSRuntime*
|
|
CycleCollectedJSRuntime::Get()
|
|
{
|
|
auto context = CycleCollectedJSContext::Get();
|
|
if (context) {
|
|
return context->Runtime();
|
|
}
|
|
return nullptr;
|
|
}
|