gecko-dev/gfx/ycbcr/yuv_convert.cpp
Nicholas Nethercote 18fae65f38 Bug 1563139 - Remove StaticPrefs.h. r=glandium
This requires replacing inclusions of it with inclusions of more specific prefs
files.

The exception is that StaticPrefsAll.h, which is equivalent to StaticPrefs.h,
and is used in `Codegen.py` because doing something smarter is tricky and
suitable for a follow-up. As a result, any change to StaticPrefList.yaml will
still trigger recompilation of all the generated DOM bindings files, but that's
still a big improvement over trigger recompilation of every file that uses
static prefs.

Most of the changes in this commit are very boring. The only changes that are
not boring are modules/libpref/*, Codegen.py, and ServoBindings.toml.

Differential Revision: https://phabricator.services.mozilla.com/D39138

--HG--
extra : moz-landing-system : lando
2019-07-26 01:10:23 +00:00

547 lines
20 KiB
C++

// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This webpage shows layout of YV12 and other YUV formats
// http://www.fourcc.org/yuv.php
// The actual conversion is best described here
// http://en.wikipedia.org/wiki/YUV
// An article on optimizing YUV conversion using tables instead of multiplies
// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
//
// YV12 is a full plane of Y and a half height, half width chroma planes
// YV16 is a full plane of Y and a full height, half width chroma planes
// YV24 is a full plane of Y and a full height, full width chroma planes
//
// ARGB pixel format is output, which on little endian is stored as BGRA.
// The alpha is set to 255, allowing the application to use RGBA or RGB32.
#include "yuv_convert.h"
#include "mozilla/StaticPrefs_gfx.h"
#include "libyuv.h"
#include "scale_yuv_argb.h"
// Header for low level row functions.
#include "yuv_row.h"
#include "mozilla/SSE.h"
namespace mozilla {
namespace gfx {
// 16.16 fixed point arithmetic
const int kFractionBits = 16;
const int kFractionMax = 1 << kFractionBits;
const int kFractionMask = ((1 << kFractionBits) - 1);
YUVType TypeFromSize(int ywidth,
int yheight,
int cbcrwidth,
int cbcrheight)
{
if (ywidth == cbcrwidth && yheight == cbcrheight) {
return YV24;
}
else if ((ywidth + 1) / 2 == cbcrwidth && yheight == cbcrheight) {
return YV16;
}
else {
return YV12;
}
}
libyuv::FourCC FourCCFromYUVType(YUVType aYUVType)
{
if (aYUVType == YV24) {
return libyuv::FOURCC_I444;
} else if (aYUVType == YV16) {
return libyuv::FOURCC_I422;
} else if (aYUVType == YV12) {
return libyuv::FOURCC_I420;
} else {
return libyuv::FOURCC_ANY;
}
}
// Convert a frame of YUV to 32 bit ARGB.
void ConvertYCbCrToRGB32(const uint8* y_buf, const uint8* u_buf,
const uint8* v_buf, uint8* rgb_buf, int pic_x,
int pic_y, int pic_width, int pic_height, int y_pitch,
int uv_pitch, int rgb_pitch, YUVType yuv_type,
YUVColorSpace yuv_color_space) {
// Deprecated function's conversion is accurate.
// libyuv converion is a bit inaccurate to get performance. It dynamically
// calculates RGB from YUV to use simd. In it, signed byte is used for
// conversion's coefficient, but it requests 129. libyuv cut 129 to 127. And
// only 6 bits are used for a decimal part during the dynamic calculation.
//
// The function is still fast on some old intel chips.
// See Bug 1256475.
bool use_deprecated = StaticPrefs::gfx_ycbcr_accurate_conversion() ||
(supports_mmx() && supports_sse() && !supports_sse3() &&
yuv_color_space == YUVColorSpace::BT601);
// The deprecated function only support BT601.
// See Bug 1210357.
if (yuv_color_space != YUVColorSpace::BT601) {
use_deprecated = false;
}
if (use_deprecated) {
ConvertYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, rgb_buf, pic_x, pic_y,
pic_width, pic_height, y_pitch, uv_pitch,
rgb_pitch, yuv_type);
return;
}
decltype(libyuv::U444ToARGB)* fConvertYUVToARGB = nullptr;
switch (yuv_type) {
case YV24: {
const uint8* src_y = y_buf + y_pitch * pic_y + pic_x;
const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x;
const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x;
switch (yuv_color_space) {
case YUVColorSpace::BT2020:
fConvertYUVToARGB = libyuv::U444ToARGB;
break;
case YUVColorSpace::BT709:
fConvertYUVToARGB = libyuv::H444ToARGB;
break;
default:
fConvertYUVToARGB = libyuv::I444ToARGB;
break;
}
DebugOnly<int> err =
fConvertYUVToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch,
rgb_buf, rgb_pitch, pic_width, pic_height);
MOZ_ASSERT(!err);
break;
}
case YV16: {
const uint8* src_y = y_buf + y_pitch * pic_y + pic_x;
const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x / 2;
const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x / 2;
switch (yuv_color_space) {
case YUVColorSpace::BT2020:
fConvertYUVToARGB = libyuv::U422ToARGB;
break;
case YUVColorSpace::BT709:
fConvertYUVToARGB = libyuv::H422ToARGB;
break;
default:
fConvertYUVToARGB = libyuv::I422ToARGB;
break;
}
DebugOnly<int> err =
fConvertYUVToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch,
rgb_buf, rgb_pitch, pic_width, pic_height);
MOZ_ASSERT(!err);
break;
}
default: {
MOZ_ASSERT(yuv_type == YV12);
const uint8* src_y = y_buf + y_pitch * pic_y + pic_x;
const uint8* src_u = u_buf + (uv_pitch * pic_y + pic_x) / 2;
const uint8* src_v = v_buf + (uv_pitch * pic_y + pic_x) / 2;
switch (yuv_color_space) {
case YUVColorSpace::BT2020:
fConvertYUVToARGB = libyuv::U420ToARGB;
break;
case YUVColorSpace::BT709:
fConvertYUVToARGB = libyuv::H420ToARGB;
break;
default:
fConvertYUVToARGB = libyuv::I420ToARGB;
break;
}
DebugOnly<int> err =
fConvertYUVToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch,
rgb_buf, rgb_pitch, pic_width, pic_height);
MOZ_ASSERT(!err);
break;
}
}
}
// Convert a frame of YUV to 32 bit ARGB.
void ConvertYCbCrToRGB32_deprecated(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int pic_x,
int pic_y,
int pic_width,
int pic_height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type) {
unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
unsigned int x_shift = yuv_type == YV24 ? 0 : 1;
// Test for SSE because the optimized code uses movntq, which is not part of MMX.
bool has_sse = supports_mmx() && supports_sse();
// There is no optimized YV24 SSE routine so we check for this and
// fall back to the C code.
has_sse &= yuv_type != YV24;
bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0;
int x_width = odd_pic_x ? pic_width - 1 : pic_width;
for (int y = pic_y; y < pic_height + pic_y; ++y) {
uint8* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch;
const uint8* y_ptr = y_buf + y * y_pitch + pic_x;
const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);
const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);
if (odd_pic_x) {
// Handle the single odd pixel manually and use the
// fast routines for the remaining.
FastConvertYUVToRGB32Row_C(y_ptr++,
u_ptr++,
v_ptr++,
rgb_row,
1,
x_shift);
rgb_row += 4;
}
if (has_sse) {
FastConvertYUVToRGB32Row(y_ptr,
u_ptr,
v_ptr,
rgb_row,
x_width);
}
else {
FastConvertYUVToRGB32Row_C(y_ptr,
u_ptr,
v_ptr,
rgb_row,
x_width,
x_shift);
}
}
// MMX used for FastConvertYUVToRGB32Row requires emms instruction.
if (has_sse)
EMMS();
}
// C version does 8 at a time to mimic MMX code
static void FilterRows_C(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
int source_width, int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
uint8* end = ybuf + source_width;
do {
ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8;
ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8;
ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8;
ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8;
ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8;
ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8;
ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8;
ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8;
y0_ptr += 8;
y1_ptr += 8;
ybuf += 8;
} while (ybuf < end);
}
#ifdef MOZILLA_MAY_SUPPORT_MMX
void FilterRows_MMX(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
int source_width, int source_y_fraction);
#endif
#ifdef MOZILLA_MAY_SUPPORT_SSE2
void FilterRows_SSE2(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
int source_width, int source_y_fraction);
#endif
static inline void FilterRows(uint8* ybuf, const uint8* y0_ptr,
const uint8* y1_ptr, int source_width,
int source_y_fraction) {
#ifdef MOZILLA_MAY_SUPPORT_SSE2
if (mozilla::supports_sse2()) {
FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
return;
}
#endif
#ifdef MOZILLA_MAY_SUPPORT_MMX
if (mozilla::supports_mmx()) {
FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
return;
}
#endif
FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
}
// Scale a frame of YUV to 32 bit ARGB.
void ScaleYCbCrToRGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int source_width,
int source_height,
int width,
int height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type,
YUVColorSpace yuv_color_space,
ScaleFilter filter) {
bool use_deprecated =
StaticPrefs::gfx_ycbcr_accurate_conversion() ||
#if defined(XP_WIN) && defined(_M_X64)
// libyuv does not support SIMD scaling on win 64bit. See Bug 1295927.
supports_sse3() ||
#endif
(supports_mmx() && supports_sse() && !supports_sse3());
// The deprecated function only support BT601.
// See Bug 1210357.
if (yuv_color_space != YUVColorSpace::BT601) {
use_deprecated = false;
}
if (use_deprecated) {
ScaleYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf,
rgb_buf,
source_width, source_height,
width, height,
y_pitch, uv_pitch,
rgb_pitch,
yuv_type,
ROTATE_0,
filter);
return;
}
DebugOnly<int> err =
libyuv::YUVToARGBScale(y_buf, y_pitch,
u_buf, uv_pitch,
v_buf, uv_pitch,
FourCCFromYUVType(yuv_type),
yuv_color_space,
source_width, source_height,
rgb_buf, rgb_pitch,
width, height,
libyuv::kFilterBilinear);
MOZ_ASSERT(!err);
return;
}
// Scale a frame of YUV to 32 bit ARGB.
void ScaleYCbCrToRGB32_deprecated(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int source_width,
int source_height,
int width,
int height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type,
Rotate view_rotate,
ScaleFilter filter) {
bool has_mmx = supports_mmx();
// 4096 allows 3 buffers to fit in 12k.
// Helps performance on CPU with 16K L1 cache.
// Large enough for 3830x2160 and 30" displays which are 2560x1600.
const int kFilterBufferSize = 4096;
// Disable filtering if the screen is too big (to avoid buffer overflows).
// This should never happen to regular users: they don't have monitors
// wider than 4096 pixels.
// TODO(fbarchard): Allow rotated videos to filter.
if (source_width > kFilterBufferSize || view_rotate)
filter = FILTER_NONE;
unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
// Diagram showing origin and direction of source sampling.
// ->0 4<-
// 7 3
//
// 6 5
// ->1 2<-
// Rotations that start at right side of image.
if ((view_rotate == ROTATE_180) ||
(view_rotate == ROTATE_270) ||
(view_rotate == MIRROR_ROTATE_0) ||
(view_rotate == MIRROR_ROTATE_90)) {
y_buf += source_width - 1;
u_buf += source_width / 2 - 1;
v_buf += source_width / 2 - 1;
source_width = -source_width;
}
// Rotations that start at bottom of image.
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_180) ||
(view_rotate == MIRROR_ROTATE_90) ||
(view_rotate == MIRROR_ROTATE_180)) {
y_buf += (source_height - 1) * y_pitch;
u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
source_height = -source_height;
}
// Handle zero sized destination.
if (width == 0 || height == 0)
return;
int source_dx = source_width * kFractionMax / width;
int source_dy = source_height * kFractionMax / height;
int source_dx_uv = source_dx;
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_270)) {
int tmp = height;
height = width;
width = tmp;
tmp = source_height;
source_height = source_width;
source_width = tmp;
int original_dx = source_dx;
int original_dy = source_dy;
source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits;
source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits;
source_dy = original_dx;
if (view_rotate == ROTATE_90) {
y_pitch = -1;
uv_pitch = -1;
source_height = -source_height;
} else {
y_pitch = 1;
uv_pitch = 1;
}
}
// Need padding because FilterRows() will write 1 to 16 extra pixels
// after the end for SSE2 version.
uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
uint8* ybuf =
reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
uint8* ubuf = ybuf + kFilterBufferSize;
uint8* vbuf = ubuf + kFilterBufferSize;
// TODO(fbarchard): Fixed point math is off by 1 on negatives.
int yscale_fixed = (source_height << kFractionBits) / height;
// TODO(fbarchard): Split this into separate function for better efficiency.
for (int y = 0; y < height; ++y) {
uint8* dest_pixel = rgb_buf + y * rgb_pitch;
int source_y_subpixel = (y * yscale_fixed);
if (yscale_fixed >= (kFractionMax * 2)) {
source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter.
}
int source_y = source_y_subpixel >> kFractionBits;
const uint8* y0_ptr = y_buf + source_y * y_pitch;
const uint8* y1_ptr = y0_ptr + y_pitch;
const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
const uint8* u1_ptr = u0_ptr + uv_pitch;
const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
const uint8* v1_ptr = v0_ptr + uv_pitch;
// vertical scaler uses 16.8 fixed point
int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
int source_uv_fraction =
((source_y_subpixel >> y_shift) & kFractionMask) >> 8;
const uint8* y_ptr = y0_ptr;
const uint8* u_ptr = u0_ptr;
const uint8* v_ptr = v0_ptr;
// Apply vertical filtering if necessary.
// TODO(fbarchard): Remove memcpy when not necessary.
if (filter & mozilla::gfx::FILTER_BILINEAR_V) {
if (yscale_fixed != kFractionMax &&
source_y_fraction && ((source_y + 1) < source_height)) {
FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
} else {
memcpy(ybuf, y0_ptr, source_width);
}
y_ptr = ybuf;
ybuf[source_width] = ybuf[source_width-1];
int uv_source_width = (source_width + 1) / 2;
if (yscale_fixed != kFractionMax &&
source_uv_fraction &&
(((source_y >> y_shift) + 1) < (source_height >> y_shift))) {
FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction);
FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction);
} else {
memcpy(ubuf, u0_ptr, uv_source_width);
memcpy(vbuf, v0_ptr, uv_source_width);
}
u_ptr = ubuf;
v_ptr = vbuf;
ubuf[uv_source_width] = ubuf[uv_source_width - 1];
vbuf[uv_source_width] = vbuf[uv_source_width - 1];
}
if (source_dx == kFractionMax) { // Not scaled
FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width);
} else if (filter & FILTER_BILINEAR_H) {
LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width, source_dx);
} else {
// Specialized scalers and rotation.
#if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86) && !defined(__clang__)
if(mozilla::supports_sse()) {
if (width == (source_width * 2)) {
DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
dest_pixel, width);
} else if ((source_dx & kFractionMask) == 0) {
// Scaling by integer scale factor. ie half.
ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
dest_pixel, width,
source_dx >> kFractionBits);
} else if (source_dx_uv == source_dx) { // Not rotated.
ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width, source_dx);
} else {
RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
dest_pixel, width,
source_dx >> kFractionBits,
source_dx_uv >> kFractionBits);
}
}
else {
ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr,
dest_pixel, width, source_dx);
}
#else
(void)source_dx_uv;
ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width, source_dx);
#endif
}
}
// MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms.
if (has_mmx)
EMMS();
}
void ConvertYCbCrAToARGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
const uint8* a_buf,
uint8* argb_buf,
int pic_width,
int pic_height,
int ya_pitch,
int uv_pitch,
int argb_pitch) {
// The downstream graphics stack expects an attenuated input, hence why the
// attenuation parameter is set.
DebugOnly<int> err = libyuv::I420AlphaToARGB(y_buf, ya_pitch,
u_buf, uv_pitch,
v_buf, uv_pitch,
a_buf, ya_pitch,
argb_buf, argb_pitch,
pic_width, pic_height, 1);
MOZ_ASSERT(!err);
}
} // namespace gfx
} // namespace mozilla