mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-25 17:43:44 +00:00
470 lines
16 KiB
C++
470 lines
16 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Mozilla Corporation code.
|
|
*
|
|
* The Initial Developer of the Original Code is Mozilla Foundation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2010
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Vladimir Vukicevic <vladimir@pobox.com>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#include "gfxUtils.h"
|
|
#include "gfxContext.h"
|
|
#include "gfxPlatform.h"
|
|
#include "gfxDrawable.h"
|
|
#include "nsRegion.h"
|
|
|
|
#if defined(XP_WIN) || defined(WINCE)
|
|
#include "gfxWindowsPlatform.h"
|
|
#endif
|
|
|
|
static PRUint8 sUnpremultiplyTable[256*256];
|
|
static PRUint8 sPremultiplyTable[256*256];
|
|
static PRBool sTablesInitialized = PR_FALSE;
|
|
|
|
static const PRUint8 PremultiplyValue(PRUint8 a, PRUint8 v) {
|
|
return sPremultiplyTable[a*256+v];
|
|
}
|
|
|
|
static const PRUint8 UnpremultiplyValue(PRUint8 a, PRUint8 v) {
|
|
return sUnpremultiplyTable[a*256+v];
|
|
}
|
|
|
|
static void
|
|
CalculateTables()
|
|
{
|
|
// It's important that the array be indexed first by alpha and then by rgb
|
|
// value. When we unpremultiply a pixel, we're guaranteed to do three
|
|
// lookups with the same alpha; indexing by alpha first makes it likely that
|
|
// those three lookups will be close to one another in memory, thus
|
|
// increasing the chance of a cache hit.
|
|
|
|
// Unpremultiply table
|
|
|
|
// a == 0 case
|
|
for (PRUint32 c = 0; c <= 255; c++) {
|
|
sUnpremultiplyTable[c] = c;
|
|
}
|
|
|
|
for (int a = 1; a <= 255; a++) {
|
|
for (int c = 0; c <= 255; c++) {
|
|
sUnpremultiplyTable[a*256+c] = (PRUint8)((c * 255) / a);
|
|
}
|
|
}
|
|
|
|
// Premultiply table
|
|
|
|
for (int a = 0; a <= 255; a++) {
|
|
for (int c = 0; c <= 255; c++) {
|
|
sPremultiplyTable[a*256+c] = (a * c + 254) / 255;
|
|
}
|
|
}
|
|
|
|
sTablesInitialized = PR_TRUE;
|
|
}
|
|
|
|
void
|
|
gfxUtils::PremultiplyImageSurface(gfxImageSurface *aSourceSurface,
|
|
gfxImageSurface *aDestSurface)
|
|
{
|
|
if (!aDestSurface)
|
|
aDestSurface = aSourceSurface;
|
|
|
|
NS_ASSERTION(aSourceSurface->Format() == aDestSurface->Format() &&
|
|
aSourceSurface->Width() == aDestSurface->Width() &&
|
|
aSourceSurface->Height() == aDestSurface->Height() &&
|
|
aSourceSurface->Stride() == aDestSurface->Stride(),
|
|
"Source and destination surfaces don't have identical characteristics");
|
|
|
|
NS_ASSERTION(aSourceSurface->Stride() == aSourceSurface->Width() * 4,
|
|
"Source surface stride isn't tightly packed");
|
|
|
|
// Only premultiply ARGB32
|
|
if (aSourceSurface->Format() != gfxASurface::ImageFormatARGB32) {
|
|
if (aDestSurface != aSourceSurface) {
|
|
memcpy(aDestSurface->Data(), aSourceSurface->Data(),
|
|
aSourceSurface->Stride() * aSourceSurface->Height());
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!sTablesInitialized)
|
|
CalculateTables();
|
|
|
|
PRUint8 *src = aSourceSurface->Data();
|
|
PRUint8 *dst = aDestSurface->Data();
|
|
|
|
PRUint32 dim = aSourceSurface->Width() * aSourceSurface->Height();
|
|
for (PRUint32 i = 0; i < dim; ++i) {
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
PRUint8 b = *src++;
|
|
PRUint8 g = *src++;
|
|
PRUint8 r = *src++;
|
|
PRUint8 a = *src++;
|
|
|
|
*dst++ = PremultiplyValue(a, b);
|
|
*dst++ = PremultiplyValue(a, g);
|
|
*dst++ = PremultiplyValue(a, r);
|
|
*dst++ = a;
|
|
#else
|
|
PRUint8 a = *src++;
|
|
PRUint8 r = *src++;
|
|
PRUint8 g = *src++;
|
|
PRUint8 b = *src++;
|
|
|
|
*dst++ = a;
|
|
*dst++ = PremultiplyValue(a, r);
|
|
*dst++ = PremultiplyValue(a, g);
|
|
*dst++ = PremultiplyValue(a, b);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
gfxUtils::UnpremultiplyImageSurface(gfxImageSurface *aSourceSurface,
|
|
gfxImageSurface *aDestSurface)
|
|
{
|
|
if (!aDestSurface)
|
|
aDestSurface = aSourceSurface;
|
|
|
|
NS_ASSERTION(aSourceSurface->Format() == aDestSurface->Format() &&
|
|
aSourceSurface->Width() == aDestSurface->Width() &&
|
|
aSourceSurface->Height() == aDestSurface->Height() &&
|
|
aSourceSurface->Stride() == aDestSurface->Stride(),
|
|
"Source and destination surfaces don't have identical characteristics");
|
|
|
|
NS_ASSERTION(aSourceSurface->Stride() == aSourceSurface->Width() * 4,
|
|
"Source surface stride isn't tightly packed");
|
|
|
|
// Only premultiply ARGB32
|
|
if (aSourceSurface->Format() != gfxASurface::ImageFormatARGB32) {
|
|
if (aDestSurface != aSourceSurface) {
|
|
memcpy(aDestSurface->Data(), aSourceSurface->Data(),
|
|
aSourceSurface->Stride() * aSourceSurface->Height());
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!sTablesInitialized)
|
|
CalculateTables();
|
|
|
|
PRUint8 *src = aSourceSurface->Data();
|
|
PRUint8 *dst = aDestSurface->Data();
|
|
|
|
PRUint32 dim = aSourceSurface->Width() * aSourceSurface->Height();
|
|
for (PRUint32 i = 0; i < dim; ++i) {
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
PRUint8 b = *src++;
|
|
PRUint8 g = *src++;
|
|
PRUint8 r = *src++;
|
|
PRUint8 a = *src++;
|
|
|
|
*dst++ = UnpremultiplyValue(a, b);
|
|
*dst++ = UnpremultiplyValue(a, g);
|
|
*dst++ = UnpremultiplyValue(a, r);
|
|
*dst++ = a;
|
|
#else
|
|
PRUint8 a = *src++;
|
|
PRUint8 r = *src++;
|
|
PRUint8 g = *src++;
|
|
PRUint8 b = *src++;
|
|
|
|
*dst++ = a;
|
|
*dst++ = UnpremultiplyValue(a, r);
|
|
*dst++ = UnpremultiplyValue(a, g);
|
|
*dst++ = UnpremultiplyValue(a, b);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static PRBool
|
|
IsSafeImageTransformComponent(gfxFloat aValue)
|
|
{
|
|
return aValue >= -32768 && aValue <= 32767;
|
|
}
|
|
|
|
/**
|
|
* This returns the fastest operator to use for solid surfaces which have no
|
|
* alpha channel or their alpha channel is uniformly opaque.
|
|
* This differs per render mode.
|
|
*/
|
|
static gfxContext::GraphicsOperator
|
|
OptimalFillOperator()
|
|
{
|
|
#ifdef XP_WIN
|
|
if (gfxWindowsPlatform::GetPlatform()->GetRenderMode() ==
|
|
gfxWindowsPlatform::RENDER_DIRECT2D) {
|
|
// D2D -really- hates operator source.
|
|
return gfxContext::OPERATOR_OVER;
|
|
} else {
|
|
#endif
|
|
return gfxContext::OPERATOR_SOURCE;
|
|
#ifdef XP_WIN
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// EXTEND_PAD won't help us here; we have to create a temporary surface to hold
|
|
// the subimage of pixels we're allowed to sample.
|
|
static already_AddRefed<gfxDrawable>
|
|
CreateSamplingRestrictedDrawable(gfxDrawable* aDrawable,
|
|
gfxContext* aContext,
|
|
const gfxMatrix& aUserSpaceToImageSpace,
|
|
const gfxRect& aSourceRect,
|
|
const gfxRect& aSubimage,
|
|
const gfxImageSurface::gfxImageFormat aFormat)
|
|
{
|
|
gfxRect userSpaceClipExtents = aContext->GetClipExtents();
|
|
// This isn't optimal --- if aContext has a rotation then GetClipExtents
|
|
// will have to do a bounding-box computation, and TransformBounds might
|
|
// too, so we could get a better result if we computed image space clip
|
|
// extents in one go --- but it doesn't really matter and this is easier
|
|
// to understand.
|
|
gfxRect imageSpaceClipExtents =
|
|
aUserSpaceToImageSpace.TransformBounds(userSpaceClipExtents);
|
|
// Inflate by one pixel because bilinear filtering will sample at most
|
|
// one pixel beyond the computed image pixel coordinate.
|
|
imageSpaceClipExtents.Outset(1.0);
|
|
|
|
gfxRect needed = imageSpaceClipExtents.Intersect(aSourceRect);
|
|
needed = needed.Intersect(aSubimage);
|
|
needed.RoundOut();
|
|
|
|
// if 'needed' is empty, nothing will be drawn since aFill
|
|
// must be entirely outside the clip region, so it doesn't
|
|
// matter what we do here, but we should avoid trying to
|
|
// create a zero-size surface.
|
|
if (needed.IsEmpty())
|
|
return nsnull;
|
|
|
|
gfxIntSize size(PRInt32(needed.Width()), PRInt32(needed.Height()));
|
|
nsRefPtr<gfxASurface> temp =
|
|
gfxPlatform::GetPlatform()->CreateOffscreenSurface(size, gfxASurface::ContentFromFormat(aFormat));
|
|
if (!temp || temp->CairoStatus())
|
|
return nsnull;
|
|
|
|
nsRefPtr<gfxContext> tmpCtx = new gfxContext(temp);
|
|
tmpCtx->SetOperator(OptimalFillOperator());
|
|
aDrawable->Draw(tmpCtx, needed - needed.pos, PR_TRUE,
|
|
gfxPattern::FILTER_FAST, gfxMatrix().Translate(needed.pos));
|
|
|
|
nsRefPtr<gfxPattern> resultPattern = new gfxPattern(temp);
|
|
if (!resultPattern)
|
|
return nsnull;
|
|
|
|
nsRefPtr<gfxDrawable> drawable =
|
|
new gfxSurfaceDrawable(temp, size, gfxMatrix().Translate(-needed.pos));
|
|
return drawable.forget();
|
|
}
|
|
|
|
// working around cairo/pixman bug (bug 364968)
|
|
// Our device-space-to-image-space transform may not be acceptable to pixman.
|
|
struct NS_STACK_CLASS AutoCairoPixmanBugWorkaround
|
|
{
|
|
AutoCairoPixmanBugWorkaround(gfxContext* aContext,
|
|
const gfxMatrix& aDeviceSpaceToImageSpace,
|
|
const gfxRect& aFill,
|
|
const gfxASurface::gfxSurfaceType& aSurfaceType)
|
|
: mContext(aContext), mSucceeded(PR_TRUE), mPushedGroup(PR_FALSE)
|
|
{
|
|
// Quartz's limits for matrix are much larger than pixman
|
|
if (aSurfaceType == gfxASurface::SurfaceTypeQuartz)
|
|
return;
|
|
|
|
if (!IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.xx) ||
|
|
!IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.xy) ||
|
|
!IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.yx) ||
|
|
!IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.yy)) {
|
|
NS_WARNING("Scaling up too much, bailing out");
|
|
mSucceeded = PR_FALSE;
|
|
return;
|
|
}
|
|
|
|
if (IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.x0) &&
|
|
IsSafeImageTransformComponent(aDeviceSpaceToImageSpace.y0))
|
|
return;
|
|
|
|
// We'll push a group, which will hopefully reduce our transform's
|
|
// translation so it's in bounds.
|
|
gfxMatrix currentMatrix = mContext->CurrentMatrix();
|
|
mContext->Save();
|
|
|
|
// Clip the rounded-out-to-device-pixels bounds of the
|
|
// transformed fill area. This is the area for the group we
|
|
// want to push.
|
|
mContext->IdentityMatrix();
|
|
gfxRect bounds = currentMatrix.TransformBounds(aFill);
|
|
bounds.RoundOut();
|
|
mContext->Clip(bounds);
|
|
mContext->SetMatrix(currentMatrix);
|
|
mContext->PushGroup(gfxASurface::CONTENT_COLOR_ALPHA);
|
|
mContext->SetOperator(gfxContext::OPERATOR_OVER);
|
|
|
|
mPushedGroup = PR_TRUE;
|
|
}
|
|
|
|
~AutoCairoPixmanBugWorkaround()
|
|
{
|
|
if (mPushedGroup) {
|
|
mContext->PopGroupToSource();
|
|
mContext->Paint();
|
|
mContext->Restore();
|
|
}
|
|
}
|
|
|
|
PRBool PushedGroup() { return mPushedGroup; }
|
|
PRBool Succeeded() { return mSucceeded; }
|
|
|
|
private:
|
|
gfxContext* mContext;
|
|
PRPackedBool mSucceeded;
|
|
PRPackedBool mPushedGroup;
|
|
};
|
|
|
|
static gfxMatrix
|
|
DeviceToImageTransform(gfxContext* aContext,
|
|
const gfxMatrix& aUserSpaceToImageSpace)
|
|
{
|
|
gfxFloat deviceX, deviceY;
|
|
nsRefPtr<gfxASurface> currentTarget =
|
|
aContext->CurrentSurface(&deviceX, &deviceY);
|
|
gfxMatrix currentMatrix = aContext->CurrentMatrix();
|
|
gfxMatrix deviceToUser = gfxMatrix(currentMatrix).Invert();
|
|
deviceToUser.Translate(-gfxPoint(-deviceX, -deviceY));
|
|
return gfxMatrix(deviceToUser).Multiply(aUserSpaceToImageSpace);
|
|
}
|
|
|
|
/* static */ void
|
|
gfxUtils::DrawPixelSnapped(gfxContext* aContext,
|
|
gfxDrawable* aDrawable,
|
|
const gfxMatrix& aUserSpaceToImageSpace,
|
|
const gfxRect& aSubimage,
|
|
const gfxRect& aSourceRect,
|
|
const gfxRect& aImageRect,
|
|
const gfxRect& aFill,
|
|
const gfxImageSurface::gfxImageFormat aFormat,
|
|
const gfxPattern::GraphicsFilter& aFilter)
|
|
{
|
|
PRBool doTile = !aImageRect.Contains(aSourceRect);
|
|
|
|
nsRefPtr<gfxASurface> currentTarget = aContext->CurrentSurface();
|
|
gfxASurface::gfxSurfaceType surfaceType = currentTarget->GetType();
|
|
gfxMatrix deviceSpaceToImageSpace =
|
|
DeviceToImageTransform(aContext, aUserSpaceToImageSpace);
|
|
|
|
AutoCairoPixmanBugWorkaround workaround(aContext, deviceSpaceToImageSpace,
|
|
aFill, surfaceType);
|
|
if (!workaround.Succeeded())
|
|
return;
|
|
|
|
nsRefPtr<gfxDrawable> drawable = aDrawable;
|
|
|
|
// OK now, the hard part left is to account for the subimage sampling
|
|
// restriction. If all the transforms involved are just integer
|
|
// translations, then we assume no resampling will occur so there's
|
|
// nothing to do.
|
|
// XXX if only we had source-clipping in cairo!
|
|
if (aContext->CurrentMatrix().HasNonIntegerTranslation() ||
|
|
aUserSpaceToImageSpace.HasNonIntegerTranslation()) {
|
|
if (doTile || !aSubimage.Contains(aImageRect)) {
|
|
nsRefPtr<gfxDrawable> restrictedDrawable =
|
|
CreateSamplingRestrictedDrawable(aDrawable, aContext,
|
|
aUserSpaceToImageSpace, aSourceRect,
|
|
aSubimage, aFormat);
|
|
if (restrictedDrawable) {
|
|
drawable.swap(restrictedDrawable);
|
|
}
|
|
}
|
|
// We no longer need to tile: Either we never needed to, or we already
|
|
// filled a surface with the tiled pattern; this surface can now be
|
|
// drawn without tiling.
|
|
doTile = PR_FALSE;
|
|
}
|
|
|
|
gfxContext::GraphicsOperator op = aContext->CurrentOperator();
|
|
if ((op == gfxContext::OPERATOR_OVER || workaround.PushedGroup()) &&
|
|
aFormat == gfxASurface::ImageFormatRGB24) {
|
|
aContext->SetOperator(OptimalFillOperator());
|
|
}
|
|
|
|
drawable->Draw(aContext, aFill, doTile, aFilter, aUserSpaceToImageSpace);
|
|
|
|
aContext->SetOperator(op);
|
|
}
|
|
|
|
/* static */ int
|
|
gfxUtils::ImageFormatToDepth(gfxASurface::gfxImageFormat aFormat)
|
|
{
|
|
switch (aFormat) {
|
|
case gfxASurface::ImageFormatARGB32:
|
|
return 32;
|
|
case gfxASurface::ImageFormatRGB24:
|
|
return 24;
|
|
case gfxASurface::ImageFormatRGB16_565:
|
|
return 16;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
static void
|
|
ClipToRegionInternal(gfxContext* aContext, const nsIntRegion& aRegion,
|
|
PRBool aSnap)
|
|
{
|
|
aContext->NewPath();
|
|
nsIntRegionRectIterator iter(aRegion);
|
|
const nsIntRect* r;
|
|
while ((r = iter.Next()) != nsnull) {
|
|
aContext->Rectangle(gfxRect(r->x, r->y, r->width, r->height), aSnap);
|
|
}
|
|
aContext->Clip();
|
|
}
|
|
|
|
/*static*/ void
|
|
gfxUtils::ClipToRegion(gfxContext* aContext, const nsIntRegion& aRegion)
|
|
{
|
|
ClipToRegionInternal(aContext, aRegion, PR_FALSE);
|
|
}
|
|
|
|
/*static*/ void
|
|
gfxUtils::ClipToRegionSnapped(gfxContext* aContext, const nsIntRegion& aRegion)
|
|
{
|
|
ClipToRegionInternal(aContext, aRegion, PR_TRUE);
|
|
}
|
|
|
|
PRBool
|
|
gfxUtils::GfxRectToIntRect(const gfxRect& aIn, nsIntRect* aOut)
|
|
{
|
|
*aOut = nsIntRect(PRInt32(aIn.X()), PRInt32(aIn.Y()),
|
|
PRInt32(aIn.Width()), PRInt32(aIn.Height()));
|
|
return gfxRect(aOut->x, aOut->y, aOut->width, aOut->height) == aIn;
|
|
}
|
|
|