mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-10-31 22:25:30 +00:00
26abc3b5f2
Update our opus implementation to a prerelease of 1.1. This brings many performance and encoder improvements and we believe it is stable enough to switch. This import does not enable any of the new assembly optimizations. The imported code is https://git.xiph.org/opus.git master commit f2446c25c6519bae190152f7a579310b83dc43fd.
114 lines
5.2 KiB
C
114 lines
5.2 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "SigProc_FIX.h"
|
|
#include "resampler_private.h"
|
|
|
|
/* Upsample by a factor 2, high quality */
|
|
/* Uses 2nd order allpass filters for the 2x upsampling, followed by a */
|
|
/* notch filter just above Nyquist. */
|
|
void silk_resampler_private_up2_HQ(
|
|
opus_int32 *S, /* I/O Resampler state [ 6 ] */
|
|
opus_int16 *out, /* O Output signal [ 2 * len ] */
|
|
const opus_int16 *in, /* I Input signal [ len ] */
|
|
opus_int32 len /* I Number of input samples */
|
|
)
|
|
{
|
|
opus_int32 k;
|
|
opus_int32 in32, out32_1, out32_2, Y, X;
|
|
|
|
silk_assert( silk_resampler_up2_hq_0[ 0 ] > 0 );
|
|
silk_assert( silk_resampler_up2_hq_0[ 1 ] > 0 );
|
|
silk_assert( silk_resampler_up2_hq_0[ 2 ] < 0 );
|
|
silk_assert( silk_resampler_up2_hq_1[ 0 ] > 0 );
|
|
silk_assert( silk_resampler_up2_hq_1[ 1 ] > 0 );
|
|
silk_assert( silk_resampler_up2_hq_1[ 2 ] < 0 );
|
|
|
|
/* Internal variables and state are in Q10 format */
|
|
for( k = 0; k < len; k++ ) {
|
|
/* Convert to Q10 */
|
|
in32 = silk_LSHIFT( (opus_int32)in[ k ], 10 );
|
|
|
|
/* First all-pass section for even output sample */
|
|
Y = silk_SUB32( in32, S[ 0 ] );
|
|
X = silk_SMULWB( Y, silk_resampler_up2_hq_0[ 0 ] );
|
|
out32_1 = silk_ADD32( S[ 0 ], X );
|
|
S[ 0 ] = silk_ADD32( in32, X );
|
|
|
|
/* Second all-pass section for even output sample */
|
|
Y = silk_SUB32( out32_1, S[ 1 ] );
|
|
X = silk_SMULWB( Y, silk_resampler_up2_hq_0[ 1 ] );
|
|
out32_2 = silk_ADD32( S[ 1 ], X );
|
|
S[ 1 ] = silk_ADD32( out32_1, X );
|
|
|
|
/* Third all-pass section for even output sample */
|
|
Y = silk_SUB32( out32_2, S[ 2 ] );
|
|
X = silk_SMLAWB( Y, Y, silk_resampler_up2_hq_0[ 2 ] );
|
|
out32_1 = silk_ADD32( S[ 2 ], X );
|
|
S[ 2 ] = silk_ADD32( out32_2, X );
|
|
|
|
/* Apply gain in Q15, convert back to int16 and store to output */
|
|
out[ 2 * k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( out32_1, 10 ) );
|
|
|
|
/* First all-pass section for odd output sample */
|
|
Y = silk_SUB32( in32, S[ 3 ] );
|
|
X = silk_SMULWB( Y, silk_resampler_up2_hq_1[ 0 ] );
|
|
out32_1 = silk_ADD32( S[ 3 ], X );
|
|
S[ 3 ] = silk_ADD32( in32, X );
|
|
|
|
/* Second all-pass section for odd output sample */
|
|
Y = silk_SUB32( out32_1, S[ 4 ] );
|
|
X = silk_SMULWB( Y, silk_resampler_up2_hq_1[ 1 ] );
|
|
out32_2 = silk_ADD32( S[ 4 ], X );
|
|
S[ 4 ] = silk_ADD32( out32_1, X );
|
|
|
|
/* Third all-pass section for odd output sample */
|
|
Y = silk_SUB32( out32_2, S[ 5 ] );
|
|
X = silk_SMLAWB( Y, Y, silk_resampler_up2_hq_1[ 2 ] );
|
|
out32_1 = silk_ADD32( S[ 5 ], X );
|
|
S[ 5 ] = silk_ADD32( out32_2, X );
|
|
|
|
/* Apply gain in Q15, convert back to int16 and store to output */
|
|
out[ 2 * k + 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( out32_1, 10 ) );
|
|
}
|
|
}
|
|
|
|
void silk_resampler_private_up2_HQ_wrapper(
|
|
void *SS, /* I/O Resampler state (unused) */
|
|
opus_int16 *out, /* O Output signal [ 2 * len ] */
|
|
const opus_int16 *in, /* I Input signal [ len ] */
|
|
opus_int32 len /* I Number of input samples */
|
|
)
|
|
{
|
|
silk_resampler_state_struct *S = (silk_resampler_state_struct *)SS;
|
|
silk_resampler_private_up2_HQ( S->sIIR, out, in, len );
|
|
}
|