mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-24 05:11:16 +00:00
082d68bc40
Differential Revision: https://phabricator.services.mozilla.com/D103228
785 lines
23 KiB
C++
785 lines
23 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsTimerImpl.h"
|
|
#include "TimerThread.h"
|
|
|
|
#include "nsThreadUtils.h"
|
|
#include "pratom.h"
|
|
|
|
#include "nsIObserverService.h"
|
|
#include "mozilla/Services.h"
|
|
#include "mozilla/ChaosMode.h"
|
|
#include "mozilla/ArenaAllocator.h"
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "mozilla/BinarySearch.h"
|
|
#include "mozilla/OperatorNewExtensions.h"
|
|
#include "mozilla/StaticPrefs_timer.h"
|
|
|
|
#include <math.h>
|
|
|
|
using namespace mozilla;
|
|
#ifdef MOZ_TASK_TRACER
|
|
# include "GeckoTaskTracerImpl.h"
|
|
using namespace mozilla::tasktracer;
|
|
#endif
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(TimerThread, Runnable, nsIObserver)
|
|
|
|
TimerThread::TimerThread()
|
|
: Runnable("TimerThread"),
|
|
mInitialized(false),
|
|
mMonitor("TimerThread.mMonitor"),
|
|
mShutdown(false),
|
|
mWaiting(false),
|
|
mNotified(false),
|
|
mSleeping(false),
|
|
mAllowedEarlyFiringMicroseconds(0) {}
|
|
|
|
TimerThread::~TimerThread() {
|
|
mThread = nullptr;
|
|
|
|
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
|
|
}
|
|
|
|
nsresult TimerThread::InitLocks() { return NS_OK; }
|
|
|
|
namespace {
|
|
|
|
class TimerObserverRunnable : public Runnable {
|
|
public:
|
|
explicit TimerObserverRunnable(nsIObserver* aObserver)
|
|
: mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {}
|
|
|
|
NS_DECL_NSIRUNNABLE
|
|
|
|
private:
|
|
nsCOMPtr<nsIObserver> mObserver;
|
|
};
|
|
|
|
NS_IMETHODIMP
|
|
TimerObserverRunnable::Run() {
|
|
nsCOMPtr<nsIObserverService> observerService =
|
|
mozilla::services::GetObserverService();
|
|
if (observerService) {
|
|
observerService->AddObserver(mObserver, "sleep_notification", false);
|
|
observerService->AddObserver(mObserver, "wake_notification", false);
|
|
observerService->AddObserver(mObserver, "suspend_process_notification",
|
|
false);
|
|
observerService->AddObserver(mObserver, "resume_process_notification",
|
|
false);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace {
|
|
|
|
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
|
|
// It's needed to avoid contention over the default allocator lock when
|
|
// firing timer events (see bug 733277). The thread-safety is required because
|
|
// nsTimerEvent objects are allocated on the timer thread, and freed on another
|
|
// thread. Because TimerEventAllocator has its own lock, contention over that
|
|
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
|
|
//
|
|
// Because this is layered over ArenaAllocator, it never shrinks -- even
|
|
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
|
|
// for later recycling. So the amount of memory consumed will always be equal
|
|
// to the high-water mark consumption. But nsTimerEvents are small and it's
|
|
// unusual to have more than a few hundred of them, so this shouldn't be a
|
|
// problem in practice.
|
|
|
|
class TimerEventAllocator {
|
|
private:
|
|
struct FreeEntry {
|
|
FreeEntry* mNext;
|
|
};
|
|
|
|
ArenaAllocator<4096> mPool;
|
|
FreeEntry* mFirstFree;
|
|
mozilla::Monitor mMonitor;
|
|
|
|
public:
|
|
TimerEventAllocator()
|
|
: mPool(), mFirstFree(nullptr), mMonitor("TimerEventAllocator") {}
|
|
|
|
~TimerEventAllocator() = default;
|
|
|
|
void* Alloc(size_t aSize);
|
|
void Free(void* aPtr);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// This is a nsICancelableRunnable because we can dispatch it to Workers and
|
|
// those can be shut down at any time, and in these cases, Cancel() is called
|
|
// instead of Run().
|
|
class nsTimerEvent final : public CancelableRunnable {
|
|
public:
|
|
NS_IMETHOD Run() override;
|
|
|
|
nsresult Cancel() override {
|
|
mTimer->Cancel();
|
|
return NS_OK;
|
|
}
|
|
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
NS_IMETHOD GetName(nsACString& aName) override;
|
|
#endif
|
|
|
|
explicit nsTimerEvent(already_AddRefed<nsTimerImpl> aTimer)
|
|
: mozilla::CancelableRunnable("nsTimerEvent"),
|
|
mTimer(aTimer),
|
|
mGeneration(mTimer->GetGeneration()) {
|
|
// Note: We override operator new for this class, and the override is
|
|
// fallible!
|
|
sAllocatorUsers++;
|
|
|
|
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
|
|
mInitTime = TimeStamp::Now();
|
|
}
|
|
}
|
|
|
|
static void Init();
|
|
static void Shutdown();
|
|
static void DeleteAllocatorIfNeeded();
|
|
|
|
static void* operator new(size_t aSize) noexcept(true) {
|
|
return sAllocator->Alloc(aSize);
|
|
}
|
|
void operator delete(void* aPtr) {
|
|
sAllocator->Free(aPtr);
|
|
DeleteAllocatorIfNeeded();
|
|
}
|
|
|
|
already_AddRefed<nsTimerImpl> ForgetTimer() { return mTimer.forget(); }
|
|
|
|
private:
|
|
nsTimerEvent(const nsTimerEvent&) = delete;
|
|
nsTimerEvent& operator=(const nsTimerEvent&) = delete;
|
|
nsTimerEvent& operator=(const nsTimerEvent&&) = delete;
|
|
|
|
~nsTimerEvent() {
|
|
MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
|
|
"This will result in us attempting to deallocate the "
|
|
"nsTimerEvent allocator twice");
|
|
sAllocatorUsers--;
|
|
}
|
|
|
|
TimeStamp mInitTime;
|
|
RefPtr<nsTimerImpl> mTimer;
|
|
const int32_t mGeneration;
|
|
|
|
static TimerEventAllocator* sAllocator;
|
|
|
|
static Atomic<int32_t, SequentiallyConsistent> sAllocatorUsers;
|
|
static Atomic<bool, SequentiallyConsistent> sCanDeleteAllocator;
|
|
};
|
|
|
|
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
|
|
Atomic<int32_t, SequentiallyConsistent> nsTimerEvent::sAllocatorUsers;
|
|
Atomic<bool, SequentiallyConsistent> nsTimerEvent::sCanDeleteAllocator;
|
|
|
|
namespace {
|
|
|
|
void* TimerEventAllocator::Alloc(size_t aSize) {
|
|
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
|
|
|
|
mozilla::MonitorAutoLock lock(mMonitor);
|
|
|
|
void* p;
|
|
if (mFirstFree) {
|
|
p = mFirstFree;
|
|
mFirstFree = mFirstFree->mNext;
|
|
} else {
|
|
p = mPool.Allocate(aSize, fallible);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void TimerEventAllocator::Free(void* aPtr) {
|
|
mozilla::MonitorAutoLock lock(mMonitor);
|
|
|
|
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
|
|
|
|
entry->mNext = mFirstFree;
|
|
mFirstFree = entry;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); }
|
|
|
|
void nsTimerEvent::Shutdown() {
|
|
sCanDeleteAllocator = true;
|
|
DeleteAllocatorIfNeeded();
|
|
}
|
|
|
|
void nsTimerEvent::DeleteAllocatorIfNeeded() {
|
|
if (sCanDeleteAllocator && sAllocatorUsers == 0) {
|
|
delete sAllocator;
|
|
sAllocator = nullptr;
|
|
}
|
|
}
|
|
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
NS_IMETHODIMP
|
|
nsTimerEvent::GetName(nsACString& aName) {
|
|
bool current;
|
|
MOZ_RELEASE_ASSERT(
|
|
NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(¤t)) &&
|
|
current);
|
|
|
|
mTimer->GetName(aName);
|
|
return NS_OK;
|
|
}
|
|
#endif
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerEvent::Run() {
|
|
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
|
|
TimeStamp now = TimeStamp::Now();
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this,
|
|
(now - mInitTime).ToMilliseconds()));
|
|
}
|
|
|
|
mTimer->Fire(mGeneration);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::Init() {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("TimerThread::Init [%d]\n", mInitialized));
|
|
|
|
if (!mInitialized) {
|
|
nsTimerEvent::Init();
|
|
|
|
// We hold on to mThread to keep the thread alive.
|
|
nsresult rv =
|
|
NS_NewNamedThread("Timer Thread", getter_AddRefs(mThread), this);
|
|
if (NS_FAILED(rv)) {
|
|
mThread = nullptr;
|
|
} else {
|
|
RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
|
|
if (NS_IsMainThread()) {
|
|
r->Run();
|
|
} else {
|
|
NS_DispatchToMainThread(r);
|
|
}
|
|
}
|
|
|
|
mInitialized = true;
|
|
}
|
|
|
|
if (!mThread) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::Shutdown() {
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));
|
|
|
|
if (!mThread) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
nsTArray<RefPtr<nsTimerImpl>> timers;
|
|
{
|
|
// lock scope
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
mShutdown = true;
|
|
|
|
// notify the cond var so that Run() can return
|
|
if (mWaiting) {
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
// Need to copy content of mTimers array to a local array
|
|
// because call to timers' Cancel() (and release its self)
|
|
// must not be done under the lock. Destructor of a callback
|
|
// might potentially call some code reentering the same lock
|
|
// that leads to unexpected behavior or deadlock.
|
|
// See bug 422472.
|
|
for (const UniquePtr<Entry>& entry : mTimers) {
|
|
timers.AppendElement(entry->Take());
|
|
}
|
|
|
|
mTimers.Clear();
|
|
}
|
|
|
|
for (const RefPtr<nsTimerImpl>& timer : timers) {
|
|
if (timer) {
|
|
timer->Cancel();
|
|
}
|
|
}
|
|
|
|
mThread->Shutdown(); // wait for the thread to die
|
|
|
|
nsTimerEvent::Shutdown();
|
|
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
|
|
return NS_OK;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct MicrosecondsToInterval {
|
|
PRIntervalTime operator[](size_t aMs) const {
|
|
return PR_MicrosecondsToInterval(aMs);
|
|
}
|
|
};
|
|
|
|
struct IntervalComparator {
|
|
int operator()(PRIntervalTime aInterval) const {
|
|
return (0 < aInterval) ? -1 : 1;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
NS_IMETHODIMP
|
|
TimerThread::Run() {
|
|
NS_SetCurrentThreadName("Timer");
|
|
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// We need to know how many microseconds give a positive PRIntervalTime. This
|
|
// is platform-dependent and we calculate it at runtime, finding a value |v|
|
|
// such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in
|
|
// the range [0, v) to find the ms-to-interval scale.
|
|
uint32_t usForPosInterval = 1;
|
|
while (PR_MicrosecondsToInterval(usForPosInterval) == 0) {
|
|
usForPosInterval <<= 1;
|
|
}
|
|
|
|
size_t usIntervalResolution;
|
|
BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval,
|
|
IntervalComparator(), &usIntervalResolution);
|
|
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0);
|
|
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1);
|
|
|
|
// Half of the amount of microseconds needed to get positive PRIntervalTime.
|
|
// We use this to decide how to round our wait times later
|
|
mAllowedEarlyFiringMicroseconds = usIntervalResolution / 2;
|
|
bool forceRunNextTimer = false;
|
|
|
|
while (!mShutdown) {
|
|
// Have to use PRIntervalTime here, since PR_WaitCondVar takes it
|
|
TimeDuration waitFor;
|
|
bool forceRunThisTimer = forceRunNextTimer;
|
|
forceRunNextTimer = false;
|
|
|
|
if (mSleeping) {
|
|
// Sleep for 0.1 seconds while not firing timers.
|
|
uint32_t milliseconds = 100;
|
|
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
|
|
milliseconds = ChaosMode::randomUint32LessThan(200);
|
|
}
|
|
waitFor = TimeDuration::FromMilliseconds(milliseconds);
|
|
} else {
|
|
waitFor = TimeDuration::Forever();
|
|
TimeStamp now = TimeStamp::Now();
|
|
|
|
RemoveLeadingCanceledTimersInternal();
|
|
|
|
if (!mTimers.IsEmpty()) {
|
|
if (now >= mTimers[0]->Value()->mTimeout || forceRunThisTimer) {
|
|
next:
|
|
// NB: AddRef before the Release under RemoveTimerInternal to avoid
|
|
// mRefCnt passing through zero, in case all other refs than the one
|
|
// from mTimers have gone away (the last non-mTimers[i]-ref's Release
|
|
// must be racing with us, blocked in gThread->RemoveTimer waiting
|
|
// for TimerThread::mMonitor, under nsTimerImpl::Release.
|
|
|
|
RefPtr<nsTimerImpl> timerRef(mTimers[0]->Take());
|
|
RemoveFirstTimerInternal();
|
|
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("Timer thread woke up %fms from when it was supposed to\n",
|
|
fabs((now - timerRef->mTimeout).ToMilliseconds())));
|
|
|
|
// We are going to let the call to PostTimerEvent here handle the
|
|
// release of the timer so that we don't end up releasing the timer
|
|
// on the TimerThread instead of on the thread it targets.
|
|
{
|
|
LogTimerEvent::Run run(timerRef.get());
|
|
timerRef = PostTimerEvent(timerRef.forget());
|
|
}
|
|
|
|
if (timerRef) {
|
|
// We got our reference back due to an error.
|
|
// Unhook the nsRefPtr, and release manually so we can get the
|
|
// refcount.
|
|
nsrefcnt rc = timerRef.forget().take()->Release();
|
|
(void)rc;
|
|
|
|
// The nsITimer interface requires that its users keep a reference
|
|
// to the timers they use while those timers are initialized but
|
|
// have not yet fired. If this ever happens, it is a bug in the
|
|
// code that created and used the timer.
|
|
//
|
|
// Further, note that this should never happen even with a
|
|
// misbehaving user, because nsTimerImpl::Release checks for a
|
|
// refcount of 1 with an armed timer (a timer whose only reference
|
|
// is from the timer thread) and when it hits this will remove the
|
|
// timer from the timer thread and thus destroy the last reference,
|
|
// preventing this situation from occurring.
|
|
MOZ_ASSERT(rc != 0, "destroyed timer off its target thread!");
|
|
}
|
|
|
|
if (mShutdown) {
|
|
break;
|
|
}
|
|
|
|
// Update now, as PostTimerEvent plus the locking may have taken a
|
|
// tick or two, and we may goto next below.
|
|
now = TimeStamp::Now();
|
|
}
|
|
}
|
|
|
|
RemoveLeadingCanceledTimersInternal();
|
|
|
|
if (!mTimers.IsEmpty()) {
|
|
TimeStamp timeout = mTimers[0]->Value()->mTimeout;
|
|
|
|
// Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
|
|
// is due now or overdue.
|
|
//
|
|
// Note that we can only sleep for integer values of a certain
|
|
// resolution. We use mAllowedEarlyFiringMicroseconds, calculated
|
|
// before, to do the optimal rounding (i.e., of how to decide what
|
|
// interval is so small we should not wait at all).
|
|
double microseconds = (timeout - now).ToMilliseconds() * 1000;
|
|
|
|
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
|
|
// The mean value of sFractions must be 1 to ensure that
|
|
// the average of a long sequence of timeouts converges to the
|
|
// actual sum of their times.
|
|
static const float sFractions[] = {0.0f, 0.25f, 0.5f, 0.75f,
|
|
1.0f, 1.75f, 2.75f};
|
|
microseconds *= sFractions[ChaosMode::randomUint32LessThan(
|
|
ArrayLength(sFractions))];
|
|
forceRunNextTimer = true;
|
|
}
|
|
|
|
if (microseconds < mAllowedEarlyFiringMicroseconds) {
|
|
forceRunNextTimer = false;
|
|
goto next; // round down; execute event now
|
|
}
|
|
waitFor = TimeDuration::FromMicroseconds(microseconds);
|
|
if (waitFor.IsZero()) {
|
|
// round up, wait the minimum time we can wait
|
|
waitFor = TimeDuration::FromMicroseconds(1);
|
|
}
|
|
}
|
|
|
|
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
|
|
if (waitFor == TimeDuration::Forever())
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n"));
|
|
else
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("waiting for %f\n", waitFor.ToMilliseconds()));
|
|
}
|
|
}
|
|
|
|
mWaiting = true;
|
|
mNotified = false;
|
|
mMonitor.Wait(waitFor);
|
|
if (mNotified) {
|
|
forceRunNextTimer = false;
|
|
}
|
|
mWaiting = false;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::AddTimer(nsTimerImpl* aTimer) {
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
if (!aTimer->mEventTarget) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
nsresult rv = Init();
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
|
|
// Add the timer to our list.
|
|
if (!AddTimerInternal(aTimer)) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting && mTimers[0]->Value() == aTimer) {
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer) {
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Remove the timer from our array. Tell callers that aTimer was not found
|
|
// by returning NS_ERROR_NOT_AVAILABLE.
|
|
|
|
if (!RemoveTimerInternal(aTimer)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting) {
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault,
|
|
uint32_t aSearchBound) {
|
|
MonitorAutoLock lock(mMonitor);
|
|
TimeStamp timeStamp = aDefault;
|
|
uint32_t index = 0;
|
|
|
|
#ifdef DEBUG
|
|
TimeStamp firstTimeStamp;
|
|
Entry* initialFirstEntry = nullptr;
|
|
if (!mTimers.IsEmpty()) {
|
|
initialFirstEntry = mTimers[0].get();
|
|
firstTimeStamp = mTimers[0]->Timeout();
|
|
}
|
|
#endif
|
|
|
|
auto end = mTimers.end();
|
|
while (end != mTimers.begin()) {
|
|
nsTimerImpl* timer = mTimers[0]->Value();
|
|
if (timer) {
|
|
if (timer->mTimeout > aDefault) {
|
|
timeStamp = aDefault;
|
|
break;
|
|
}
|
|
|
|
// Don't yield to timers created with the *_LOW_PRIORITY type.
|
|
if (!timer->IsLowPriority()) {
|
|
bool isOnCurrentThread = false;
|
|
nsresult rv =
|
|
timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread);
|
|
if (NS_SUCCEEDED(rv) && isOnCurrentThread) {
|
|
timeStamp = timer->mTimeout;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (++index > aSearchBound) {
|
|
// Track the currently highest timeout so that we can bail out when we
|
|
// reach the bound or when we find a timer for the current thread.
|
|
// This won't give accurate information if we stop before finding
|
|
// any timer for the current thread, but at least won't report too
|
|
// long idle period.
|
|
timeStamp = timer->mTimeout;
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::pop_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
|
|
--end;
|
|
}
|
|
|
|
while (end != mTimers.end()) {
|
|
++end;
|
|
std::push_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (!mTimers.IsEmpty()) {
|
|
if (firstTimeStamp != mTimers[0]->Timeout()) {
|
|
TimeStamp now = TimeStamp::Now();
|
|
printf_stderr(
|
|
"firstTimeStamp %f, mTimers[0]->Timeout() %f, "
|
|
"initialFirstTimer %p, current first %p\n",
|
|
(firstTimeStamp - now).ToMilliseconds(),
|
|
(mTimers[0]->Timeout() - now).ToMilliseconds(), initialFirstEntry,
|
|
mTimers[0].get());
|
|
}
|
|
}
|
|
MOZ_ASSERT_IF(!mTimers.IsEmpty(), firstTimeStamp == mTimers[0]->Timeout());
|
|
#endif
|
|
|
|
return timeStamp;
|
|
}
|
|
|
|
// This function must be called from within a lock
|
|
bool TimerThread::AddTimerInternal(nsTimerImpl* aTimer) {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
if (mShutdown) {
|
|
return false;
|
|
}
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
|
|
LogTimerEvent::LogDispatch(aTimer);
|
|
|
|
UniquePtr<Entry>* entry = mTimers.AppendElement(
|
|
MakeUnique<Entry>(now, aTimer->mTimeout, aTimer), mozilla::fallible);
|
|
if (!entry) {
|
|
return false;
|
|
}
|
|
|
|
std::push_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
// Caller of AddTimer is the parent task of its timer event, so we store the
|
|
// TraceInfo here for later used.
|
|
aTimer->GetTLSTraceInfo();
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer) {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
if (!aTimer || !aTimer->mHolder) {
|
|
return false;
|
|
}
|
|
aTimer->mHolder->Forget(aTimer);
|
|
return true;
|
|
}
|
|
|
|
void TimerThread::RemoveLeadingCanceledTimersInternal() {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
// Move all canceled timers from the front of the list to
|
|
// the back of the list using std::pop_heap(). We do this
|
|
// without actually removing them from the list so we can
|
|
// modify the nsTArray in a single bulk operation.
|
|
auto sortedEnd = mTimers.end();
|
|
while (sortedEnd != mTimers.begin() && !mTimers[0]->Value()) {
|
|
std::pop_heap(mTimers.begin(), sortedEnd, Entry::UniquePtrLessThan);
|
|
--sortedEnd;
|
|
}
|
|
|
|
// If there were no canceled timers then we are done.
|
|
if (sortedEnd == mTimers.end()) {
|
|
return;
|
|
}
|
|
|
|
// Finally, remove the canceled timers from the back of the
|
|
// nsTArray.
|
|
mTimers.RemoveLastElements(mTimers.end() - sortedEnd);
|
|
}
|
|
|
|
void TimerThread::RemoveFirstTimerInternal() {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(!mTimers.IsEmpty());
|
|
std::pop_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);
|
|
mTimers.RemoveLastElement();
|
|
}
|
|
|
|
already_AddRefed<nsTimerImpl> TimerThread::PostTimerEvent(
|
|
already_AddRefed<nsTimerImpl> aTimerRef) {
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
RefPtr<nsTimerImpl> timer(aTimerRef);
|
|
if (!timer->mEventTarget) {
|
|
NS_ERROR("Attempt to post timer event to NULL event target");
|
|
return timer.forget();
|
|
}
|
|
|
|
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
|
|
|
|
// Since we already addref'd 'timer', we don't need to addref here.
|
|
// We will release either in ~nsTimerEvent(), or pass the reference back to
|
|
// the caller. We need to copy the generation number from this timer into the
|
|
// event, so we can avoid firing a timer that was re-initialized after being
|
|
// canceled.
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
// During the dispatch of TimerEvent, we overwrite the current TraceInfo
|
|
// partially with the info saved in timer earlier, and restore it back by
|
|
// AutoSaveCurTraceInfo.
|
|
AutoSaveCurTraceInfo saveCurTraceInfo;
|
|
(timer->GetTracedTask()).SetTLSTraceInfo();
|
|
#endif
|
|
|
|
nsCOMPtr<nsIEventTarget> target = timer->mEventTarget;
|
|
|
|
void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent));
|
|
if (!p) {
|
|
return timer.forget();
|
|
}
|
|
RefPtr<nsTimerEvent> event =
|
|
::new (KnownNotNull, p) nsTimerEvent(timer.forget());
|
|
|
|
nsresult rv;
|
|
{
|
|
// We release mMonitor around the Dispatch because if this timer is targeted
|
|
// at the TimerThread we'll deadlock.
|
|
MonitorAutoUnlock unlock(mMonitor);
|
|
rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
|
|
}
|
|
|
|
if (NS_FAILED(rv)) {
|
|
timer = event->ForgetTimer();
|
|
RemoveTimerInternal(timer);
|
|
return timer.forget();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void TimerThread::DoBeforeSleep() {
|
|
// Mainthread
|
|
MonitorAutoLock lock(mMonitor);
|
|
mSleeping = true;
|
|
}
|
|
|
|
// Note: wake may be notified without preceding sleep notification
|
|
void TimerThread::DoAfterSleep() {
|
|
// Mainthread
|
|
MonitorAutoLock lock(mMonitor);
|
|
mSleeping = false;
|
|
|
|
// Wake up the timer thread to re-process the array to ensure the sleep delay
|
|
// is correct, and fire any expired timers (perhaps quite a few)
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic,
|
|
const char16_t* /* aData */) {
|
|
if (StaticPrefs::timer_ignore_sleep_wake_notifications()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (strcmp(aTopic, "sleep_notification") == 0 ||
|
|
strcmp(aTopic, "suspend_process_notification") == 0) {
|
|
DoBeforeSleep();
|
|
} else if (strcmp(aTopic, "wake_notification") == 0 ||
|
|
strcmp(aTopic, "resume_process_notification") == 0) {
|
|
DoAfterSleep();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
uint32_t TimerThread::AllowedEarlyFiringMicroseconds() const {
|
|
return mAllowedEarlyFiringMicroseconds;
|
|
}
|