gecko-dev/js/public/Vector.h
2012-05-21 14:40:04 -07:00

1000 lines
27 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=99 ft=cpp:
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jsvector_h_
#define jsvector_h_
#include "mozilla/Attributes.h"
#include "TemplateLib.h"
#include "Utility.h"
/* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4345)
#endif
namespace js {
class TempAllocPolicy;
template <class T,
size_t MinInlineCapacity = 0,
class AllocPolicy = TempAllocPolicy>
class Vector;
/*
* This template class provides a default implementation for vector operations
* when the element type is not known to be a POD, as judged by IsPodType.
*/
template <class T, size_t N, class AP, bool IsPod>
struct VectorImpl
{
/* Destroys constructed objects in the range [begin, end). */
static inline void destroy(T *begin, T *end) {
for (T *p = begin; p != end; ++p)
p->~T();
}
/* Constructs objects in the uninitialized range [begin, end). */
static inline void initialize(T *begin, T *end) {
for (T *p = begin; p != end; ++p)
new(p) T();
}
/*
* Copy-constructs objects in the uninitialized range
* [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
*/
template <class U>
static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) {
for (const U *p = srcbeg; p != srcend; ++p, ++dst)
new(dst) T(*p);
}
/*
* Move-constructs objects in the uninitialized range
* [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
*/
template <class U>
static inline void moveConstruct(T *dst, const U *srcbeg, const U *srcend) {
for (const U *p = srcbeg; p != srcend; ++p, ++dst)
new(dst) T(Move(*p));
}
/*
* Copy-constructs objects in the uninitialized range [dst, dst+n) from the
* same object u.
*/
template <class U>
static inline void copyConstructN(T *dst, size_t n, const U &u) {
for (T *end = dst + n; dst != end; ++dst)
new(dst) T(u);
}
/*
* Grows the given buffer to have capacity newcap, preserving the objects
* constructed in the range [begin, end) and updating v. Assumes that (1)
* newcap has not overflowed, and (2) multiplying newcap by sizeof(T) will
* not overflow.
*/
static inline bool growTo(Vector<T,N,AP> &v, size_t newcap) {
JS_ASSERT(!v.usingInlineStorage());
T *newbuf = reinterpret_cast<T *>(v.malloc_(newcap * sizeof(T)));
if (!newbuf)
return false;
for (T *dst = newbuf, *src = v.beginNoCheck(); src != v.endNoCheck(); ++dst, ++src)
new(dst) T(Move(*src));
VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck());
v.free_(v.mBegin);
v.mBegin = newbuf;
/* v.mLength is unchanged. */
v.mCapacity = newcap;
return true;
}
};
/*
* This partial template specialization provides a default implementation for
* vector operations when the element type is known to be a POD, as judged by
* IsPodType.
*/
template <class T, size_t N, class AP>
struct VectorImpl<T, N, AP, true>
{
static inline void destroy(T *, T *) {}
static inline void initialize(T *begin, T *end) {
/*
* You would think that memset would be a big win (or even break even)
* when we know T is a POD. But currently it's not. This is probably
* because |append| tends to be given small ranges and memset requires
* a function call that doesn't get inlined.
*
* memset(begin, 0, sizeof(T) * (end-begin));
*/
for (T *p = begin; p != end; ++p)
new(p) T();
}
template <class U>
static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) {
/*
* See above memset comment. Also, notice that copyConstruct is
* currently templated (T != U), so memcpy won't work without
* requiring T == U.
*
* memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg));
*/
for (const U *p = srcbeg; p != srcend; ++p, ++dst)
*dst = *p;
}
template <class U>
static inline void moveConstruct(T *dst, const U *srcbeg, const U *srcend) {
copyConstruct(dst, srcbeg, srcend);
}
static inline void copyConstructN(T *dst, size_t n, const T &t) {
for (T *p = dst, *end = dst + n; p != end; ++p)
*p = t;
}
static inline bool growTo(Vector<T,N,AP> &v, size_t newcap) {
JS_ASSERT(!v.usingInlineStorage());
size_t bytes = sizeof(T) * newcap;
size_t oldBytes = sizeof(T) * v.mCapacity;
T *newbuf = reinterpret_cast<T *>(v.realloc_(v.mBegin, oldBytes, bytes));
if (!newbuf)
return false;
v.mBegin = newbuf;
/* v.mLength is unchanged. */
v.mCapacity = newcap;
return true;
}
};
/*
* JS-friendly, STL-like container providing a short-lived, dynamic buffer.
* Vector calls the constructors/destructors of all elements stored in
* its internal buffer, so non-PODs may be safely used. Additionally,
* Vector will store the first N elements in-place before resorting to
* dynamic allocation.
*
* T requirements:
* - default and copy constructible, assignable, destructible
* - operations do not throw
* N requirements:
* - any value, however, N is clamped to min/max values
* AllocPolicy:
* - see "Allocation policies" in jsalloc.h (default js::TempAllocPolicy)
*
* N.B: Vector is not reentrant: T member functions called during Vector member
* functions must not call back into the same object.
*/
template <class T, size_t N, class AllocPolicy>
class Vector : private AllocPolicy
{
// typedef typename tl::StaticAssert<!tl::IsPostBarrieredType<T>::result>::result _;
/* utilities */
static const bool sElemIsPod = tl::IsPodType<T>::result;
typedef VectorImpl<T, N, AllocPolicy, sElemIsPod> Impl;
friend struct VectorImpl<T, N, AllocPolicy, sElemIsPod>;
bool calculateNewCapacity(size_t curLength, size_t lengthInc, size_t &newCap);
bool growStorageBy(size_t lengthInc);
bool growHeapStorageBy(size_t lengthInc);
bool convertToHeapStorage(size_t lengthInc);
template <bool InitNewElems> inline bool growByImpl(size_t inc);
/* magic constants */
static const int sMaxInlineBytes = 1024;
/* compute constants */
/*
* Consider element size to be 1 for buffer sizing if there are
* 0 inline elements. This allows us to compile when the definition
* of the element type is not visible here.
*
* Explicit specialization is only allowed at namespace scope, so
* in order to keep everything here, we use a dummy template
* parameter with partial specialization.
*/
template <int M, int Dummy>
struct ElemSize {
static const size_t result = sizeof(T);
};
template <int Dummy>
struct ElemSize<0, Dummy> {
static const size_t result = 1;
};
static const size_t sInlineCapacity =
tl::Min<N, sMaxInlineBytes / ElemSize<N, 0>::result>::result;
/* Calculate inline buffer size; avoid 0-sized array. */
static const size_t sInlineBytes =
tl::Max<1, sInlineCapacity * ElemSize<N, 0>::result>::result;
/* member data */
/*
* Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
* mBegin + mLength) hold valid constructed T objects. The range [mBegin +
* mLength, mBegin + mCapacity) holds uninitialized memory. The range
* [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
* previously allocated by a call to reserve().
*/
T *mBegin;
size_t mLength; /* Number of elements in the Vector. */
size_t mCapacity; /* Max number of elements storable in the Vector without resizing. */
#ifdef DEBUG
size_t mReserved; /* Max elements of reserved or used space in this vector. */
#endif
AlignedStorage<sInlineBytes> storage;
#ifdef DEBUG
friend class ReentrancyGuard;
bool entered;
#endif
Vector(const Vector &) MOZ_DELETE;
Vector &operator=(const Vector &) MOZ_DELETE;
/* private accessors */
bool usingInlineStorage() const {
return mBegin == (T *)storage.addr();
}
T *beginNoCheck() const {
return mBegin;
}
T *endNoCheck() {
return mBegin + mLength;
}
const T *endNoCheck() const {
return mBegin + mLength;
}
#ifdef DEBUG
size_t reserved() const {
JS_ASSERT(mReserved <= mCapacity);
JS_ASSERT(mLength <= mReserved);
return mReserved;
}
#endif
/* Append operations guaranteed to succeed due to pre-reserved space. */
template <class U> void internalAppend(U t);
void internalAppendN(const T &t, size_t n);
template <class U> void internalAppend(const U *begin, size_t length);
template <class U, size_t O, class BP> void internalAppend(const Vector<U,O,BP> &other);
public:
static const size_t sMaxInlineStorage = N;
typedef T ElementType;
Vector(AllocPolicy = AllocPolicy());
Vector(MoveRef<Vector>); /* Move constructor. */
Vector &operator=(MoveRef<Vector>); /* Move assignment. */
~Vector();
/* accessors */
const AllocPolicy &allocPolicy() const {
return *this;
}
AllocPolicy &allocPolicy() {
return *this;
}
enum { InlineLength = N };
size_t length() const {
return mLength;
}
bool empty() const {
return mLength == 0;
}
size_t capacity() const {
return mCapacity;
}
T *begin() {
JS_ASSERT(!entered);
return mBegin;
}
const T *begin() const {
JS_ASSERT(!entered);
return mBegin;
}
T *end() {
JS_ASSERT(!entered);
return mBegin + mLength;
}
const T *end() const {
JS_ASSERT(!entered);
return mBegin + mLength;
}
T &operator[](size_t i) {
JS_ASSERT(!entered && i < mLength);
return begin()[i];
}
const T &operator[](size_t i) const {
JS_ASSERT(!entered && i < mLength);
return begin()[i];
}
T &back() {
JS_ASSERT(!entered && !empty());
return *(end() - 1);
}
const T &back() const {
JS_ASSERT(!entered && !empty());
return *(end() - 1);
}
class Range {
friend class Vector;
T *cur, *end;
Range(T *cur, T *end) : cur(cur), end(end) {}
public:
Range() {}
bool empty() const { return cur == end; }
size_t remain() const { return end - cur; }
T &front() const { return *cur; }
void popFront() { JS_ASSERT(!empty()); ++cur; }
T popCopyFront() { JS_ASSERT(!empty()); return *cur++; }
};
Range all() {
return Range(begin(), end());
}
/* mutators */
/* If reserve(length() + N) succeeds, the N next appends are guaranteed to succeed. */
bool reserve(size_t capacity);
/*
* Destroy elements in the range [end() - incr, end()). Does not deallocate
* or unreserve storage for those elements.
*/
void shrinkBy(size_t incr);
/* Grow the vector by incr elements. */
bool growBy(size_t incr);
/* Call shrinkBy or growBy based on whether newSize > length(). */
bool resize(size_t newLength);
/* Leave new elements as uninitialized memory. */
bool growByUninitialized(size_t incr);
bool resizeUninitialized(size_t newLength);
/* Shorthand for shrinkBy(length()). */
void clear();
/* Clears and releases any heap-allocated storage. */
void clearAndFree();
/*
* Potentially fallible append operations.
*
* The function templates that take an unspecified type U require a
* const T & or a MoveRef<T>. The MoveRef<T> variants move their
* operands into the vector, instead of copying them. If they fail, the
* operand is left unmoved.
*/
template <class U> bool append(U t);
bool appendN(const T &t, size_t n);
template <class U> bool append(const U *begin, const U *end);
template <class U> bool append(const U *begin, size_t length);
template <class U, size_t O, class BP> bool append(const Vector<U,O,BP> &other);
/*
* Guaranteed-infallible append operations for use upon vectors whose
* memory has been pre-reserved.
*/
void infallibleAppend(const T &t) {
internalAppend(t);
}
void infallibleAppendN(const T &t, size_t n) {
internalAppendN(t, n);
}
template <class U> void infallibleAppend(const U *begin, const U *end) {
internalAppend(begin, PointerRangeSize(begin, end));
}
template <class U> void infallibleAppend(const U *begin, size_t length) {
internalAppend(begin, length);
}
template <class U, size_t O, class BP> void infallibleAppend(const Vector<U,O,BP> &other) {
internalAppend(other);
}
void popBack();
T popCopy();
/*
* Transfers ownership of the internal buffer used by Vector to the caller.
* After this call, the Vector is empty. Since the returned buffer may need
* to be allocated (if the elements are currently stored in-place), the
* call can fail, returning NULL.
*
* N.B. Although a T*, only the range [0, length()) is constructed.
*/
T *extractRawBuffer();
/*
* Transfer ownership of an array of objects into the Vector.
* N.B. This call assumes that there are no uninitialized elements in the
* passed array.
*/
void replaceRawBuffer(T *p, size_t length);
/*
* Places |val| at position |p|, shifting existing elements
* from |p| onward one position higher.
*/
bool insert(T *p, const T &val);
/*
* Removes the element |t|, which must fall in the bounds [begin, end),
* shifting existing elements from |t + 1| onward one position lower.
*/
void erase(T *t);
/*
* Measure the size of the Vector's heap-allocated storage.
*/
size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const;
/*
* Like sizeOfExcludingThis, but also measures the size of the Vector
* object (which must be heap-allocated) itself.
*/
size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const;
};
/* This does the re-entrancy check plus several other sanity checks. */
#define REENTRANCY_GUARD_ET_AL \
ReentrancyGuard g(*this); \
JS_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \
JS_ASSERT(reserved() <= mCapacity); \
JS_ASSERT(mLength <= reserved()); \
JS_ASSERT(mLength <= mCapacity)
/* Vector Implementation */
template <class T, size_t N, class AllocPolicy>
JS_ALWAYS_INLINE
Vector<T,N,AllocPolicy>::Vector(AllocPolicy ap)
: AllocPolicy(ap), mBegin((T *)storage.addr()), mLength(0),
mCapacity(sInlineCapacity)
#ifdef DEBUG
, mReserved(0), entered(false)
#endif
{}
/* Move constructor. */
template <class T, size_t N, class AllocPolicy>
JS_ALWAYS_INLINE
Vector<T, N, AllocPolicy>::Vector(MoveRef<Vector> rhs)
: AllocPolicy(rhs)
{
mLength = rhs->mLength;
mCapacity = rhs->mCapacity;
#ifdef DEBUG
mReserved = rhs->mReserved;
#endif
if (rhs->usingInlineStorage()) {
/* We can't move the buffer over in this case, so copy elements. */
mBegin = (T *)storage.addr();
Impl::moveConstruct(mBegin, rhs->beginNoCheck(), rhs->endNoCheck());
/*
* Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are.
* The elements in its in-line storage still need to be destroyed.
*/
} else {
/*
* Take src's buffer, and turn src into an empty vector using
* in-line storage.
*/
mBegin = rhs->mBegin;
rhs->mBegin = (T *) rhs->storage.addr();
rhs->mCapacity = sInlineCapacity;
rhs->mLength = 0;
#ifdef DEBUG
rhs->mReserved = 0;
#endif
}
}
/* Move assignment. */
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE
Vector<T, N, AP> &
Vector<T, N, AP>::operator=(MoveRef<Vector> rhs)
{
this->~Vector();
new(this) Vector(rhs);
return *this;
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE
Vector<T,N,AP>::~Vector()
{
REENTRANCY_GUARD_ET_AL;
Impl::destroy(beginNoCheck(), endNoCheck());
if (!usingInlineStorage())
this->free_(beginNoCheck());
}
/*
* Calculate a new capacity that is at least lengthInc greater than
* curLength and check for overflow.
*/
template <class T, size_t N, class AP>
STATIC_POSTCONDITION(!return || newCap >= curLength + lengthInc)
inline bool
Vector<T,N,AP>::calculateNewCapacity(size_t curLength, size_t lengthInc,
size_t &newCap)
{
size_t newMinCap = curLength + lengthInc;
/*
* Check for overflow in the above addition, below CEILING_LOG2, and later
* multiplication by sizeof(T).
*/
if (newMinCap < curLength ||
newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::result) {
this->reportAllocOverflow();
return false;
}
/* Round up to next power of 2. */
newCap = RoundUpPow2(newMinCap);
/*
* Do not allow a buffer large enough that the expression ((char *)end() -
* (char *)begin()) overflows ptrdiff_t. See Bug 510319.
*/
if (newCap & tl::UnsafeRangeSizeMask<T>::result) {
this->reportAllocOverflow();
return false;
}
return true;
}
/*
* This function will grow the current heap capacity to have capacity
* (mLength + lengthInc) and fail on OOM or integer overflow.
*/
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growHeapStorageBy(size_t lengthInc)
{
JS_ASSERT(!usingInlineStorage());
size_t newCap;
return calculateNewCapacity(mLength, lengthInc, newCap) &&
Impl::growTo(*this, newCap);
}
/*
* This function will create a new heap buffer with capacity (mLength +
* lengthInc()), move all elements in the inline buffer to this new buffer,
* and fail on OOM or integer overflow.
*/
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::convertToHeapStorage(size_t lengthInc)
{
JS_ASSERT(usingInlineStorage());
size_t newCap;
if (!calculateNewCapacity(mLength, lengthInc, newCap))
return false;
/* Allocate buffer. */
T *newBuf = reinterpret_cast<T *>(this->malloc_(newCap * sizeof(T)));
if (!newBuf)
return false;
/* Copy inline elements into heap buffer. */
Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
Impl::destroy(beginNoCheck(), endNoCheck());
/* Switch in heap buffer. */
mBegin = newBuf;
/* mLength is unchanged. */
mCapacity = newCap;
return true;
}
template <class T, size_t N, class AP>
JS_NEVER_INLINE bool
Vector<T,N,AP>::growStorageBy(size_t incr)
{
JS_ASSERT(mLength + incr > mCapacity);
return usingInlineStorage()
? convertToHeapStorage(incr)
: growHeapStorageBy(incr);
}
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::reserve(size_t request)
{
REENTRANCY_GUARD_ET_AL;
if (request > mCapacity && !growStorageBy(request - mLength))
return false;
#ifdef DEBUG
if (request > mReserved)
mReserved = request;
JS_ASSERT(mLength <= mReserved);
JS_ASSERT(mReserved <= mCapacity);
#endif
return true;
}
template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::shrinkBy(size_t incr)
{
REENTRANCY_GUARD_ET_AL;
JS_ASSERT(incr <= mLength);
Impl::destroy(endNoCheck() - incr, endNoCheck());
mLength -= incr;
}
template <class T, size_t N, class AP>
template <bool InitNewElems>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growByImpl(size_t incr)
{
REENTRANCY_GUARD_ET_AL;
if (incr > mCapacity - mLength && !growStorageBy(incr))
return false;
JS_ASSERT(mLength + incr <= mCapacity);
T *newend = endNoCheck() + incr;
if (InitNewElems)
Impl::initialize(endNoCheck(), newend);
mLength += incr;
#ifdef DEBUG
if (mLength > mReserved)
mReserved = mLength;
#endif
return true;
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growBy(size_t incr)
{
return growByImpl<true>(incr);
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growByUninitialized(size_t incr)
{
return growByImpl<false>(incr);
}
template <class T, size_t N, class AP>
STATIC_POSTCONDITION(!return || ubound(this->begin()) >= newLength)
inline bool
Vector<T,N,AP>::resize(size_t newLength)
{
size_t curLength = mLength;
if (newLength > curLength)
return growBy(newLength - curLength);
shrinkBy(curLength - newLength);
return true;
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::resizeUninitialized(size_t newLength)
{
size_t curLength = mLength;
if (newLength > curLength)
return growByUninitialized(newLength - curLength);
shrinkBy(curLength - newLength);
return true;
}
template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::clear()
{
REENTRANCY_GUARD_ET_AL;
Impl::destroy(beginNoCheck(), endNoCheck());
mLength = 0;
}
template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::clearAndFree()
{
clear();
if (usingInlineStorage())
return;
this->free_(beginNoCheck());
mBegin = (T *)storage.addr();
mCapacity = sInlineCapacity;
#ifdef DEBUG
mReserved = 0;
#endif
}
template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(U t)
{
REENTRANCY_GUARD_ET_AL;
if (mLength == mCapacity && !growStorageBy(1))
return false;
#ifdef DEBUG
if (mLength + 1 > mReserved)
mReserved = mLength + 1;
#endif
internalAppend(t);
return true;
}
template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::internalAppend(U t)
{
JS_ASSERT(mLength + 1 <= mReserved);
JS_ASSERT(mReserved <= mCapacity);
new(endNoCheck()) T(t);
++mLength;
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::appendN(const T &t, size_t needed)
{
REENTRANCY_GUARD_ET_AL;
if (mLength + needed > mCapacity && !growStorageBy(needed))
return false;
#ifdef DEBUG
if (mLength + needed > mReserved)
mReserved = mLength + needed;
#endif
internalAppendN(t, needed);
return true;
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::internalAppendN(const T &t, size_t needed)
{
JS_ASSERT(mLength + needed <= mReserved);
JS_ASSERT(mReserved <= mCapacity);
Impl::copyConstructN(endNoCheck(), needed, t);
mLength += needed;
}
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::insert(T *p, const T &val)
{
JS_ASSERT(begin() <= p && p <= end());
size_t pos = p - begin();
JS_ASSERT(pos <= mLength);
size_t oldLength = mLength;
if (pos == oldLength)
return append(val);
{
T oldBack = back();
if (!append(oldBack)) /* Dup the last element. */
return false;
}
for (size_t i = oldLength; i > pos; --i)
(*this)[i] = (*this)[i - 1];
(*this)[pos] = val;
return true;
}
template<typename T, size_t N, class AP>
inline void
Vector<T,N,AP>::erase(T *it)
{
JS_ASSERT(begin() <= it && it < end());
while (it + 1 != end()) {
*it = *(it + 1);
++it;
}
popBack();
}
template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(const U *insBegin, const U *insEnd)
{
REENTRANCY_GUARD_ET_AL;
size_t needed = PointerRangeSize(insBegin, insEnd);
if (mLength + needed > mCapacity && !growStorageBy(needed))
return false;
#ifdef DEBUG
if (mLength + needed > mReserved)
mReserved = mLength + needed;
#endif
internalAppend(insBegin, needed);
return true;
}
template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::internalAppend(const U *insBegin, size_t length)
{
JS_ASSERT(mLength + length <= mReserved);
JS_ASSERT(mReserved <= mCapacity);
Impl::copyConstruct(endNoCheck(), insBegin, insBegin + length);
mLength += length;
}
template <class T, size_t N, class AP>
template <class U, size_t O, class BP>
inline bool
Vector<T,N,AP>::append(const Vector<U,O,BP> &other)
{
return append(other.begin(), other.end());
}
template <class T, size_t N, class AP>
template <class U, size_t O, class BP>
inline void
Vector<T,N,AP>::internalAppend(const Vector<U,O,BP> &other)
{
internalAppend(other.begin(), other.length());
}
template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(const U *insBegin, size_t length)
{
return this->append(insBegin, insBegin + length);
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::popBack()
{
REENTRANCY_GUARD_ET_AL;
JS_ASSERT(!empty());
--mLength;
endNoCheck()->~T();
}
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE T
Vector<T,N,AP>::popCopy()
{
T ret = back();
popBack();
return ret;
}
template <class T, size_t N, class AP>
inline T *
Vector<T,N,AP>::extractRawBuffer()
{
T *ret;
if (usingInlineStorage()) {
ret = reinterpret_cast<T *>(this->malloc_(mLength * sizeof(T)));
if (!ret)
return NULL;
Impl::copyConstruct(ret, beginNoCheck(), endNoCheck());
Impl::destroy(beginNoCheck(), endNoCheck());
/* mBegin, mCapacity are unchanged. */
mLength = 0;
} else {
ret = mBegin;
mBegin = (T *)storage.addr();
mLength = 0;
mCapacity = sInlineCapacity;
#ifdef DEBUG
mReserved = 0;
#endif
}
return ret;
}
template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::replaceRawBuffer(T *p, size_t length)
{
REENTRANCY_GUARD_ET_AL;
/* Destroy what we have. */
Impl::destroy(beginNoCheck(), endNoCheck());
if (!usingInlineStorage())
this->free_(beginNoCheck());
/* Take in the new buffer. */
if (length <= sInlineCapacity) {
/*
* We convert to inline storage if possible, even though p might
* otherwise be acceptable. Maybe this behaviour should be
* specifiable with an argument to this function.
*/
mBegin = (T *)storage.addr();
mLength = length;
mCapacity = sInlineCapacity;
Impl::moveConstruct(mBegin, p, p + length);
Impl::destroy(p, p + length);
this->free_(p);
} else {
mBegin = p;
mLength = length;
mCapacity = length;
}
#ifdef DEBUG
mReserved = length;
#endif
}
template <class T, size_t N, class AP>
inline size_t
Vector<T,N,AP>::sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const
{
return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck());
}
template <class T, size_t N, class AP>
inline size_t
Vector<T,N,AP>::sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const
{
return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
}
} /* namespace js */
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif /* jsvector_h_ */