gecko-dev/gfx/2d/2D.h
Andrew Osmond 35eed7acf6 Bug 1711948 - Add surfaces from image containers to the memory report. r=tnikkel
An image container can keep a surface alive longer than it can remain in
the cache, if it is indeed kept in the cache. We should cross reference
our memory report generated from the SurfaceCache against any surfaces
stored in our ImageContainer objects to ensure they are all reported.

This is of particular importance for blob recordings which are not put
into SurfaceCache. While the recordings themselves have their own memory
reporting inside of WebRender, it would be good to know what recordings
we are keeping alive from the content side to help break it down.

Differential Revision: https://phabricator.services.mozilla.com/D115517
2021-05-20 12:31:27 +00:00

2069 lines
75 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef _MOZILLA_GFX_2D_H
#define _MOZILLA_GFX_2D_H
#include "Types.h"
#include "Point.h"
#include "Rect.h"
#include "Matrix.h"
#include "Quaternion.h"
#include "UserData.h"
#include "FontVariation.h"
#include <vector>
// GenericRefCountedBase allows us to hold on to refcounted objects of any type
// (contrary to RefCounted<T> which requires knowing the type T) and, in
// particular, without having a dependency on that type. This is used for
// DrawTargetSkia to be able to hold on to a GLContext.
#include "mozilla/GenericRefCounted.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Path.h"
// This RefPtr class isn't ideal for usage in Azure, as it doesn't allow T**
// outparams using the &-operator. But it will have to do as there's no easy
// solution.
#include "mozilla/RefPtr.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/ThreadSafeWeakPtr.h"
#include "mozilla/Atomics.h"
#include "mozilla/DebugOnly.h"
#include "nsRegionFwd.h"
#if defined(MOZ_WIDGET_ANDROID) || defined(MOZ_WIDGET_GTK)
# ifndef MOZ_ENABLE_FREETYPE
# define MOZ_ENABLE_FREETYPE
# endif
#endif
struct _cairo_surface;
typedef _cairo_surface cairo_surface_t;
struct _cairo_scaled_font;
typedef _cairo_scaled_font cairo_scaled_font_t;
struct FT_LibraryRec_;
typedef FT_LibraryRec_* FT_Library;
struct FT_FaceRec_;
typedef FT_FaceRec_* FT_Face;
typedef int FT_Error;
struct _FcPattern;
typedef _FcPattern FcPattern;
struct ID3D11Texture2D;
struct ID3D11Device;
struct ID2D1Device;
struct ID2D1DeviceContext;
struct ID2D1Multithread;
struct IDWriteFactory;
struct IDWriteRenderingParams;
struct IDWriteFontFace;
struct IDWriteFontCollection;
class SkCanvas;
struct gfxFontStyle;
struct CGContext;
typedef struct CGContext* CGContextRef;
struct CGFont;
typedef CGFont* CGFontRef;
namespace mozilla {
class Mutex;
namespace layers {
class TextureData;
}
namespace wr {
struct FontInstanceOptions;
struct FontInstancePlatformOptions;
} // namespace wr
namespace gfx {
class UnscaledFont;
class ScaledFont;
} // namespace gfx
namespace gfx {
class AlphaBoxBlur;
class ScaledFont;
class SourceSurface;
class DataSourceSurface;
class DrawTarget;
class DrawEventRecorder;
class FilterNode;
class LogForwarder;
struct NativeSurface {
NativeSurfaceType mType;
SurfaceFormat mFormat;
gfx::IntSize mSize;
void* mSurface;
};
/**
* This structure is used to send draw options that are universal to all drawing
* operations.
*/
struct DrawOptions {
/// For constructor parameter description, see member data documentation.
explicit DrawOptions(Float aAlpha = 1.0f,
CompositionOp aCompositionOp = CompositionOp::OP_OVER,
AntialiasMode aAntialiasMode = AntialiasMode::DEFAULT)
: mAlpha(aAlpha),
mCompositionOp(aCompositionOp),
mAntialiasMode(aAntialiasMode) {}
Float mAlpha; /**< Alpha value by which the mask generated by this
operation is multiplied. */
CompositionOp mCompositionOp; /**< The operator that indicates how the source
and destination patterns are blended. */
AntialiasMode mAntialiasMode; /**< The AntiAlias mode used for this drawing
operation. */
};
/**
* This structure is used to send stroke options that are used in stroking
* operations.
*/
struct StrokeOptions {
/// For constructor parameter description, see member data documentation.
explicit StrokeOptions(Float aLineWidth = 1.0f,
JoinStyle aLineJoin = JoinStyle::MITER_OR_BEVEL,
CapStyle aLineCap = CapStyle::BUTT,
Float aMiterLimit = 10.0f, size_t aDashLength = 0,
const Float* aDashPattern = 0, Float aDashOffset = 0.f)
: mLineWidth(aLineWidth),
mMiterLimit(aMiterLimit),
mDashPattern(aDashLength > 0 ? aDashPattern : 0),
mDashLength(aDashLength),
mDashOffset(aDashOffset),
mLineJoin(aLineJoin),
mLineCap(aLineCap) {
MOZ_ASSERT(aDashLength == 0 || aDashPattern);
}
Float mLineWidth; //!< Width of the stroke in userspace.
Float mMiterLimit; //!< Miter limit in units of linewidth
const Float* mDashPattern; /**< Series of on/off userspace lengths defining
dash. Owned by the caller; must live at least as
long as this StrokeOptions.
mDashPattern != null <=> mDashLength > 0. */
size_t mDashLength; //!< Number of on/off lengths in mDashPattern.
Float mDashOffset; /**< Userspace offset within mDashPattern at which
stroking begins. */
JoinStyle mLineJoin; //!< Join style used for joining lines.
CapStyle mLineCap; //!< Cap style used for capping lines.
};
/**
* This structure supplies additional options for calls to DrawSurface.
*/
struct DrawSurfaceOptions {
/// For constructor parameter description, see member data documentation.
explicit DrawSurfaceOptions(
SamplingFilter aSamplingFilter = SamplingFilter::LINEAR,
SamplingBounds aSamplingBounds = SamplingBounds::UNBOUNDED)
: mSamplingFilter(aSamplingFilter), mSamplingBounds(aSamplingBounds) {}
SamplingFilter
mSamplingFilter; /**< SamplingFilter used when resampling source surface
region to the destination region. */
SamplingBounds mSamplingBounds; /**< This indicates whether the implementation
is allowed to sample pixels outside the
source rectangle as specified in
DrawSurface on the surface. */
};
/**
* This class is used to store gradient stops, it can only be used with a
* matching DrawTarget. Not adhering to this condition will make a draw call
* fail.
*/
class GradientStops : public external::AtomicRefCounted<GradientStops> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(GradientStops)
virtual ~GradientStops() = default;
virtual BackendType GetBackendType() const = 0;
virtual bool IsValid() const { return true; }
protected:
GradientStops() = default;
};
/**
* This is the base class for 'patterns'. Patterns describe the pixels used as
* the source for a masked composition operation that is done by the different
* drawing commands. These objects are not backend specific, however for
* example the gradient stops on a gradient pattern can be backend specific.
*/
class Pattern {
public:
virtual ~Pattern() = default;
virtual PatternType GetType() const = 0;
protected:
Pattern() = default;
};
class ColorPattern : public Pattern {
public:
// Explicit because consumers should generally use ToDeviceColor when
// creating a ColorPattern.
explicit ColorPattern(const DeviceColor& aColor) : mColor(aColor) {}
PatternType GetType() const override { return PatternType::COLOR; }
DeviceColor mColor;
};
/**
* This class is used for Linear Gradient Patterns, the gradient stops are
* stored in a separate object and are backend dependent. This class itself
* may be used on the stack.
*/
class LinearGradientPattern : public Pattern {
public:
/// For constructor parameter description, see member data documentation.
LinearGradientPattern(const Point& aBegin, const Point& aEnd,
already_AddRefed<GradientStops> aStops,
const Matrix& aMatrix = Matrix())
: mBegin(aBegin), mEnd(aEnd), mStops(aStops), mMatrix(aMatrix) {}
PatternType GetType() const override { return PatternType::LINEAR_GRADIENT; }
Point mBegin; //!< Start of the linear gradient
Point mEnd; /**< End of the linear gradient - NOTE: In the case
of a zero length gradient it will act as the
color of the last stop. */
RefPtr<GradientStops>
mStops; /**< GradientStops object for this gradient, this
should match the backend type of the draw
target this pattern will be used with. */
Matrix mMatrix; /**< A matrix that transforms the pattern into
user space */
};
/**
* This class is used for Radial Gradient Patterns, the gradient stops are
* stored in a separate object and are backend dependent. This class itself
* may be used on the stack.
*/
class RadialGradientPattern : public Pattern {
public:
/// For constructor parameter description, see member data documentation.
RadialGradientPattern(const Point& aCenter1, const Point& aCenter2,
Float aRadius1, Float aRadius2,
already_AddRefed<GradientStops> aStops,
const Matrix& aMatrix = Matrix())
: mCenter1(aCenter1),
mCenter2(aCenter2),
mRadius1(aRadius1),
mRadius2(aRadius2),
mStops(aStops),
mMatrix(aMatrix) {}
PatternType GetType() const override { return PatternType::RADIAL_GRADIENT; }
Point mCenter1; //!< Center of the inner (focal) circle.
Point mCenter2; //!< Center of the outer circle.
Float mRadius1; //!< Radius of the inner (focal) circle.
Float mRadius2; //!< Radius of the outer circle.
RefPtr<GradientStops>
mStops; /**< GradientStops object for this gradient, this
should match the backend type of the draw target
this pattern will be used with. */
Matrix mMatrix; //!< A matrix that transforms the pattern into user space
};
/**
* This class is used for Conic Gradient Patterns, the gradient stops are
* stored in a separate object and are backend dependent. This class itself
* may be used on the stack.
*/
class ConicGradientPattern : public Pattern {
public:
/// For constructor parameter description, see member data documentation.
ConicGradientPattern(const Point& aCenter, Float aAngle, Float aStartOffset,
Float aEndOffset, already_AddRefed<GradientStops> aStops,
const Matrix& aMatrix = Matrix())
: mCenter(aCenter),
mAngle(aAngle),
mStartOffset(aStartOffset),
mEndOffset(aEndOffset),
mStops(aStops),
mMatrix(aMatrix) {}
PatternType GetType() const override { return PatternType::CONIC_GRADIENT; }
Point mCenter; //!< Center of the gradient
Float mAngle; //!< Start angle of gradient
Float mStartOffset; // Offset of first stop
Float mEndOffset; // Offset of last stop
RefPtr<GradientStops>
mStops; /**< GradientStops object for this gradient, this
should match the backend type of the draw target
this pattern will be used with. */
Matrix mMatrix; //!< A matrix that transforms the pattern into user space
};
/**
* This class is used for Surface Patterns, they wrap a surface and a
* repetition mode for the surface. This may be used on the stack.
*/
class SurfacePattern : public Pattern {
public:
/// For constructor parameter description, see member data documentation.
SurfacePattern(SourceSurface* aSourceSurface, ExtendMode aExtendMode,
const Matrix& aMatrix = Matrix(),
SamplingFilter aSamplingFilter = SamplingFilter::GOOD,
const IntRect& aSamplingRect = IntRect())
: mSurface(aSourceSurface),
mExtendMode(aExtendMode),
mSamplingFilter(aSamplingFilter),
mMatrix(aMatrix),
mSamplingRect(aSamplingRect) {}
PatternType GetType() const override { return PatternType::SURFACE; }
RefPtr<SourceSurface> mSurface; //!< Surface to use for drawing
ExtendMode mExtendMode; /**< This determines how the image is extended
outside the bounds of the image */
SamplingFilter
mSamplingFilter; //!< Resampling filter for resampling the image.
Matrix mMatrix; //!< Transforms the pattern into user space
IntRect mSamplingRect; /**< Rect that must not be sampled outside of,
or an empty rect if none has been
specified. */
};
class StoredPattern;
class DrawTargetCaptureImpl;
static const int32_t kReasonableSurfaceSize = 8192;
/**
* This is the base class for source surfaces. These objects are surfaces
* which may be used as a source in a SurfacePattern or a DrawSurface call.
* They cannot be drawn to directly.
*
* Although SourceSurface has thread-safe refcount, some SourceSurface cannot
* be used on random threads at the same time. Only DataSourceSurface can be
* used on random threads now. This will be fixed in the future. Eventually
* all SourceSurface should be thread-safe.
*/
class SourceSurface : public external::AtomicRefCounted<SourceSurface> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(SourceSurface)
virtual ~SourceSurface() = default;
virtual SurfaceType GetType() const = 0;
virtual IntSize GetSize() const = 0;
/* GetRect is useful for when the underlying surface doesn't actually
* have a backing store starting at 0, 0. e.g. SourceSurfaceOffset */
virtual IntRect GetRect() const { return IntRect(IntPoint(0, 0), GetSize()); }
virtual SurfaceFormat GetFormat() const = 0;
/**
* Structure containing memory size information for the surface.
*/
struct SizeOfInfo {
SizeOfInfo()
: mHeapBytes(0),
mNonHeapBytes(0),
mUnknownBytes(0),
mExternalHandles(0),
mExternalId(0),
mTypes(0) {}
void Accumulate(const SizeOfInfo& aOther) {
mHeapBytes += aOther.mHeapBytes;
mNonHeapBytes += aOther.mNonHeapBytes;
mUnknownBytes += aOther.mUnknownBytes;
mExternalHandles += aOther.mExternalHandles;
if (aOther.mExternalId) {
mExternalId = aOther.mExternalId;
}
mTypes |= aOther.mTypes;
}
void AddType(SurfaceType aType) { mTypes |= 1 << uint32_t(aType); }
size_t mHeapBytes; // Bytes allocated on the heap.
size_t mNonHeapBytes; // Bytes allocated off the heap.
size_t mUnknownBytes; // Bytes allocated to either, but unknown.
size_t mExternalHandles; // Open handles for the surface.
uint64_t mExternalId; // External ID for WebRender, if available.
uint32_t mTypes; // Bit shifted values representing SurfaceType.
};
/**
* Get the size information of the underlying data buffer.
*/
virtual void SizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
SizeOfInfo& aInfo) const {
// Default is to estimate the footprint based on its size/format.
auto size = GetSize();
auto format = GetFormat();
aInfo.AddType(GetType());
aInfo.mUnknownBytes = size.width * size.height * BytesPerPixel(format);
}
/** This returns false if some event has made this source surface invalid for
* usage with current DrawTargets. For example in the case of Direct2D this
* could return false if we have switched devices since this surface was
* created.
*/
virtual bool IsValid() const { return true; }
/**
* This returns true if it is the same underlying surface data, even if
* the objects are different (e.g. indirection due to
* DataSourceSurfaceWrapper).
*/
virtual bool Equals(SourceSurface* aOther, bool aSymmetric = true) {
return this == aOther ||
(aSymmetric && aOther && aOther->Equals(this, false));
}
/**
* This function will return true if the surface type matches that of a
* DataSourceSurface and if GetDataSurface will return the same object.
*/
bool IsDataSourceSurface() const {
switch (GetType()) {
case SurfaceType::DATA:
case SurfaceType::DATA_SHARED:
case SurfaceType::DATA_RECYCLING_SHARED:
case SurfaceType::DATA_ALIGNED:
case SurfaceType::DATA_SHARED_WRAPPER:
case SurfaceType::DATA_MAPPED:
return true;
default:
return false;
}
}
/**
* This function will get a DataSourceSurface for this surface, a
* DataSourceSurface's data can be accessed directly.
*/
virtual already_AddRefed<DataSourceSurface> GetDataSurface() = 0;
/** This function will return a SourceSurface without any offset. */
virtual already_AddRefed<SourceSurface> GetUnderlyingSurface() {
RefPtr<SourceSurface> surface = this;
return surface.forget();
}
/** Tries to get this SourceSurface's native surface. This will fail if aType
* is not the type of this SourceSurface's native surface.
*/
virtual void* GetNativeSurface(NativeSurfaceType aType) { return nullptr; }
void AddUserData(UserDataKey* key, void* userData, void (*destroy)(void*)) {
mUserData.Add(key, userData, destroy);
}
void* GetUserData(UserDataKey* key) const { return mUserData.Get(key); }
void RemoveUserData(UserDataKey* key) { mUserData.RemoveAndDestroy(key); }
protected:
friend class DrawTargetCaptureImpl;
friend class StoredPattern;
// This is for internal use, it ensures the SourceSurface's data remains
// valid during the lifetime of the SourceSurface.
// @todo XXX - We need something better here :(. But we may be able to get rid
// of CreateWrappingDataSourceSurface in the future.
virtual void GuaranteePersistance() {}
UserData mUserData;
};
class DataSourceSurface : public SourceSurface {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(DataSourceSurface, override)
DataSourceSurface() : mMapCount(0) {}
#ifdef DEBUG
virtual ~DataSourceSurface() { MOZ_ASSERT(mMapCount == 0); }
#endif
struct MappedSurface {
uint8_t* mData = nullptr;
int32_t mStride = 0;
};
enum MapType { READ, WRITE, READ_WRITE };
/**
* This is a scoped version of Map(). Map() is called in the constructor and
* Unmap() in the destructor. Use this for automatic unmapping of your data
* surfaces.
*
* Use IsMapped() to verify whether Map() succeeded or not.
*/
class ScopedMap final {
public:
ScopedMap(DataSourceSurface* aSurface, MapType aType)
: mSurface(aSurface), mIsMapped(aSurface->Map(aType, &mMap)) {}
ScopedMap(ScopedMap&& aOther)
: mSurface(std::move(aOther.mSurface)),
mMap(aOther.mMap),
mIsMapped(aOther.mIsMapped) {
aOther.mMap.mData = nullptr;
aOther.mIsMapped = false;
}
ScopedMap& operator=(ScopedMap&& aOther) {
if (mIsMapped) {
mSurface->Unmap();
}
mSurface = std::move(aOther.mSurface);
mMap = aOther.mMap;
mIsMapped = aOther.mIsMapped;
aOther.mMap.mData = nullptr;
aOther.mIsMapped = false;
return *this;
}
~ScopedMap() {
if (mIsMapped) {
mSurface->Unmap();
}
}
uint8_t* GetData() const {
MOZ_ASSERT(mIsMapped);
return mMap.mData;
}
int32_t GetStride() const {
MOZ_ASSERT(mIsMapped);
return mMap.mStride;
}
const MappedSurface* GetMappedSurface() const {
MOZ_ASSERT(mIsMapped);
return &mMap;
}
const DataSourceSurface* GetSurface() const {
MOZ_ASSERT(mIsMapped);
return mSurface;
}
bool IsMapped() const { return mIsMapped; }
private:
ScopedMap(const ScopedMap& aOther) = delete;
ScopedMap& operator=(const ScopedMap& aOther) = delete;
RefPtr<DataSourceSurface> mSurface;
MappedSurface mMap;
bool mIsMapped;
};
SurfaceType GetType() const override { return SurfaceType::DATA; }
/** @deprecated
* Get the raw bitmap data of the surface.
* Can return null if there was OOM allocating surface data.
*
* Deprecated means you shouldn't be using this!! Use Map instead.
* Please deny any reviews which add calls to this!
*/
virtual uint8_t* GetData() = 0;
/** @deprecated
* Stride of the surface, distance in bytes between the start of the image
* data belonging to row y and row y+1. This may be negative.
* Can return 0 if there was OOM allocating surface data.
*/
virtual int32_t Stride() = 0;
/**
* The caller is responsible for ensuring aMappedSurface is not null.
// Althought Map (and Moz2D in general) isn't normally threadsafe,
// we want to allow it for SourceSurfaceRawData since it should
// always be fine (for reading at least).
//
// This is the same as the base class implementation except using
// mMapCount instead of mIsMapped since that breaks for multithread.
//
// Once mfbt supports Monitors we should implement proper read/write
// locking to prevent write races.
*/
virtual bool Map(MapType, MappedSurface* aMappedSurface) {
aMappedSurface->mData = GetData();
aMappedSurface->mStride = Stride();
bool success = !!aMappedSurface->mData;
if (success) {
mMapCount++;
}
return success;
}
virtual void Unmap() {
mMapCount--;
MOZ_ASSERT(mMapCount >= 0);
}
/**
* Returns a DataSourceSurface with the same data as this one, but
* guaranteed to have surface->GetType() == SurfaceType::DATA.
*
* The returning surface might be null, because of OOM or gfx device reset.
* The caller needs to do null-check before using it.
*/
already_AddRefed<DataSourceSurface> GetDataSurface() override;
/**
* Returns whether or not the data was allocated on the heap. This should
* be used to determine if the memory needs to be cleared to 0.
*/
virtual bool OnHeap() const { return true; }
/**
* Yields a dirty rect of what has changed since it was last called.
*/
virtual Maybe<IntRect> TakeDirtyRect() { return Nothing(); }
/**
* Indicate a region which has changed in the surface.
*/
virtual void Invalidate(const IntRect& aDirtyRect) {}
protected:
Atomic<int32_t> mMapCount;
};
/** This is an abstract object that accepts path segments. */
class PathSink : public RefCounted<PathSink> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(PathSink)
virtual ~PathSink() = default;
/** Move the current point in the path, any figure currently being drawn will
* be considered closed during fill operations, however when stroking the
* closing line segment will not be drawn.
*/
virtual void MoveTo(const Point& aPoint) = 0;
/** Add a linesegment to the current figure */
virtual void LineTo(const Point& aPoint) = 0;
/** Add a cubic bezier curve to the current figure */
virtual void BezierTo(const Point& aCP1, const Point& aCP2,
const Point& aCP3) = 0;
/** Add a quadratic bezier curve to the current figure */
virtual void QuadraticBezierTo(const Point& aCP1, const Point& aCP2) = 0;
/** Close the current figure, this will essentially generate a line segment
* from the current point to the starting point for the current figure
*/
virtual void Close() = 0;
/** Add an arc to the current figure */
virtual void Arc(const Point& aOrigin, float aRadius, float aStartAngle,
float aEndAngle, bool aAntiClockwise = false) = 0;
virtual Point CurrentPoint() const { return mCurrentPoint; }
virtual Point BeginPoint() const { return mBeginPoint; }
virtual void SetCurrentPoint(const Point& aPoint) { mCurrentPoint = aPoint; }
virtual void SetBeginPoint(const Point& aPoint) { mBeginPoint = aPoint; }
protected:
/** Point the current subpath is at - or where the next subpath will start
* if there is no active subpath.
*/
Point mCurrentPoint;
/** Position of the previous MoveTo operation. */
Point mBeginPoint;
};
class PathBuilder;
class FlattenedPath;
/** The path class is used to create (sets of) figures of any shape that can be
* filled or stroked to a DrawTarget
*/
class Path : public external::AtomicRefCounted<Path> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(Path)
virtual ~Path();
virtual BackendType GetBackendType() const = 0;
/** This returns a PathBuilder object that contains a copy of the contents of
* this path and is still writable.
*/
inline already_AddRefed<PathBuilder> CopyToBuilder() const {
return CopyToBuilder(GetFillRule());
}
inline already_AddRefed<PathBuilder> TransformedCopyToBuilder(
const Matrix& aTransform) const {
return TransformedCopyToBuilder(aTransform, GetFillRule());
}
/** This returns a PathBuilder object that contains a copy of the contents of
* this path, converted to use the specified FillRule, and still writable.
*/
virtual already_AddRefed<PathBuilder> CopyToBuilder(
FillRule aFillRule) const = 0;
virtual already_AddRefed<PathBuilder> TransformedCopyToBuilder(
const Matrix& aTransform, FillRule aFillRule) const = 0;
/** This function checks if a point lies within a path. It allows passing a
* transform that will transform the path to the coordinate space in which
* aPoint is given.
*/
virtual bool ContainsPoint(const Point& aPoint,
const Matrix& aTransform) const = 0;
/** This function checks if a point lies within the stroke of a path using the
* specified strokeoptions. It allows passing a transform that will transform
* the path to the coordinate space in which aPoint is given.
*/
virtual bool StrokeContainsPoint(const StrokeOptions& aStrokeOptions,
const Point& aPoint,
const Matrix& aTransform) const = 0;
/** This functions gets the bounds of this path. These bounds are not
* guaranteed to be tight. A transform may be specified that gives the bounds
* after application of the transform.
*/
virtual Rect GetBounds(const Matrix& aTransform = Matrix()) const = 0;
/** This function gets the bounds of the stroke of this path using the
* specified strokeoptions. These bounds are not guaranteed to be tight.
* A transform may be specified that gives the bounds after application of
* the transform.
*/
virtual Rect GetStrokedBounds(const StrokeOptions& aStrokeOptions,
const Matrix& aTransform = Matrix()) const = 0;
/** Take the contents of this path and stream it to another sink, this works
* regardless of the backend that might be used for the destination sink.
*/
virtual void StreamToSink(PathSink* aSink) const = 0;
/** This gets the fillrule this path's builder was created with. This is not
* mutable.
*/
virtual FillRule GetFillRule() const = 0;
virtual Float ComputeLength();
virtual Point ComputePointAtLength(Float aLength, Point* aTangent = nullptr);
protected:
Path();
void EnsureFlattenedPath();
RefPtr<FlattenedPath> mFlattenedPath;
};
/** The PathBuilder class allows path creation. Once finish is called on the
* pathbuilder it may no longer be written to.
*/
class PathBuilder : public PathSink {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(PathBuilder, override)
/** Finish writing to the path and return a Path object that can be used for
* drawing. Future use of the builder results in a crash!
*/
virtual already_AddRefed<Path> Finish() = 0;
virtual BackendType GetBackendType() const = 0;
};
struct Glyph {
uint32_t mIndex;
Point mPosition;
};
static inline bool operator==(const Glyph& aOne, const Glyph& aOther) {
return aOne.mIndex == aOther.mIndex && aOne.mPosition == aOther.mPosition;
}
/** This class functions as a glyph buffer that can be drawn to a DrawTarget.
* @todo XXX - This should probably contain the guts of gfxTextRun in the future
* as roc suggested. But for now it's a simple container for a glyph vector.
*/
struct GlyphBuffer {
const Glyph*
mGlyphs; //!< A pointer to a buffer of glyphs. Managed by the caller.
uint32_t mNumGlyphs; //!< Number of glyphs mGlyphs points to.
};
#ifdef MOZ_ENABLE_FREETYPE
class SharedFTFace;
/** SharedFTFaceData abstracts data that may be used to back a SharedFTFace.
* Its main function is to manage the lifetime of the data and ensure that it
* lasts as long as the face.
*/
class SharedFTFaceData {
public:
/** Utility for creating a new face from this data. */
virtual already_AddRefed<SharedFTFace> CloneFace(int aFaceIndex = 0) {
return nullptr;
}
/** Binds the data's lifetime to the face. */
virtual void BindData() = 0;
/** Signals that the data is no longer needed by a face. */
virtual void ReleaseData() = 0;
};
/** Wrapper class for ref-counted SharedFTFaceData that handles calling the
* appropriate ref-counting methods
*/
template <class T>
class SharedFTFaceRefCountedData : public SharedFTFaceData {
public:
void BindData() { static_cast<T*>(this)->AddRef(); }
void ReleaseData() { static_cast<T*>(this)->Release(); }
};
/** SharedFTFace is a shared wrapper around an FT_Face. It is ref-counted,
* unlike FT_Face itself, so that it may be shared among many users with
* RefPtr. Users should take care to lock SharedFTFace before accessing any
* FT_Face fields that may change to ensure exclusive access to it. It also
* allows backing data's lifetime to be bound to it via SharedFTFaceData so
* that the data will not disappear before the face does.
*/
class SharedFTFace : public external::AtomicRefCounted<SharedFTFace> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(SharedFTFace)
explicit SharedFTFace(FT_Face aFace, SharedFTFaceData* aData = nullptr);
virtual ~SharedFTFace();
FT_Face GetFace() const { return mFace; }
SharedFTFaceData* GetData() const { return mData; }
/** Locks the face for exclusive access by a given owner. Returns false if
* the given owner is acquiring the lock for the first time, and true if
* the owner was the prior owner of the lock. Thus the return value can be
* used to do owner-specific initialization of the FT face such as setting
* a size or transform that may have been invalidated by a previous owner.
* If no owner is given, then the user should avoid modifying any state on
* the face so as not to invalidate the prior owner's modification.
*/
bool Lock(void* aOwner = nullptr) {
mLock.Lock();
return !aOwner || mLastLockOwner.exchange(aOwner) == aOwner;
}
void Unlock() { mLock.Unlock(); }
/** Should be called when a lock owner is destroyed so that we don't have
* a dangling pointer to a destroyed owner.
*/
void ForgetLockOwner(void* aOwner) {
if (aOwner) {
mLastLockOwner.compareExchange(aOwner, nullptr);
}
}
private:
FT_Face mFace;
SharedFTFaceData* mData;
Mutex mLock;
// Remember the last owner of the lock, even after unlocking, to allow users
// to avoid reinitializing state on the FT face if the last owner hasn't
// changed by the next time it is locked with the same owner.
Atomic<void*> mLastLockOwner;
};
#endif
class UnscaledFont : public SupportsThreadSafeWeakPtr<UnscaledFont> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(UnscaledFont)
MOZ_DECLARE_THREADSAFEWEAKREFERENCE_TYPENAME(UnscaledFont)
virtual ~UnscaledFont();
virtual FontType GetType() const = 0;
static uint32_t DeletionCounter() { return sDeletionCounter; }
typedef void (*FontFileDataOutput)(const uint8_t* aData, uint32_t aLength,
uint32_t aIndex, void* aBaton);
typedef void (*FontInstanceDataOutput)(const uint8_t* aData, uint32_t aLength,
void* aBaton);
typedef void (*FontDescriptorOutput)(const uint8_t* aData, uint32_t aLength,
uint32_t aIndex, void* aBaton);
virtual bool GetFontFileData(FontFileDataOutput, void*) { return false; }
virtual bool GetFontInstanceData(FontInstanceDataOutput, void*) {
return false;
}
virtual bool GetFontDescriptor(FontDescriptorOutput, void*) { return false; }
virtual already_AddRefed<ScaledFont> CreateScaledFont(
Float aGlyphSize, const uint8_t* aInstanceData,
uint32_t aInstanceDataLength, const FontVariation* aVariations,
uint32_t aNumVariations) {
return nullptr;
}
virtual already_AddRefed<ScaledFont> CreateScaledFontFromWRFont(
Float aGlyphSize, const wr::FontInstanceOptions* aOptions,
const wr::FontInstancePlatformOptions* aPlatformOptions,
const FontVariation* aVariations, uint32_t aNumVariations) {
return CreateScaledFont(aGlyphSize, nullptr, 0, aVariations,
aNumVariations);
}
protected:
UnscaledFont() = default;
private:
static Atomic<uint32_t> sDeletionCounter;
};
/** This class is an abstraction of a backend/platform specific font object
* at a particular size. It is passed into text drawing calls to describe
* the font used for the drawing call.
*/
class ScaledFont : public SupportsThreadSafeWeakPtr<ScaledFont> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(ScaledFont)
MOZ_DECLARE_THREADSAFEWEAKREFERENCE_TYPENAME(ScaledFont)
virtual ~ScaledFont();
virtual FontType GetType() const = 0;
virtual Float GetSize() const = 0;
virtual AntialiasMode GetDefaultAAMode() { return AntialiasMode::DEFAULT; }
static uint32_t DeletionCounter() { return sDeletionCounter; }
/** This allows getting a path that describes the outline of a set of glyphs.
* A target is passed in so that the guarantee is made the returned path
* can be used with any DrawTarget that has the same backend as the one
* passed in.
*/
virtual already_AddRefed<Path> GetPathForGlyphs(
const GlyphBuffer& aBuffer, const DrawTarget* aTarget) = 0;
/** This copies the path describing the glyphs into a PathBuilder. We use this
* API rather than a generic API to append paths because it allows easier
* implementation in some backends, and more efficient implementation in
* others.
*/
virtual void CopyGlyphsToBuilder(const GlyphBuffer& aBuffer,
PathBuilder* aBuilder,
const Matrix* aTransformHint = nullptr) = 0;
typedef void (*FontInstanceDataOutput)(const uint8_t* aData, uint32_t aLength,
const FontVariation* aVariations,
uint32_t aNumVariations, void* aBaton);
virtual bool GetFontInstanceData(FontInstanceDataOutput, void*) {
return false;
}
virtual bool GetWRFontInstanceOptions(
Maybe<wr::FontInstanceOptions>* aOutOptions,
Maybe<wr::FontInstancePlatformOptions>* aOutPlatformOptions,
std::vector<FontVariation>* aOutVariations) {
return false;
}
virtual bool CanSerialize() { return false; }
virtual bool HasVariationSettings() { return false; }
void AddUserData(UserDataKey* key, void* userData, void (*destroy)(void*)) {
mUserData.Add(key, userData, destroy);
}
void* GetUserData(UserDataKey* key) { return mUserData.Get(key); }
void RemoveUserData(UserDataKey* key) { mUserData.RemoveAndDestroy(key); }
const RefPtr<UnscaledFont>& GetUnscaledFont() const { return mUnscaledFont; }
virtual cairo_scaled_font_t* GetCairoScaledFont() { return nullptr; }
Float GetSyntheticObliqueAngle() const { return mSyntheticObliqueAngle; }
void SetSyntheticObliqueAngle(Float aAngle) {
mSyntheticObliqueAngle = aAngle;
}
protected:
explicit ScaledFont(const RefPtr<UnscaledFont>& aUnscaledFont)
: mUnscaledFont(aUnscaledFont), mSyntheticObliqueAngle(0.0f) {}
UserData mUserData;
RefPtr<UnscaledFont> mUnscaledFont;
Float mSyntheticObliqueAngle;
private:
static Atomic<uint32_t> sDeletionCounter;
};
/**
* Derived classes hold a native font resource from which to create
* ScaledFonts.
*/
class NativeFontResource
: public external::AtomicRefCounted<NativeFontResource> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(NativeFontResource)
/**
* Creates a UnscaledFont using the font corresponding to the index.
*
* @param aIndex index for the font within the resource.
* @param aInstanceData pointer to read-only buffer of any available instance
* data.
* @param aInstanceDataLength the size of the instance data.
* @return an already_addrefed UnscaledFont, containing nullptr if failed.
*/
virtual already_AddRefed<UnscaledFont> CreateUnscaledFont(
uint32_t aIndex, const uint8_t* aInstanceData,
uint32_t aInstanceDataLength) = 0;
NativeFontResource(size_t aDataLength);
virtual ~NativeFontResource();
static void RegisterMemoryReporter();
private:
size_t mDataLength;
};
class DrawTargetCapture;
/** This is the main class used for all the drawing. It is created through the
* factory and accepts drawing commands. The results of drawing to a target
* may be used either through a Snapshot or by flushing the target and directly
* accessing the backing store a DrawTarget was created with.
*/
class DrawTarget : public external::AtomicRefCounted<DrawTarget> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(DrawTarget)
DrawTarget()
: mTransformDirty(false),
mPermitSubpixelAA(false),
mFormat(SurfaceFormat::UNKNOWN) {}
virtual ~DrawTarget() = default;
virtual bool IsValid() const { return true; };
virtual DrawTargetType GetType() const = 0;
virtual BackendType GetBackendType() const = 0;
virtual bool IsRecording() const { return false; }
virtual bool IsCaptureDT() const { return false; }
/**
* Method to generate hyperlink in PDF output (with appropriate backend).
*/
virtual void Link(const char* aDestination, const Rect& aRect) {}
/**
* Returns a SourceSurface which is a snapshot of the current contents of the
* DrawTarget. Multiple calls to Snapshot() without any drawing operations in
* between will normally return the same SourceSurface object.
*/
virtual already_AddRefed<SourceSurface> Snapshot() = 0;
/**
* Returns a SourceSurface which wraps the buffer backing the DrawTarget. The
* contents of the buffer may change if there are drawing operations after
* calling but only guarantees that it reflects the state at the time it was
* called.
*/
virtual already_AddRefed<SourceSurface> GetBackingSurface() {
return Snapshot();
}
// Snapshots the contents and returns an alpha mask
// based on the RGB values.
virtual already_AddRefed<SourceSurface> IntoLuminanceSource(
LuminanceType aLuminanceType, float aOpacity);
virtual IntSize GetSize() const = 0;
virtual IntRect GetRect() const { return IntRect(IntPoint(0, 0), GetSize()); }
/**
* If possible returns the bits to this DrawTarget for direct manipulation.
* While the bits is locked any modifications to this DrawTarget is forbidden.
* Release takes the original data pointer for safety.
*/
virtual bool LockBits(uint8_t** aData, IntSize* aSize, int32_t* aStride,
SurfaceFormat* aFormat, IntPoint* aOrigin = nullptr) {
return false;
}
virtual void ReleaseBits(uint8_t* aData) {}
/** Ensure that the DrawTarget backend has flushed all drawing operations to
* this draw target. This must be called before using the backing surface of
* this draw target outside of GFX 2D code.
*/
virtual void Flush() = 0;
/**
* Realize a DrawTargetCapture onto the draw target.
*
* @param aSource Capture DrawTarget to draw
* @param aTransform Transform to apply when replaying commands
*/
virtual void DrawCapturedDT(DrawTargetCapture* aCaptureDT,
const Matrix& aTransform);
/**
* Draw a surface to the draw target. Possibly doing partial drawing or
* applying scaling. No sampling happens outside the source.
*
* @param aSurface Source surface to draw
* @param aDest Destination rectangle that this drawing operation should draw
* to
* @param aSource Source rectangle in aSurface coordinates, this area of
* aSurface
* will be stretched to the size of aDest.
* @param aOptions General draw options that are applied to the operation
* @param aSurfOptions DrawSurface options that are applied
*/
virtual void DrawSurface(
SourceSurface* aSurface, const Rect& aDest, const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions = DrawSurfaceOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Draw a surface to the draw target, when the surface will be available
* at a later time. This is only valid for recording DrawTargets.
*
* This is considered fallible, and replaying this without making the surface
* available to the replay will just skip the draw.
*/
virtual void DrawDependentSurface(
uint64_t aId, const Rect& aDest,
const DrawSurfaceOptions& aSurfOptions = DrawSurfaceOptions(),
const DrawOptions& aOptions = DrawOptions()) {
MOZ_CRASH("GFX: DrawDependentSurface");
}
/**
* Draw the output of a FilterNode to the DrawTarget.
*
* @param aNode FilterNode to draw
* @param aSourceRect Source rectangle in FilterNode space to draw
* @param aDestPoint Destination point on the DrawTarget to draw the
* SourceRectangle of the filter output to
*/
virtual void DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Blend a surface to the draw target with a shadow. The shadow is drawn as a
* gaussian blur using a specified sigma. The shadow is clipped to the size
* of the input surface, so the input surface should contain a transparent
* border the size of the approximate coverage of the blur (3 * aSigma).
* NOTE: This function works in device space!
*
* @param aSurface Source surface to draw.
* @param aDest Destination point that this drawing operation should draw to.
* @param aColor Color of the drawn shadow
* @param aOffset Offset of the shadow
* @param aSigma Sigma used for the guassian filter kernel
* @param aOperator Composition operator used
*/
virtual void DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest,
const DeviceColor& aColor,
const Point& aOffset, Float aSigma,
CompositionOp aOperator) = 0;
/**
* Clear a rectangle on the draw target to transparent black. This will
* respect the clipping region and transform.
*
* @param aRect Rectangle to clear
*/
virtual void ClearRect(const Rect& aRect) = 0;
/**
* This is essentially a 'memcpy' between two surfaces. It moves a pixel
* aligned area from the source surface unscaled directly onto the
* drawtarget. This ignores both transform and clip.
*
* @param aSurface Surface to copy from
* @param aSourceRect Source rectangle to be copied
* @param aDest Destination point to copy the surface to
*/
virtual void CopySurface(SourceSurface* aSurface, const IntRect& aSourceRect,
const IntPoint& aDestination) = 0;
/** @see CopySurface
* Same as CopySurface, except uses itself as the source.
*
* Some backends may be able to optimize this better
* than just taking a snapshot and using CopySurface.
*/
virtual void CopyRect(const IntRect& aSourceRect,
const IntPoint& aDestination) {
RefPtr<SourceSurface> source = Snapshot();
CopySurface(source, aSourceRect, aDestination);
}
/**
* Fill a rectangle on the DrawTarget with a certain source pattern.
*
* @param aRect Rectangle that forms the mask of this filling operation
* @param aPattern Pattern that forms the source of this filling operation
* @param aOptions Options that are applied to this operation
*/
virtual void FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Fill a rounded rectangle on the DrawTarget with a certain source pattern.
*
* @param aRect Rounded rectangle that forms the mask of this filling
* operation
* @param aPattern Pattern that forms the source of this filling operation
* @param aOptions Options that are applied to this operation
*/
virtual void FillRoundedRect(const RoundedRect& aRect,
const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions());
/**
* Stroke a rectangle on the DrawTarget with a certain source pattern.
*
* @param aRect Rectangle that forms the mask of this stroking operation
* @param aPattern Pattern that forms the source of this stroking operation
* @param aOptions Options that are applied to this operation
*/
virtual void StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Stroke a line on the DrawTarget with a certain source pattern.
*
* @param aStart Starting point of the line
* @param aEnd End point of the line
* @param aPattern Pattern that forms the source of this stroking operation
* @param aOptions Options that are applied to this operation
*/
virtual void StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Stroke a path on the draw target with a certain source pattern.
*
* @param aPath Path that is to be stroked
* @param aPattern Pattern that should be used for the stroke
* @param aStrokeOptions Stroke options used for this operation
* @param aOptions Draw options used for this operation
*/
virtual void Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Fill a path on the draw target with a certain source pattern.
*
* @param aPath Path that is to be filled
* @param aPattern Pattern that should be used for the fill
* @param aOptions Draw options used for this operation
*/
virtual void Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Fill a series of glyphs on the draw target with a certain source pattern.
*/
virtual void FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Stroke a series of glyphs on the draw target with a certain source pattern.
*/
virtual void StrokeGlyphs(
ScaledFont* aFont, const GlyphBuffer& aBuffer, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions = StrokeOptions(),
const DrawOptions& aOptions = DrawOptions());
/**
* This takes a source pattern and a mask, and composites the source pattern
* onto the destination surface using the alpha channel of the mask pattern
* as a mask for the operation.
*
* @param aSource Source pattern
* @param aMask Mask pattern
* @param aOptions Drawing options
*/
virtual void Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* This takes a source pattern and a mask, and composites the source pattern
* onto the destination surface using the alpha channel of the mask source.
* The operation is bound by the extents of the mask.
*
* @param aSource Source pattern
* @param aMask Mask surface
* @param aOffset a transformed offset that the surface is masked at
* @param aOptions Drawing options
*/
virtual void MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset,
const DrawOptions& aOptions = DrawOptions()) = 0;
/**
* Draw aSurface using the 3D transform aMatrix. The DrawTarget's transform
* and clip are applied after the 3D transform.
*
* If the transform fails (i.e. because aMatrix is singular), false is
* returned and nothing is drawn.
*/
virtual bool Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix);
/**
* Push a clip to the DrawTarget.
*
* @param aPath The path to clip to
*/
virtual void PushClip(const Path* aPath) = 0;
/**
* Push an axis-aligned rectangular clip to the DrawTarget. This rectangle
* is specified in user space.
*
* @param aRect The rect to clip to
*/
virtual void PushClipRect(const Rect& aRect) = 0;
/**
* Push a clip region specifed by the union of axis-aligned rectangular
* clips to the DrawTarget. These rectangles are specified in device space.
* This must be balanced by a corresponding call to PopClip within a layer.
*
* @param aRects The rects to clip to
* @param aCount The number of rectangles
*/
virtual void PushDeviceSpaceClipRects(const IntRect* aRects, uint32_t aCount);
/** Pop a clip from the DrawTarget. A pop without a corresponding push will
* be ignored.
*/
virtual void PopClip() = 0;
/**
* Push a 'layer' to the DrawTarget, a layer is a temporary surface that all
* drawing will be redirected to, this is used for example to support group
* opacity or the masking of groups. Clips must be balanced within a layer,
* i.e. between a matching PushLayer/PopLayer pair there must be as many
* PushClip(Rect) calls as there are PopClip calls.
*
* @param aOpaque Whether the layer will be opaque
* @param aOpacity Opacity of the layer
* @param aMask Mask applied to the layer
* @param aMaskTransform Transform applied to the layer mask
* @param aBounds Optional bounds in device space to which the layer is
* limited in size.
* @param aCopyBackground Whether to copy the background into the layer, this
* is only supported when aOpaque is true.
*/
virtual void PushLayer(bool aOpaque, Float aOpacity, SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds = IntRect(),
bool aCopyBackground = false) {
MOZ_CRASH("GFX: PushLayer");
}
/**
* Push a 'layer' to the DrawTarget, a layer is a temporary surface that all
* drawing will be redirected to, this is used for example to support group
* opacity or the masking of groups. Clips must be balanced within a layer,
* i.e. between a matching PushLayer/PopLayer pair there must be as many
* PushClip(Rect) calls as there are PopClip calls.
*
* @param aOpaque Whether the layer will be opaque
* @param aOpacity Opacity of the layer
* @param aMask Mask applied to the layer
* @param aMaskTransform Transform applied to the layer mask
* @param aBounds Optional bounds in device space to which the layer is
* limited in size.
* @param aCopyBackground Whether to copy the background into the layer, this
* is only supported when aOpaque is true.
*/
virtual void PushLayerWithBlend(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds = IntRect(),
bool aCopyBackground = false,
CompositionOp = CompositionOp::OP_OVER) {
MOZ_CRASH("GFX: PushLayerWithBlend");
}
/**
* This balances a call to PushLayer and proceeds to blend the layer back
* onto the background. This blend will blend the temporary surface back
* onto the target in device space using POINT sampling and operator over.
*/
virtual void PopLayer() { MOZ_CRASH("GFX: PopLayer"); }
/**
* Perform an in-place blur operation. This is only supported on data draw
* targets.
*/
virtual void Blur(const AlphaBoxBlur& aBlur);
/**
* Performs an in-place edge padding operation.
* aRegion is specified in device space.
*/
virtual void PadEdges(const IntRegion& aRegion);
/**
* Performs an in-place buffer unrotation operation.
*/
virtual bool Unrotate(IntPoint aRotation);
/**
* Create a SourceSurface optimized for use with this DrawTarget from
* existing bitmap data in memory.
*
* The SourceSurface does not take ownership of aData, and may be freed at any
* time.
*/
virtual already_AddRefed<SourceSurface> CreateSourceSurfaceFromData(
unsigned char* aData, const IntSize& aSize, int32_t aStride,
SurfaceFormat aFormat) const = 0;
/**
* Create a SourceSurface optimized for use with this DrawTarget from an
* arbitrary SourceSurface type supported by this backend. This may return
* aSourceSurface or some other existing surface.
*/
virtual already_AddRefed<SourceSurface> OptimizeSourceSurface(
SourceSurface* aSurface) const = 0;
virtual already_AddRefed<SourceSurface> OptimizeSourceSurfaceForUnknownAlpha(
SourceSurface* aSurface) const {
return OptimizeSourceSurface(aSurface);
}
/**
* Create a SourceSurface for a type of NativeSurface. This may fail if the
* draw target does not know how to deal with the type of NativeSurface passed
* in. If this succeeds, the SourceSurface takes the ownersip of the
* NativeSurface.
*/
virtual already_AddRefed<SourceSurface> CreateSourceSurfaceFromNativeSurface(
const NativeSurface& aSurface) const = 0;
/**
* Create a DrawTarget whose snapshot is optimized for use with this
* DrawTarget.
*/
virtual already_AddRefed<DrawTarget> CreateSimilarDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat) const = 0;
/**
* Create a DrawTarget whose backing surface is optimized for use with this
* DrawTarget.
*/
virtual already_AddRefed<DrawTarget> CreateSimilarDrawTargetWithBacking(
const IntSize& aSize, SurfaceFormat aFormat) const {
return CreateSimilarDrawTarget(aSize, aFormat);
}
/**
* Create a DrawTarget whose snapshot is optimized for use with this
* DrawTarget and aFilter.
* @param aSource is the FilterNode that that will be attached to this
* surface.
* @param aSourceRect is the source rect that will be passed to DrawFilter
* @param aDestPoint is the dest point that will be passed to DrawFilter.
*/
virtual already_AddRefed<DrawTarget> CreateSimilarDrawTargetForFilter(
const IntSize& aSize, SurfaceFormat aFormat, FilterNode* aFilter,
FilterNode* aSource, const Rect& aSourceRect, const Point& aDestPoint) {
return CreateSimilarDrawTarget(aSize, aFormat);
}
/**
* Returns false if CreateSimilarDrawTarget would return null with the same
* parameters. May return true even in cases where CreateSimilarDrawTarget
* return null (i.e. this function returning false has meaning, but returning
* true doesn't guarantee anything).
*/
virtual bool CanCreateSimilarDrawTarget(const IntSize& aSize,
SurfaceFormat aFormat) const {
return true;
}
/**
* Create a draw target optimized for drawing a shadow.
*
* Note that aSigma is the blur radius that must be used when we draw the
* shadow. Also note that this doesn't affect the size of the allocated
* surface, the caller is still responsible for including the shadow area in
* its size.
*/
virtual already_AddRefed<DrawTarget> CreateShadowDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat, float aSigma) const {
return CreateSimilarDrawTarget(aSize, aFormat);
}
/**
* Create a similar DrawTarget in the same space as this DrawTarget whose
* device size may be clipped based on the active clips intersected with
* aBounds (if it is not empty).
*/
virtual RefPtr<DrawTarget> CreateClippedDrawTarget(const Rect& aBounds,
SurfaceFormat aFormat) = 0;
/**
* Create a similar draw target, but if the draw target is not backed by a
* raster backend (for example, it is capturing or recording), force it to
* create a raster target instead. This is intended for code that wants to
* cache pixels, and would have no effect if it were caching a recording.
*/
virtual RefPtr<DrawTarget> CreateSimilarRasterTarget(
const IntSize& aSize, SurfaceFormat aFormat) const {
return CreateSimilarDrawTarget(aSize, aFormat);
}
/**
* Create a path builder with the specified fillmode.
*
* We need the fill mode up front because of Direct2D.
* ID2D1SimplifiedGeometrySink requires the fill mode
* to be set before calling BeginFigure().
*/
virtual already_AddRefed<PathBuilder> CreatePathBuilder(
FillRule aFillRule = FillRule::FILL_WINDING) const = 0;
/**
* Create a GradientStops object that holds information about a set of
* gradient stops, this object is required for linear or radial gradient
* patterns to represent the color stops in the gradient.
*
* @param aStops An array of gradient stops
* @param aNumStops Number of stops in the array aStops
* @param aExtendNone This describes how to extend the stop color outside of
* the gradient area.
*/
virtual already_AddRefed<GradientStops> CreateGradientStops(
GradientStop* aStops, uint32_t aNumStops,
ExtendMode aExtendMode = ExtendMode::CLAMP) const = 0;
/**
* Create a FilterNode object that can be used to apply a filter to various
* inputs.
*
* @param aType Type of filter node to be created.
*/
virtual already_AddRefed<FilterNode> CreateFilter(FilterType aType) = 0;
Matrix GetTransform() const { return mTransform; }
/**
* Set a transform on the surface, this transform is applied at drawing time
* to both the mask and source of the operation.
*
* Performance note: For some backends it is expensive to change the current
* transform (because transforms affect a lot of the parts of the pipeline,
* so new transform change can result in a pipeline flush). To get around
* this, DrawTarget implementations buffer transform changes and try to only
* set the current transform on the backend when required. That tracking has
* its own performance impact though, and ideally callers would be smart
* enough not to require it. At a future date this method may stop this
* doing transform buffering so, if you're a consumer, please try to be smart
* about calling this method as little as possible. For example, instead of
* concatenating a translation onto the current transform then calling
* FillRect, try to integrate the translation into FillRect's aRect
* argument's x/y offset.
*/
virtual void SetTransform(const Matrix& aTransform) {
mTransform = aTransform;
mTransformDirty = true;
}
inline void ConcatTransform(const Matrix& aTransform) {
SetTransform(aTransform * Matrix(GetTransform()));
}
SurfaceFormat GetFormat() const { return mFormat; }
/** Tries to get a native surface for a DrawTarget, this may fail if the
* draw target cannot convert to this surface type.
*/
virtual void* GetNativeSurface(NativeSurfaceType aType) { return nullptr; }
virtual bool IsDualDrawTarget() const { return false; }
virtual bool IsTiledDrawTarget() const { return false; }
virtual bool SupportsRegionClipping() const { return true; }
void AddUserData(UserDataKey* key, void* userData, void (*destroy)(void*)) {
mUserData.Add(key, userData, destroy);
}
void* GetUserData(UserDataKey* key) const { return mUserData.Get(key); }
void* RemoveUserData(UserDataKey* key) { return mUserData.Remove(key); }
/** Within this rectangle all pixels will be opaque by the time the result of
* this DrawTarget is first used for drawing. Either by the underlying surface
* being used as an input to external drawing, or Snapshot() being called.
* This rectangle is specified in device space.
*/
void SetOpaqueRect(const IntRect& aRect) { mOpaqueRect = aRect; }
const IntRect& GetOpaqueRect() const { return mOpaqueRect; }
virtual bool IsCurrentGroupOpaque() {
return GetFormat() == SurfaceFormat::B8G8R8X8;
}
virtual void SetPermitSubpixelAA(bool aPermitSubpixelAA) {
mPermitSubpixelAA = aPermitSubpixelAA;
}
bool GetPermitSubpixelAA() { return mPermitSubpixelAA; }
/**
* Mark the end of an Item in a DrawTargetRecording. These markers
* are used for merging recordings together.
*
* This should only be called on the 'root' DrawTargetRecording.
* Calling it on a child DrawTargetRecordings will cause confusion.
*
* Note: this is a bit of a hack. It might be better to just recreate
* the DrawTargetRecording.
*/
virtual void FlushItem(const IntRect& aBounds) {}
/**
* Ensures that no snapshot is still pointing to this DrawTarget's surface
* data.
*
* This can be useful if the DrawTarget is wrapped around data that it does
* not own, and for some reason the owner of the data has to make it
* temporarily unavailable without the DrawTarget knowing about it. This can
* cause costly surface copies, so it should not be used without a a good
* reason.
*/
virtual void DetachAllSnapshots() = 0;
protected:
UserData mUserData;
Matrix mTransform;
IntRect mOpaqueRect;
bool mTransformDirty : 1;
bool mPermitSubpixelAA : 1;
SurfaceFormat mFormat;
};
class DrawTargetCapture : public DrawTarget {
public:
bool IsCaptureDT() const override { return true; }
virtual bool IsEmpty() const = 0;
virtual void Dump() = 0;
};
class DrawEventRecorder : public RefCounted<DrawEventRecorder> {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(DrawEventRecorder)
// returns true if there were any items in the recording
virtual bool Finish() = 0;
virtual ~DrawEventRecorder() = default;
};
struct Tile {
RefPtr<DrawTarget> mDrawTarget;
IntPoint mTileOrigin;
};
struct TileSet {
Tile* mTiles;
size_t mTileCount;
};
struct Config {
LogForwarder* mLogForwarder;
int32_t mMaxTextureSize;
int32_t mMaxAllocSize;
Config()
: mLogForwarder(nullptr),
mMaxTextureSize(kReasonableSurfaceSize),
mMaxAllocSize(52000000) {}
};
class GFX2D_API Factory {
using char_type = filesystem::Path::value_type;
public:
static void Init(const Config& aConfig);
static void ShutDown();
static bool HasSSE2();
static bool HasSSE4();
/**
* Returns false if any of the following are true:
*
* - the width/height of |sz| are less than or equal to zero
* - the width/height of |sz| are greater than |limit|
* - the number of bytes that need to be allocated for the surface is too
* big to fit in an int32_t, or bigger than |allocLimit|, if specifed
*
* To calculate the number of bytes that need to be allocated for the surface
* this function makes the conservative assumption that there need to be
* 4 bytes-per-pixel, and the stride alignment is 16 bytes.
*
* The reason for using int32_t rather than uint32_t is again to be
* conservative; some code has in the past and may in the future use signed
* integers to store buffer lengths etc.
*/
static bool CheckSurfaceSize(const IntSize& sz, int32_t limit = 0,
int32_t allocLimit = 0);
/**
* Make sure that the given buffer size doesn't exceed the allocation limit.
*/
static bool CheckBufferSize(int32_t bufSize);
/** Make sure the given dimension satisfies the CheckSurfaceSize and is
* within 8k limit. The 8k value is chosen a bit randomly.
*/
static bool ReasonableSurfaceSize(const IntSize& aSize);
static bool AllowedSurfaceSize(const IntSize& aSize);
static already_AddRefed<DrawTarget> CreateDrawTargetForCairoSurface(
cairo_surface_t* aSurface, const IntSize& aSize,
SurfaceFormat* aFormat = nullptr);
static already_AddRefed<SourceSurface> CreateSourceSurfaceForCairoSurface(
cairo_surface_t* aSurface, const IntSize& aSize, SurfaceFormat aFormat);
static already_AddRefed<DrawTarget> CreateDrawTarget(BackendType aBackend,
const IntSize& aSize,
SurfaceFormat aFormat);
/**
* Create a simple PathBuilder, which uses SKIA backend. If USE_SKIA is not
* defined, this returns nullptr;
*/
static already_AddRefed<PathBuilder> CreateSimplePathBuilder();
/**
* Create a DrawTarget that captures the drawing commands to eventually be
* replayed onto the DrawTarget provided. An optional byte size can be
* provided as a limit for the CaptureCommandList. When the limit is reached,
* the CaptureCommandList will be replayed to the target and then cleared.
*
* @param aSize Size of the area this DT will capture.
* @param aFlushBytes The byte limit at which to flush the CaptureCommandList
*/
static already_AddRefed<DrawTargetCapture> CreateCaptureDrawTargetForTarget(
gfx::DrawTarget* aTarget, size_t aFlushBytes = 0);
/**
* Create a DrawTarget that captures the drawing commands and can be replayed
* onto a compatible DrawTarget afterwards.
*
* @param aSize Size of the area this DT will capture.
*/
static already_AddRefed<DrawTargetCapture> CreateCaptureDrawTarget(
BackendType aBackend, const IntSize& aSize, SurfaceFormat aFormat);
static already_AddRefed<DrawTargetCapture> CreateCaptureDrawTargetForData(
BackendType aBackend, const IntSize& aSize, SurfaceFormat aFormat,
int32_t aStride, size_t aSurfaceAllocationSize);
static already_AddRefed<DrawTarget> CreateRecordingDrawTarget(
DrawEventRecorder* aRecorder, DrawTarget* aDT, IntRect aRect);
static already_AddRefed<DrawTarget> CreateDrawTargetForData(
BackendType aBackend, unsigned char* aData, const IntSize& aSize,
int32_t aStride, SurfaceFormat aFormat, bool aUninitialized = false);
#ifdef XP_DARWIN
static already_AddRefed<ScaledFont> CreateScaledFontForMacFont(
CGFontRef aCGFont, const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
const DeviceColor& aFontSmoothingBackgroundColor,
bool aUseFontSmoothing = true, bool aApplySyntheticBold = false);
#endif
#ifdef MOZ_WIDGET_GTK
static already_AddRefed<ScaledFont> CreateScaledFontForFontconfigFont(
const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
RefPtr<SharedFTFace> aFace, FcPattern* aPattern);
#endif
#ifdef MOZ_WIDGET_ANDROID
static already_AddRefed<ScaledFont> CreateScaledFontForFreeTypeFont(
const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
RefPtr<SharedFTFace> aFace, bool aApplySyntheticBold = false);
#endif
/**
* This creates a NativeFontResource from TrueType data.
*
* @param aData Pointer to the data
* @param aSize Size of the TrueType data
* @param aFontType Type of NativeFontResource that should be created.
* @param aFontContext Optional native font context to be used to create the
* NativeFontResource.
* @return a NativeFontResource of nullptr if failed.
*/
static already_AddRefed<NativeFontResource> CreateNativeFontResource(
uint8_t* aData, uint32_t aSize, FontType aFontType,
void* aFontContext = nullptr);
/**
* This creates an unscaled font of the given type based on font descriptor
* data retrieved from ScaledFont::GetFontDescriptor.
*/
static already_AddRefed<UnscaledFont> CreateUnscaledFontFromFontDescriptor(
FontType aType, const uint8_t* aData, uint32_t aDataLength,
uint32_t aIndex);
/**
* This creates a simple data source surface for a certain size. It allocates
* new memory for the surface. This memory is freed when the surface is
* destroyed. The caller is responsible for handing the case where nullptr
* is returned. The surface is not zeroed unless requested.
*/
static already_AddRefed<DataSourceSurface> CreateDataSourceSurface(
const IntSize& aSize, SurfaceFormat aFormat, bool aZero = false);
/**
* This creates a simple data source surface for a certain size with a
* specific stride, which must be large enough to fit all pixels.
* It allocates new memory for the surface. This memory is freed when
* the surface is destroyed. The caller is responsible for handling the case
* where nullptr is returned. The surface is not zeroed unless requested.
*/
static already_AddRefed<DataSourceSurface> CreateDataSourceSurfaceWithStride(
const IntSize& aSize, SurfaceFormat aFormat, int32_t aStride,
bool aZero = false);
typedef void (*SourceSurfaceDeallocator)(void* aClosure);
/**
* This creates a simple data source surface for some existing data. It will
* wrap this data and the data for this source surface.
*
* We can provide a custom destroying function for |aData|. This will be
* called in the surface dtor using |aDeallocator| and the |aClosure|. If
* there are errors during construction(return a nullptr surface), the caller
* is responsible for the deallocation.
*
* If there is no destroying function, the caller is responsible for
* deallocating the aData memory only after destruction of this
* DataSourceSurface.
*/
static already_AddRefed<DataSourceSurface> CreateWrappingDataSourceSurface(
uint8_t* aData, int32_t aStride, const IntSize& aSize,
SurfaceFormat aFormat, SourceSurfaceDeallocator aDeallocator = nullptr,
void* aClosure = nullptr);
static void CopyDataSourceSurface(DataSourceSurface* aSource,
DataSourceSurface* aDest);
static already_AddRefed<DrawEventRecorder> CreateEventRecorderForFile(
const char_type* aFilename);
static void SetGlobalEventRecorder(DrawEventRecorder* aRecorder);
static uint32_t GetMaxSurfaceSize(BackendType aType);
static LogForwarder* GetLogForwarder() {
return sConfig ? sConfig->mLogForwarder : nullptr;
}
private:
static Config* sConfig;
public:
static void PurgeAllCaches();
static already_AddRefed<DrawTarget> CreateDualDrawTarget(DrawTarget* targetA,
DrawTarget* targetB);
static already_AddRefed<SourceSurface> CreateDualSourceSurface(
SourceSurface* sourceA, SourceSurface* sourceB);
/*
* This creates a new tiled DrawTarget. When a tiled drawtarget is used the
* drawing is distributed over number of tiles which may each hold an
* individual offset. The tiles in the set must each have the same backend
* and format.
*/
static already_AddRefed<DrawTarget> CreateTiledDrawTarget(
const TileSet& aTileSet);
static already_AddRefed<DrawTarget> CreateOffsetDrawTarget(
DrawTarget* aDrawTarget, IntPoint aTileOrigin);
static bool DoesBackendSupportDataDrawtarget(BackendType aType);
static void SetBGRSubpixelOrder(bool aBGR);
static bool GetBGRSubpixelOrder();
private:
static bool mBGRSubpixelOrder;
public:
#ifdef USE_SKIA
static already_AddRefed<DrawTarget> CreateDrawTargetWithSkCanvas(
SkCanvas* aCanvas);
#endif
#ifdef MOZ_ENABLE_FREETYPE
static void SetFTLibrary(FT_Library aFTLibrary);
static FT_Library GetFTLibrary();
static FT_Library NewFTLibrary();
static void ReleaseFTLibrary(FT_Library aFTLibrary);
static void LockFTLibrary(FT_Library aFTLibrary);
static void UnlockFTLibrary(FT_Library aFTLibrary);
static FT_Face NewFTFace(FT_Library aFTLibrary, const char* aFileName,
int aFaceIndex);
static already_AddRefed<SharedFTFace> NewSharedFTFace(FT_Library aFTLibrary,
const char* aFilename,
int aFaceIndex);
static FT_Face NewFTFaceFromData(FT_Library aFTLibrary, const uint8_t* aData,
size_t aDataSize, int aFaceIndex);
static already_AddRefed<SharedFTFace> NewSharedFTFaceFromData(
FT_Library aFTLibrary, const uint8_t* aData, size_t aDataSize,
int aFaceIndex, SharedFTFaceData* aSharedData = nullptr);
static void ReleaseFTFace(FT_Face aFace);
static FT_Error LoadFTGlyph(FT_Face aFace, uint32_t aGlyphIndex,
int32_t aFlags);
private:
static FT_Library mFTLibrary;
static StaticMutex mFTLock;
public:
#endif
#ifdef WIN32
static already_AddRefed<DrawTarget> CreateDrawTargetForD3D11Texture(
ID3D11Texture2D* aTexture, SurfaceFormat aFormat);
/*
* Attempts to create and install a D2D1 device from the supplied Direct3D11
* device. Returns true on success, or false on failure and leaves the
* D2D1/Direct3D11 devices unset.
*/
static bool SetDirect3D11Device(ID3D11Device* aDevice);
static RefPtr<ID3D11Device> GetDirect3D11Device();
static RefPtr<ID2D1Device> GetD2D1Device(uint32_t* aOutSeqNo = nullptr);
static bool HasD2D1Device();
static RefPtr<IDWriteFactory> GetDWriteFactory();
static RefPtr<IDWriteFactory> EnsureDWriteFactory();
static bool SupportsD2D1();
static RefPtr<IDWriteFontCollection> GetDWriteSystemFonts(
bool aUpdate = false);
static RefPtr<ID2D1DeviceContext> GetD2DDeviceContext();
static uint64_t GetD2DVRAMUsageDrawTarget();
static uint64_t GetD2DVRAMUsageSourceSurface();
static void D2DCleanup();
static already_AddRefed<ScaledFont> CreateScaledFontForDWriteFont(
IDWriteFontFace* aFontFace, const gfxFontStyle* aStyle,
const RefPtr<UnscaledFont>& aUnscaledFont, Float aSize,
bool aUseEmbeddedBitmap, int aRenderingMode,
IDWriteRenderingParams* aParams, Float aGamma, Float aContrast,
Float aClearTypeLevel);
static already_AddRefed<ScaledFont> CreateScaledFontForGDIFont(
const void* aLogFont, const RefPtr<UnscaledFont>& aUnscaledFont,
Float aSize);
static void SetSystemTextQuality(uint8_t aQuality);
static already_AddRefed<DataSourceSurface>
CreateBGRA8DataSourceSurfaceForD3D11Texture(ID3D11Texture2D* aSrcTexture);
static bool ReadbackTexture(layers::TextureData* aDestCpuTexture,
ID3D11Texture2D* aSrcTexture);
static bool ReadbackTexture(DataSourceSurface* aDestCpuTexture,
ID3D11Texture2D* aSrcTexture);
private:
static StaticRefPtr<ID2D1Device> mD2D1Device;
static StaticRefPtr<ID3D11Device> mD3D11Device;
static StaticRefPtr<IDWriteFactory> mDWriteFactory;
static bool mDWriteFactoryInitialized;
static StaticRefPtr<IDWriteFontCollection> mDWriteSystemFonts;
static StaticRefPtr<ID2D1DeviceContext> mMTDC;
static StaticRefPtr<ID2D1DeviceContext> mOffMTDC;
static bool ReadbackTexture(uint8_t* aDestData, int32_t aDestStride,
ID3D11Texture2D* aSrcTexture);
// DestTextureT can be TextureData or DataSourceSurface.
template <typename DestTextureT>
static bool ConvertSourceAndRetryReadback(DestTextureT* aDestCpuTexture,
ID3D11Texture2D* aSrcTexture);
protected:
// This guards access to the singleton devices above, as well as the
// singleton devices in DrawTargetD2D1.
static StaticMutex mDeviceLock;
// This synchronizes access between different D2D drawtargets and their
// implied dependency graph.
static StaticMutex mDTDependencyLock;
friend class DrawTargetD2D1;
#endif // WIN32
private:
static DrawEventRecorder* mRecorder;
};
class MOZ_RAII AutoSerializeWithMoz2D final {
public:
explicit AutoSerializeWithMoz2D(BackendType aBackendType);
~AutoSerializeWithMoz2D();
private:
#if defined(WIN32)
RefPtr<ID2D1Multithread> mMT;
#endif
};
} // namespace gfx
} // namespace mozilla
#endif // _MOZILLA_GFX_2D_H