gecko-dev/ef/Utilities/General/DoublyLinkedList.h
1999-11-02 06:38:29 +00:00

436 lines
11 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
*
* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*/
#ifndef DOUBLYLINKEDLIST_H
#define DOUBLYLINKEDLIST_H
#include "Fundamentals.h"
// --- PRIVATE ----------------------------------------------------------------
struct DoublyLinkedNode
{
DoublyLinkedNode *next; // Link to next node (in DEBUG versions nil if not explicitly set)
DoublyLinkedNode *prev; // Link to previous node (in DEBUG versions nil if not explicitly set)
void remove();
void substitute(DoublyLinkedNode &src);
void insertAfter(DoublyLinkedNode &loc);
void insertBefore(DoublyLinkedNode &loc);
#ifdef DEBUG
void init() {next = 0; prev = 0;}
bool isLinked() const {return next && prev;}
bool isUnlinked() const {return !next && !prev;}
#else
void init() {}
#endif
};
class DoublyLinkedRoot
{
protected:
DoublyLinkedNode root;
private:
#if 0
DoublyLinkedRoot(const DoublyLinkedRoot &); // Copying forbidden
void operator=(const DoublyLinkedRoot &); // Copying forbidden
#endif
public:
DoublyLinkedRoot(const DoublyLinkedRoot &){ PR_ASSERT(0); } // Copying forbidden
void operator=(const DoublyLinkedRoot &){ PR_ASSERT(0); } // Copying forbidden
DoublyLinkedRoot() {root.next = &root; root.prev = &root;}
void init() {root.next = &root; root.prev = &root;}
bool empty() const {return root.next == &root;}
protected:
void removeFirstNode();
};
// --- PUBLIC -----------------------------------------------------------------
// Derive doubly-linked list nodes from this class. N is the node class, which should
// be a subclass of this class.
template<class N>
class DoublyLinkedEntry: public DoublyLinkedNode
{
#ifdef DEBUG
DoublyLinkedEntry(const DoublyLinkedEntry<N> &); // Copying forbidden
void operator=(const DoublyLinkedEntry<N> &); // Copying forbidden
public:
DoublyLinkedEntry() {init();}
#endif
public:
// DoublyLinkedNode administration
static N &linkOwner(DoublyLinkedNode &l) {return *static_cast<N *>(&l);}
DoublyLinkedNode &getLinks() {return *this;}
};
// Use this class for doubly-linked list containers. N is the node class, which should
// inherit from DoublyLinkedEntry<N>.
template<class N>
class DoublyLinkedList: public DoublyLinkedRoot
{
public:
typedef DoublyLinkedNode *iterator;
// To iterate forward through a DoublyLinkedList<T> dl, use:
// for (DoublyLinkedList<T>::iterator i = dl.begin(); !dl.done(i); i = dl.advance(i))
// ... dl.get(i) ...
iterator begin() const {return root.next;}
iterator end() const {return root.prev;}
NONDEBUG_ONLY(static) iterator location(N &node) {assert(exists(node)); return &node.getLinks();}
static N &get(iterator i) {return N::linkOwner(*i);}
static iterator advance(iterator i) {return i->next;}
static iterator retreat(iterator i) {return i->prev;}
bool done(iterator i) const {return i == &root;}
#ifdef DEBUG
bool validIterator(iterator i) const;
#endif
Uint32 length() const;
bool lengthIs(Uint32 n) const;
N &first() const {assert(!empty()); return get(root.next);}
N &last() const {assert(!empty()); return get(root.prev);}
bool exists(N &node) const;
Uint32 index(N &node) const;
void addFirst(N &node);
void addLast(N &node);
NONDEBUG_ONLY(static) void insertBefore(N &node, iterator i);
NONDEBUG_ONLY(static) void insertAfter(N &node, iterator i);
void removeFirst();
void removeLast();
void clear();
void move(DoublyLinkedList<N> &src);
};
template<class N>
class SortedDoublyLinkedList: public DoublyLinkedList<N>
{
public:
explicit SortedDoublyLinkedList(int (*compare)(const N *elem1, const N *elem2)): compareFunc(compare) {}
void insert(N &node);
bool isInList(N &node);
private:
int (*const compareFunc)(const N*, const N*); // Comparison function returns 1 for >, -1 for <, and 0 for ==.
};
// --- INLINES ----------------------------------------------------------------
//
// Unlink this node from the list into which it is linked.
//
inline void DoublyLinkedNode::remove()
{
assert(isLinked() && next != this);
DoublyLinkedNode *n = next;
DoublyLinkedNode *p = prev;
n->prev = p;
p->next = n;
init();
}
//
// Insert this node after node loc in a doubly-linked list.
// Node loc must be already linked into a list, while
// this node should not be already linked into any list.
//
inline void DoublyLinkedNode::insertAfter(DoublyLinkedNode &loc)
{
assert(isUnlinked() && loc.isLinked());
next = loc.next;
prev = &loc;
loc.next->prev = this;
loc.next = this;
}
//
// Insert this node before node loc in a doubly-linked list.
// Node loc must be already linked into a list, while
// this node should not be already linked into any list.
//
inline void DoublyLinkedNode::insertBefore(DoublyLinkedNode &loc)
{
assert(isUnlinked() && loc.isLinked());
next = &loc;
prev = loc.prev;
loc.prev->next = this;
loc.prev = this;
}
//
// Unlink src from the list into which it is linked and link this node in src's
// place. src must not be the list's root (unless called from the move method below).
//
inline void DoublyLinkedNode::substitute(DoublyLinkedNode &src)
{
assert(isUnlinked() && src.isLinked());
DoublyLinkedNode *n = src.next;
DoublyLinkedNode *p = src.prev;
assert(n != &src && p != &src && n != this && p != this && n->prev == &src && p->next == &src);
next = n;
prev = p;
n->prev = this;
p->next = this;
src.init();
}
//
// Return the number of nodes (not including the root) in the doubly-linked list.
//
template<class N>
Uint32 DoublyLinkedList<N>::length() const
{
Uint32 n = 0;
for (iterator i = begin(); !done(i); i = advance(i))
n++;
return n;
}
//
// Return true if the number of nodes (not including the root) in the doubly-linked list
// is equal to n. This is often faster than "length() == n" because if n is small it can
// stop iterating through the list as soon as it exceeds n.
//
template<class N>
bool DoublyLinkedList<N>::lengthIs(Uint32 n) const
{
for (iterator i = begin(); !done(i); i = advance(i))
if (n-- == 0)
return false;
return n == 0;
}
#ifdef DEBUG
//
// Return true if the iterator points somewhere within this doubly-linked list
// (including its root).
//
template<class N>
bool DoublyLinkedList<N>::validIterator(DoublyLinkedNode* i) const
{
iterator j;
for (j = begin(); !done(j); j = advance(j))
if (i == j)
return true;
return i == j;
}
#endif
//
// Return true if node is in the list and false otherwise.
//
template<class N>
bool DoublyLinkedList<N>::exists(N &node) const
{
for (iterator current = this->begin(); !done(current); current = advance(current))
if (&node == &this->get(current))
return true;
return false;
}
//
// Return the zero-based index of node in the list or this->length() if
// the node is not in the list.
//
template<class N>
Uint32 DoublyLinkedList<N>::index(N &node) const
{
Uint32 index = 0;
for (iterator current = this->begin(); !done(current) && &node != &this->get(current); current = advance(current))
index++;
return index;
}
//
// Insert node into the doubly-linked list at its beginning.
// The node should not be already linked into any list.
//
template<class N>
inline void DoublyLinkedList<N>::addFirst(N &node)
{
node.getLinks().insertAfter(root);
}
//
// Insert node into the doubly-linked list at its end.
// The node should not be already linked into any list.
//
template<class N>
inline void DoublyLinkedList<N>::addLast(N &node)
{
node.getLinks().insertBefore(root);
}
//
// Insert node into the doubly-linked list before iterator i.
// The node should not be already linked into any list.
//
template<class N>
inline void DoublyLinkedList<N>::insertBefore(N &node, DoublyLinkedNode* i)
{
assert(validIterator(i));
node.getLinks().insertBefore(*i);
}
//
// Insert node into the doubly-linked list after iterator i.
// The node should not be already linked into any list.
//
template<class N>
inline void DoublyLinkedList<N>::insertAfter(N &node, DoublyLinkedNode* i)
{
assert(validIterator(i));
node.getLinks().insertAfter(*i);
}
//
// Remove the first node, if any, from this doubly-linked list.
//
template<class N>
inline void DoublyLinkedList<N>::removeFirst()
{
if (!empty())
root.next->remove();
}
//
// Remove the last node, if any, from this doubly-linked list.
//
template<class N>
inline void DoublyLinkedList<N>::removeLast()
{
if (!empty())
root.prev->remove();
}
//
// Remove all nodes from this doubly-linked list.
//
template<class N>
inline void DoublyLinkedList<N>::clear()
{
while (!empty())
root.next->remove();
}
//
// Destructively move the src DoublyLinkedList to this DoublyLinkedList.
// The src DoublyLinkedList will subsequently be empty. This DoublyLinkedList
// must be empty prior to this call.
//
template<class N>
void DoublyLinkedList<N>::move(DoublyLinkedList<N> &src)
{
assert(empty() && &src != this);
if (!src.empty()) {
root.init(); // Avoid assert inside substitute.
root.substitute(src.root);
src.init();
}
}
//
// Uses the specified compare function to search for node.
// Returns true if node is in the list and false otherwise.
//
template<class N>
bool SortedDoublyLinkedList<N>::isInList(N &node)
{
iterator current = this->begin();
for (; !done(current) && (compareFunc(&node, &(this->get(current))) == 1);
current = advance(current))
{} // do nothing in body
if (done(current))
return false;
else
return (compareFunc(&node, &(this->get(current))) == 0);
}
//
// Inserts node into the sorted list unless it already exists in the list.
//
template<class N>
void SortedDoublyLinkedList<N>::insert(N &node)
{
// loop will terminate with current pointing to the spot where we wish to insert node.
// last will be the node before the desired spot. If the element is already in the list then
// current will point to it.
iterator current = this->begin();
iterator last = current;
for(; !done(current) && (compareFunc(&node, &(this->get(current))) == 1);
current = advance(current))
last = current;
if(this->done(current)) // special case add to end of list
addLast(node);
else if(compareFunc(&node, &(this->get(current))) != 0) // Do not insert if element is in the list already
{ // might want this to be users responsibilities
if (current == this->begin())
addFirst(node);
else
{
// add to list between last and current
DoublyLinkedNode& beforeNode = this->get(last).getLinks();
DoublyLinkedNode& afterNode = this->get(current).getLinks();
beforeNode.next = &(node.getLinks());
node.getLinks().prev = &beforeNode;
afterNode.prev = &(node.getLinks());
node.getLinks().next = &afterNode;
}
}
}
#endif