mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-01 17:23:59 +00:00
aaf5f84d8f
Differential Revision: https://phabricator.services.mozilla.com/D78938
1850 lines
58 KiB
C++
1850 lines
58 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <algorithm>
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/IntegerPrintfMacros.h"
|
|
#include "mozilla/ReentrantMonitor.h"
|
|
#include "nsIBufferedStreams.h"
|
|
#include "nsICloneableInputStream.h"
|
|
#include "nsIPipe.h"
|
|
#include "nsIEventTarget.h"
|
|
#include "nsITellableStream.h"
|
|
#include "mozilla/RefPtr.h"
|
|
#include "nsSegmentedBuffer.h"
|
|
#include "nsStreamUtils.h"
|
|
#include "nsCOMPtr.h"
|
|
#include "nsCRT.h"
|
|
#include "mozilla/Logging.h"
|
|
#include "nsIClassInfoImpl.h"
|
|
#include "nsAlgorithm.h"
|
|
#include "nsMemory.h"
|
|
#include "nsPipe.h"
|
|
#include "nsIAsyncInputStream.h"
|
|
#include "nsIAsyncOutputStream.h"
|
|
#include "nsIInputStreamPriority.h"
|
|
|
|
using namespace mozilla;
|
|
|
|
#ifdef LOG
|
|
# undef LOG
|
|
#endif
|
|
//
|
|
// set MOZ_LOG=nsPipe:5
|
|
//
|
|
static LazyLogModule sPipeLog("nsPipe");
|
|
#define LOG(args) MOZ_LOG(sPipeLog, mozilla::LogLevel::Debug, args)
|
|
|
|
#define DEFAULT_SEGMENT_SIZE 4096
|
|
#define DEFAULT_SEGMENT_COUNT 16
|
|
|
|
class nsPipe;
|
|
class nsPipeEvents;
|
|
class nsPipeInputStream;
|
|
class nsPipeOutputStream;
|
|
class AutoReadSegment;
|
|
|
|
namespace {
|
|
|
|
enum MonitorAction { DoNotNotifyMonitor, NotifyMonitor };
|
|
|
|
enum SegmentChangeResult { SegmentNotChanged, SegmentAdvanceBufferRead };
|
|
|
|
} // namespace
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// this class is used to delay notifications until the end of a particular
|
|
// scope. it helps avoid the complexity of issuing callbacks while inside
|
|
// a critical section.
|
|
class nsPipeEvents {
|
|
public:
|
|
nsPipeEvents() = default;
|
|
~nsPipeEvents();
|
|
|
|
inline void NotifyInputReady(nsIAsyncInputStream* aStream,
|
|
nsIInputStreamCallback* aCallback) {
|
|
mInputList.AppendElement(InputEntry(aStream, aCallback));
|
|
}
|
|
|
|
inline void NotifyOutputReady(nsIAsyncOutputStream* aStream,
|
|
nsIOutputStreamCallback* aCallback) {
|
|
MOZ_DIAGNOSTIC_ASSERT(!mOutputCallback);
|
|
mOutputStream = aStream;
|
|
mOutputCallback = aCallback;
|
|
}
|
|
|
|
private:
|
|
struct InputEntry {
|
|
InputEntry(nsIAsyncInputStream* aStream, nsIInputStreamCallback* aCallback)
|
|
: mStream(aStream), mCallback(aCallback) {
|
|
MOZ_DIAGNOSTIC_ASSERT(mStream);
|
|
MOZ_DIAGNOSTIC_ASSERT(mCallback);
|
|
}
|
|
|
|
nsCOMPtr<nsIAsyncInputStream> mStream;
|
|
nsCOMPtr<nsIInputStreamCallback> mCallback;
|
|
};
|
|
|
|
nsTArray<InputEntry> mInputList;
|
|
|
|
nsCOMPtr<nsIAsyncOutputStream> mOutputStream;
|
|
nsCOMPtr<nsIOutputStreamCallback> mOutputCallback;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// This class is used to maintain input stream state. Its broken out from the
|
|
// nsPipeInputStream class because generally the nsPipe should be modifying
|
|
// this state and not the input stream itself.
|
|
struct nsPipeReadState {
|
|
nsPipeReadState()
|
|
: mReadCursor(nullptr),
|
|
mReadLimit(nullptr),
|
|
mSegment(0),
|
|
mAvailable(0),
|
|
mActiveRead(false),
|
|
mNeedDrain(false) {}
|
|
|
|
char* mReadCursor;
|
|
char* mReadLimit;
|
|
int32_t mSegment;
|
|
uint32_t mAvailable;
|
|
|
|
// This flag is managed using the AutoReadSegment RAII stack class.
|
|
bool mActiveRead;
|
|
|
|
// Set to indicate that the input stream has closed and should be drained,
|
|
// but that drain has been delayed due to an active read. When the read
|
|
// completes, this flag indicate the drain should then be performed.
|
|
bool mNeedDrain;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// an input end of a pipe (maintained as a list of refs within the pipe)
|
|
class nsPipeInputStream final : public nsIAsyncInputStream,
|
|
public nsITellableStream,
|
|
public nsISearchableInputStream,
|
|
public nsICloneableInputStream,
|
|
public nsIClassInfo,
|
|
public nsIBufferedInputStream,
|
|
public nsIInputStreamPriority {
|
|
public:
|
|
NS_DECL_THREADSAFE_ISUPPORTS
|
|
NS_DECL_NSIINPUTSTREAM
|
|
NS_DECL_NSIASYNCINPUTSTREAM
|
|
NS_DECL_NSITELLABLESTREAM
|
|
NS_DECL_NSISEARCHABLEINPUTSTREAM
|
|
NS_DECL_NSICLONEABLEINPUTSTREAM
|
|
NS_DECL_NSICLASSINFO
|
|
NS_DECL_NSIBUFFEREDINPUTSTREAM
|
|
NS_DECL_NSIINPUTSTREAMPRIORITY
|
|
|
|
explicit nsPipeInputStream(nsPipe* aPipe)
|
|
: mPipe(aPipe),
|
|
mLogicalOffset(0),
|
|
mInputStatus(NS_OK),
|
|
mBlocking(true),
|
|
mBlocked(false),
|
|
mCallbackFlags(0),
|
|
mPriority(nsIRunnablePriority::PRIORITY_NORMAL) {}
|
|
|
|
nsPipeInputStream(const nsPipeInputStream& aOther)
|
|
: mPipe(aOther.mPipe),
|
|
mLogicalOffset(aOther.mLogicalOffset),
|
|
mInputStatus(aOther.mInputStatus),
|
|
mBlocking(aOther.mBlocking),
|
|
mBlocked(false),
|
|
mCallbackFlags(0),
|
|
mReadState(aOther.mReadState),
|
|
mPriority(nsIRunnablePriority::PRIORITY_NORMAL) {}
|
|
|
|
nsresult Fill();
|
|
void SetNonBlocking(bool aNonBlocking) { mBlocking = !aNonBlocking; }
|
|
|
|
uint32_t Available();
|
|
|
|
// synchronously wait for the pipe to become readable.
|
|
nsresult Wait();
|
|
|
|
// These two don't acquire the monitor themselves. Instead they
|
|
// expect their caller to have done so and to pass the monitor as
|
|
// evidence.
|
|
MonitorAction OnInputReadable(uint32_t aBytesWritten, nsPipeEvents&,
|
|
const ReentrantMonitorAutoEnter& ev);
|
|
MonitorAction OnInputException(nsresult, nsPipeEvents&,
|
|
const ReentrantMonitorAutoEnter& ev);
|
|
|
|
nsPipeReadState& ReadState() { return mReadState; }
|
|
|
|
const nsPipeReadState& ReadState() const { return mReadState; }
|
|
|
|
nsresult Status() const;
|
|
|
|
// A version of Status() that doesn't acquire the monitor.
|
|
nsresult Status(const ReentrantMonitorAutoEnter& ev) const;
|
|
|
|
private:
|
|
virtual ~nsPipeInputStream();
|
|
|
|
RefPtr<nsPipe> mPipe;
|
|
|
|
int64_t mLogicalOffset;
|
|
// Individual input streams can be closed without effecting the rest of the
|
|
// pipe. So track individual input stream status separately. |mInputStatus|
|
|
// is protected by |mPipe->mReentrantMonitor|.
|
|
nsresult mInputStatus;
|
|
bool mBlocking;
|
|
|
|
// these variables can only be accessed while inside the pipe's monitor
|
|
bool mBlocked;
|
|
nsCOMPtr<nsIInputStreamCallback> mCallback;
|
|
uint32_t mCallbackFlags;
|
|
|
|
// requires pipe's monitor; usually treat as an opaque token to pass to nsPipe
|
|
nsPipeReadState mReadState;
|
|
Atomic<uint32_t, Relaxed> mPriority;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// the output end of a pipe (allocated as a member of the pipe).
|
|
class nsPipeOutputStream : public nsIAsyncOutputStream, public nsIClassInfo {
|
|
public:
|
|
// since this class will be allocated as a member of the pipe, we do not
|
|
// need our own ref count. instead, we share the lifetime (the ref count)
|
|
// of the entire pipe. this macro is just convenience since it does not
|
|
// declare a mRefCount variable; however, don't let the name fool you...
|
|
// we are not inheriting from nsPipe ;-)
|
|
NS_DECL_ISUPPORTS_INHERITED
|
|
|
|
NS_DECL_NSIOUTPUTSTREAM
|
|
NS_DECL_NSIASYNCOUTPUTSTREAM
|
|
NS_DECL_NSICLASSINFO
|
|
|
|
explicit nsPipeOutputStream(nsPipe* aPipe)
|
|
: mPipe(aPipe),
|
|
mWriterRefCnt(0),
|
|
mLogicalOffset(0),
|
|
mBlocking(true),
|
|
mBlocked(false),
|
|
mWritable(true),
|
|
mCallbackFlags(0) {}
|
|
|
|
void SetNonBlocking(bool aNonBlocking) { mBlocking = !aNonBlocking; }
|
|
void SetWritable(bool aWritable) { mWritable = aWritable; }
|
|
|
|
// synchronously wait for the pipe to become writable.
|
|
nsresult Wait();
|
|
|
|
MonitorAction OnOutputWritable(nsPipeEvents&);
|
|
MonitorAction OnOutputException(nsresult, nsPipeEvents&);
|
|
|
|
private:
|
|
nsPipe* mPipe;
|
|
|
|
// separate refcnt so that we know when to close the producer
|
|
ThreadSafeAutoRefCnt mWriterRefCnt;
|
|
int64_t mLogicalOffset;
|
|
bool mBlocking;
|
|
|
|
// these variables can only be accessed while inside the pipe's monitor
|
|
bool mBlocked;
|
|
bool mWritable;
|
|
nsCOMPtr<nsIOutputStreamCallback> mCallback;
|
|
uint32_t mCallbackFlags;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
class nsPipe final : public nsIPipe {
|
|
public:
|
|
friend class nsPipeInputStream;
|
|
friend class nsPipeOutputStream;
|
|
friend class AutoReadSegment;
|
|
|
|
NS_DECL_THREADSAFE_ISUPPORTS
|
|
NS_DECL_NSIPIPE
|
|
|
|
// nsPipe methods:
|
|
nsPipe();
|
|
|
|
private:
|
|
~nsPipe();
|
|
|
|
//
|
|
// Methods below may only be called while inside the pipe's monitor. Some
|
|
// of these methods require passing a ReentrantMonitorAutoEnter to prove the
|
|
// monitor is held.
|
|
//
|
|
|
|
void PeekSegment(const nsPipeReadState& aReadState, uint32_t aIndex,
|
|
char*& aCursor, char*& aLimit);
|
|
SegmentChangeResult AdvanceReadSegment(nsPipeReadState& aReadState,
|
|
const ReentrantMonitorAutoEnter& ev);
|
|
bool ReadSegmentBeingWritten(nsPipeReadState& aReadState);
|
|
uint32_t CountSegmentReferences(int32_t aSegment);
|
|
void SetAllNullReadCursors();
|
|
bool AllReadCursorsMatchWriteCursor();
|
|
void RollBackAllReadCursors(char* aWriteCursor);
|
|
void UpdateAllReadCursors(char* aWriteCursor);
|
|
void ValidateAllReadCursors();
|
|
uint32_t GetBufferSegmentCount(const nsPipeReadState& aReadState,
|
|
const ReentrantMonitorAutoEnter& ev) const;
|
|
bool IsAdvanceBufferFull(const ReentrantMonitorAutoEnter& ev) const;
|
|
|
|
//
|
|
// methods below may be called while outside the pipe's monitor
|
|
//
|
|
|
|
void DrainInputStream(nsPipeReadState& aReadState, nsPipeEvents& aEvents);
|
|
nsresult GetWriteSegment(char*& aSegment, uint32_t& aSegmentLen);
|
|
void AdvanceWriteCursor(uint32_t aCount);
|
|
|
|
void OnInputStreamException(nsPipeInputStream* aStream, nsresult aReason);
|
|
void OnPipeException(nsresult aReason, bool aOutputOnly = false);
|
|
|
|
nsresult CloneInputStream(nsPipeInputStream* aOriginal,
|
|
nsIInputStream** aCloneOut);
|
|
|
|
// methods below should only be called by AutoReadSegment
|
|
nsresult GetReadSegment(nsPipeReadState& aReadState, const char*& aSegment,
|
|
uint32_t& aLength);
|
|
void ReleaseReadSegment(nsPipeReadState& aReadState, nsPipeEvents& aEvents);
|
|
void AdvanceReadCursor(nsPipeReadState& aReadState, uint32_t aCount);
|
|
|
|
// We can't inherit from both nsIInputStream and nsIOutputStream
|
|
// because they collide on their Close method. Consequently we nest their
|
|
// implementations to avoid the extra object allocation.
|
|
nsPipeOutputStream mOutput;
|
|
|
|
// Since the input stream can be cloned, we may have more than one. Use
|
|
// a weak reference as the streams will clear their entry here in their
|
|
// destructor. Using a strong reference would create a reference cycle.
|
|
// Only usable while mReentrantMonitor is locked.
|
|
nsTArray<nsPipeInputStream*> mInputList;
|
|
|
|
// But hold a strong ref to our original input stream. For backward
|
|
// compatibility we need to be able to consistently return this same
|
|
// object from GetInputStream(). Note, mOriginalInput is also stored
|
|
// in mInputList as a weak ref.
|
|
RefPtr<nsPipeInputStream> mOriginalInput;
|
|
|
|
ReentrantMonitor mReentrantMonitor;
|
|
nsSegmentedBuffer mBuffer;
|
|
|
|
// The maximum number of segments to allow to be buffered in advance
|
|
// of the fastest reader. This is collection of segments is called
|
|
// the "advance buffer".
|
|
uint32_t mMaxAdvanceBufferSegmentCount;
|
|
|
|
int32_t mWriteSegment;
|
|
char* mWriteCursor;
|
|
char* mWriteLimit;
|
|
|
|
// |mStatus| is protected by |mReentrantMonitor|.
|
|
nsresult mStatus;
|
|
bool mInited;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// RAII class representing an active read segment. When it goes out of scope
|
|
// it automatically updates the read cursor and releases the read segment.
|
|
class MOZ_STACK_CLASS AutoReadSegment final {
|
|
public:
|
|
AutoReadSegment(nsPipe* aPipe, nsPipeReadState& aReadState,
|
|
uint32_t aMaxLength)
|
|
: mPipe(aPipe),
|
|
mReadState(aReadState),
|
|
mStatus(NS_ERROR_FAILURE),
|
|
mSegment(nullptr),
|
|
mLength(0),
|
|
mOffset(0) {
|
|
MOZ_DIAGNOSTIC_ASSERT(mPipe);
|
|
MOZ_DIAGNOSTIC_ASSERT(!mReadState.mActiveRead);
|
|
mStatus = mPipe->GetReadSegment(mReadState, mSegment, mLength);
|
|
if (NS_SUCCEEDED(mStatus)) {
|
|
MOZ_DIAGNOSTIC_ASSERT(mReadState.mActiveRead);
|
|
MOZ_DIAGNOSTIC_ASSERT(mSegment);
|
|
mLength = std::min(mLength, aMaxLength);
|
|
MOZ_DIAGNOSTIC_ASSERT(mLength);
|
|
}
|
|
}
|
|
|
|
~AutoReadSegment() {
|
|
if (NS_SUCCEEDED(mStatus)) {
|
|
if (mOffset) {
|
|
mPipe->AdvanceReadCursor(mReadState, mOffset);
|
|
} else {
|
|
nsPipeEvents events;
|
|
mPipe->ReleaseReadSegment(mReadState, events);
|
|
}
|
|
}
|
|
MOZ_DIAGNOSTIC_ASSERT(!mReadState.mActiveRead);
|
|
}
|
|
|
|
nsresult Status() const { return mStatus; }
|
|
|
|
const char* Data() const {
|
|
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
|
|
MOZ_DIAGNOSTIC_ASSERT(mSegment);
|
|
return mSegment + mOffset;
|
|
}
|
|
|
|
uint32_t Length() const {
|
|
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
|
|
MOZ_DIAGNOSTIC_ASSERT(mLength >= mOffset);
|
|
return mLength - mOffset;
|
|
}
|
|
|
|
void Advance(uint32_t aCount) {
|
|
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
|
|
MOZ_DIAGNOSTIC_ASSERT(aCount <= (mLength - mOffset));
|
|
mOffset += aCount;
|
|
}
|
|
|
|
nsPipeReadState& ReadState() const { return mReadState; }
|
|
|
|
private:
|
|
// guaranteed to remain alive due to limited stack lifetime of AutoReadSegment
|
|
nsPipe* mPipe;
|
|
nsPipeReadState& mReadState;
|
|
nsresult mStatus;
|
|
const char* mSegment;
|
|
uint32_t mLength;
|
|
uint32_t mOffset;
|
|
};
|
|
|
|
//
|
|
// NOTES on buffer architecture:
|
|
//
|
|
// +-----------------+ - - mBuffer.GetSegment(0)
|
|
// | |
|
|
// + - - - - - - - - + - - nsPipeReadState.mReadCursor
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// +-----------------+ - - nsPipeReadState.mReadLimit
|
|
// |
|
|
// +-----------------+
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// +-----------------+
|
|
// |
|
|
// +-----------------+ - - mBuffer.GetSegment(mWriteSegment)
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// |/////////////////|
|
|
// + - - - - - - - - + - - mWriteCursor
|
|
// | |
|
|
// | |
|
|
// +-----------------+ - - mWriteLimit
|
|
//
|
|
// (shaded region contains data)
|
|
//
|
|
// NOTE: Each input stream produced by the nsPipe contains its own, separate
|
|
// nsPipeReadState. This means there are multiple mReadCursor and
|
|
// mReadLimit values in play. The pipe cannot discard old data until
|
|
// all mReadCursors have moved beyond that point in the stream.
|
|
//
|
|
// Likewise, each input stream reader will have it's own amount of
|
|
// buffered data. The pipe size threshold, however, is only applied
|
|
// to the input stream that is being read fastest. We call this
|
|
// the "advance buffer" in that its in advance of all readers. We
|
|
// allow slower input streams to buffer more data so that we don't
|
|
// stall processing of the faster input stream.
|
|
//
|
|
// NOTE: on some systems (notably OS/2), the heap allocator uses an arena for
|
|
// small allocations (e.g., 64 byte allocations). this means that buffers may
|
|
// be allocated back-to-back. in the diagram above, for example, mReadLimit
|
|
// would actually be pointing at the beginning of the next segment. when
|
|
// making changes to this file, please keep this fact in mind.
|
|
//
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsPipe methods:
|
|
//-----------------------------------------------------------------------------
|
|
|
|
nsPipe::nsPipe()
|
|
: mOutput(this),
|
|
mOriginalInput(new nsPipeInputStream(this)),
|
|
mReentrantMonitor("nsPipe.mReentrantMonitor"),
|
|
mMaxAdvanceBufferSegmentCount(0),
|
|
mWriteSegment(-1),
|
|
mWriteCursor(nullptr),
|
|
mWriteLimit(nullptr),
|
|
mStatus(NS_OK),
|
|
mInited(false) {
|
|
mInputList.AppendElement(mOriginalInput);
|
|
}
|
|
|
|
nsPipe::~nsPipe() = default;
|
|
|
|
NS_IMPL_ADDREF(nsPipe)
|
|
NS_IMPL_QUERY_INTERFACE(nsPipe, nsIPipe)
|
|
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsPipe::Release() {
|
|
MOZ_DIAGNOSTIC_ASSERT(int32_t(mRefCnt) > 0, "dup release");
|
|
nsrefcnt count = --mRefCnt;
|
|
NS_LOG_RELEASE(this, count, "nsPipe");
|
|
if (count == 0) {
|
|
delete (this);
|
|
return 0;
|
|
}
|
|
// Avoid racing on |mOriginalInput| by only looking at it when
|
|
// the refcount is 1, that is, we are the only pointer (hence only
|
|
// thread) to access it.
|
|
if (count == 1 && mOriginalInput) {
|
|
mOriginalInput = nullptr;
|
|
return 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipe::Init(bool aNonBlockingIn, bool aNonBlockingOut, uint32_t aSegmentSize,
|
|
uint32_t aSegmentCount) {
|
|
mInited = true;
|
|
|
|
if (aSegmentSize == 0) {
|
|
aSegmentSize = DEFAULT_SEGMENT_SIZE;
|
|
}
|
|
if (aSegmentCount == 0) {
|
|
aSegmentCount = DEFAULT_SEGMENT_COUNT;
|
|
}
|
|
|
|
// protect against overflow
|
|
uint32_t maxCount = uint32_t(-1) / aSegmentSize;
|
|
if (aSegmentCount > maxCount) {
|
|
aSegmentCount = maxCount;
|
|
}
|
|
|
|
// The internal buffer is always "infinite" so that we can allow
|
|
// the size to expand when cloned streams are read at different
|
|
// rates. We enforce a limit on how much data can be buffered
|
|
// ahead of the fastest reader in GetWriteSegment().
|
|
nsresult rv = mBuffer.Init(aSegmentSize, UINT32_MAX);
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
|
|
mMaxAdvanceBufferSegmentCount = aSegmentCount;
|
|
|
|
mOutput.SetNonBlocking(aNonBlockingOut);
|
|
mOriginalInput->SetNonBlocking(aNonBlockingIn);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipe::GetInputStream(nsIAsyncInputStream** aInputStream) {
|
|
if (NS_WARN_IF(!mInited)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
RefPtr<nsPipeInputStream> ref = mOriginalInput;
|
|
ref.forget(aInputStream);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipe::GetOutputStream(nsIAsyncOutputStream** aOutputStream) {
|
|
if (NS_WARN_IF(!mInited)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
NS_ADDREF(*aOutputStream = &mOutput);
|
|
return NS_OK;
|
|
}
|
|
|
|
void nsPipe::PeekSegment(const nsPipeReadState& aReadState, uint32_t aIndex,
|
|
char*& aCursor, char*& aLimit) {
|
|
if (aIndex == 0) {
|
|
MOZ_DIAGNOSTIC_ASSERT(!aReadState.mReadCursor || mBuffer.GetSegmentCount());
|
|
aCursor = aReadState.mReadCursor;
|
|
aLimit = aReadState.mReadLimit;
|
|
} else {
|
|
uint32_t absoluteIndex = aReadState.mSegment + aIndex;
|
|
uint32_t numSegments = mBuffer.GetSegmentCount();
|
|
if (absoluteIndex >= numSegments) {
|
|
aCursor = aLimit = nullptr;
|
|
} else {
|
|
aCursor = mBuffer.GetSegment(absoluteIndex);
|
|
if (mWriteSegment == (int32_t)absoluteIndex) {
|
|
aLimit = mWriteCursor;
|
|
} else {
|
|
aLimit = aCursor + mBuffer.GetSegmentSize();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
nsresult nsPipe::GetReadSegment(nsPipeReadState& aReadState,
|
|
const char*& aSegment, uint32_t& aLength) {
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
if (aReadState.mReadCursor == aReadState.mReadLimit) {
|
|
return NS_FAILED(mStatus) ? mStatus : NS_BASE_STREAM_WOULD_BLOCK;
|
|
}
|
|
|
|
// The input stream locks the pipe while getting the buffer to read from,
|
|
// but then unlocks while actual data copying is taking place. In
|
|
// order to avoid deleting the buffer out from under this lockless read
|
|
// set a flag to indicate a read is active. This flag is only modified
|
|
// while the lock is held.
|
|
MOZ_DIAGNOSTIC_ASSERT(!aReadState.mActiveRead);
|
|
aReadState.mActiveRead = true;
|
|
|
|
aSegment = aReadState.mReadCursor;
|
|
aLength = aReadState.mReadLimit - aReadState.mReadCursor;
|
|
MOZ_DIAGNOSTIC_ASSERT(aLength <= aReadState.mAvailable);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void nsPipe::ReleaseReadSegment(nsPipeReadState& aReadState,
|
|
nsPipeEvents& aEvents) {
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(aReadState.mActiveRead);
|
|
aReadState.mActiveRead = false;
|
|
|
|
// When a read completes and releases the mActiveRead flag, we may have
|
|
// blocked a drain from completing. This occurs when the input stream is
|
|
// closed during the read. In these cases, we need to complete the drain as
|
|
// soon as the active read completes.
|
|
if (aReadState.mNeedDrain) {
|
|
aReadState.mNeedDrain = false;
|
|
DrainInputStream(aReadState, aEvents);
|
|
}
|
|
}
|
|
|
|
void nsPipe::AdvanceReadCursor(nsPipeReadState& aReadState,
|
|
uint32_t aBytesRead) {
|
|
MOZ_DIAGNOSTIC_ASSERT(aBytesRead > 0);
|
|
|
|
nsPipeEvents events;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
LOG(("III advancing read cursor by %u\n", aBytesRead));
|
|
MOZ_DIAGNOSTIC_ASSERT(aBytesRead <= mBuffer.GetSegmentSize());
|
|
|
|
aReadState.mReadCursor += aBytesRead;
|
|
MOZ_DIAGNOSTIC_ASSERT(aReadState.mReadCursor <= aReadState.mReadLimit);
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(aReadState.mAvailable >= aBytesRead);
|
|
aReadState.mAvailable -= aBytesRead;
|
|
|
|
// Check to see if we're at the end of the available read data. If we
|
|
// are, and this segment is not still being written, then we can possibly
|
|
// free up the segment.
|
|
if (aReadState.mReadCursor == aReadState.mReadLimit &&
|
|
!ReadSegmentBeingWritten(aReadState)) {
|
|
// Advance the segment position. If we have read any segments from the
|
|
// advance buffer then we can potentially notify blocked writers.
|
|
if (AdvanceReadSegment(aReadState, mon) == SegmentAdvanceBufferRead &&
|
|
mOutput.OnOutputWritable(events) == NotifyMonitor) {
|
|
mon.NotifyAll();
|
|
}
|
|
}
|
|
|
|
ReleaseReadSegment(aReadState, events);
|
|
}
|
|
}
|
|
|
|
SegmentChangeResult nsPipe::AdvanceReadSegment(
|
|
nsPipeReadState& aReadState, const ReentrantMonitorAutoEnter& ev) {
|
|
// Calculate how many segments are buffered for this stream to start.
|
|
uint32_t startBufferSegments = GetBufferSegmentCount(aReadState, ev);
|
|
|
|
int32_t currentSegment = aReadState.mSegment;
|
|
|
|
// Move to the next segment to read
|
|
aReadState.mSegment += 1;
|
|
|
|
// If this was the last reference to the first segment, then remove it.
|
|
if (currentSegment == 0 && CountSegmentReferences(currentSegment) == 0) {
|
|
// shift write and read segment index (-1 indicates an empty buffer).
|
|
mWriteSegment -= 1;
|
|
|
|
// Directly modify the current read state. If the associated input
|
|
// stream is closed simultaneous with reading, then it may not be
|
|
// in the mInputList any more.
|
|
aReadState.mSegment -= 1;
|
|
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
// Skip the current read state structure since we modify it manually
|
|
// before entering this loop.
|
|
if (&mInputList[i]->ReadState() == &aReadState) {
|
|
continue;
|
|
}
|
|
mInputList[i]->ReadState().mSegment -= 1;
|
|
}
|
|
|
|
// done with this segment
|
|
mBuffer.DeleteFirstSegment();
|
|
LOG(("III deleting first segment\n"));
|
|
}
|
|
|
|
if (mWriteSegment < aReadState.mSegment) {
|
|
// read cursor has hit the end of written data, so reset it
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteSegment == (aReadState.mSegment - 1));
|
|
aReadState.mReadCursor = nullptr;
|
|
aReadState.mReadLimit = nullptr;
|
|
// also, the buffer is completely empty, so reset the write cursor
|
|
if (mWriteSegment == -1) {
|
|
mWriteCursor = nullptr;
|
|
mWriteLimit = nullptr;
|
|
}
|
|
} else {
|
|
// advance read cursor and limit to next buffer segment
|
|
aReadState.mReadCursor = mBuffer.GetSegment(aReadState.mSegment);
|
|
if (mWriteSegment == aReadState.mSegment) {
|
|
aReadState.mReadLimit = mWriteCursor;
|
|
} else {
|
|
aReadState.mReadLimit = aReadState.mReadCursor + mBuffer.GetSegmentSize();
|
|
}
|
|
}
|
|
|
|
// Calculate how many segments are buffered for the stream after
|
|
// reading.
|
|
uint32_t endBufferSegments = GetBufferSegmentCount(aReadState, ev);
|
|
|
|
// If the stream has read a segment out of the set of advanced buffer
|
|
// segments, then the writer may advance.
|
|
if (startBufferSegments >= mMaxAdvanceBufferSegmentCount &&
|
|
endBufferSegments < mMaxAdvanceBufferSegmentCount) {
|
|
return SegmentAdvanceBufferRead;
|
|
}
|
|
|
|
// Otherwise there are no significant changes to the segment structure.
|
|
return SegmentNotChanged;
|
|
}
|
|
|
|
void nsPipe::DrainInputStream(nsPipeReadState& aReadState,
|
|
nsPipeEvents& aEvents) {
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
// If a segment is actively being read in ReadSegments() for this input
|
|
// stream, then we cannot drain the stream. This can happen because
|
|
// ReadSegments() does not hold the lock while copying from the buffer.
|
|
// If we detect this condition, simply note that we need a drain once
|
|
// the read completes and return immediately.
|
|
if (aReadState.mActiveRead) {
|
|
MOZ_DIAGNOSTIC_ASSERT(!aReadState.mNeedDrain);
|
|
aReadState.mNeedDrain = true;
|
|
return;
|
|
}
|
|
|
|
while (mWriteSegment >= aReadState.mSegment) {
|
|
// If the last segment to free is still being written to, we're done
|
|
// draining. We can't free any more.
|
|
if (ReadSegmentBeingWritten(aReadState)) {
|
|
break;
|
|
}
|
|
|
|
// Don't bother checking if this results in an advance buffer segment
|
|
// read. Since we are draining the entire stream we will read an
|
|
// advance buffer segment no matter what.
|
|
AdvanceReadSegment(aReadState, mon);
|
|
}
|
|
|
|
// Force the stream into an empty state. Make sure mAvailable, mCursor, and
|
|
// mReadLimit are consistent with one another.
|
|
aReadState.mAvailable = 0;
|
|
aReadState.mReadCursor = nullptr;
|
|
aReadState.mReadLimit = nullptr;
|
|
|
|
// Remove the input stream from the pipe's list of streams. This will
|
|
// prevent the pipe from holding the stream alive or trying to update
|
|
// its read state any further.
|
|
DebugOnly<uint32_t> numRemoved = 0;
|
|
mInputList.RemoveElementsBy([&](nsPipeInputStream* aEntry) {
|
|
bool result = &aReadState == &aEntry->ReadState();
|
|
numRemoved += result ? 1 : 0;
|
|
return result;
|
|
});
|
|
MOZ_ASSERT(numRemoved == 1);
|
|
|
|
// If we have read any segments from the advance buffer then we can
|
|
// potentially notify blocked writers.
|
|
if (!IsAdvanceBufferFull(mon) &&
|
|
mOutput.OnOutputWritable(aEvents) == NotifyMonitor) {
|
|
mon.NotifyAll();
|
|
}
|
|
}
|
|
|
|
bool nsPipe::ReadSegmentBeingWritten(nsPipeReadState& aReadState) {
|
|
mReentrantMonitor.AssertCurrentThreadIn();
|
|
bool beingWritten =
|
|
mWriteSegment == aReadState.mSegment && mWriteLimit > mWriteCursor;
|
|
MOZ_DIAGNOSTIC_ASSERT(!beingWritten || aReadState.mReadLimit == mWriteCursor);
|
|
return beingWritten;
|
|
}
|
|
|
|
nsresult nsPipe::GetWriteSegment(char*& aSegment, uint32_t& aSegmentLen) {
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
if (NS_FAILED(mStatus)) {
|
|
return mStatus;
|
|
}
|
|
|
|
// write cursor and limit may both be null indicating an empty buffer.
|
|
if (mWriteCursor == mWriteLimit) {
|
|
// The pipe is full if we have hit our limit on advance data buffering.
|
|
// This means the fastest reader is still reading slower than data is
|
|
// being written into the pipe.
|
|
if (IsAdvanceBufferFull(mon)) {
|
|
return NS_BASE_STREAM_WOULD_BLOCK;
|
|
}
|
|
|
|
// The nsSegmentedBuffer is configured to be "infinite", so this
|
|
// should never return nullptr here.
|
|
char* seg = mBuffer.AppendNewSegment();
|
|
if (!seg) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
LOG(("OOO appended new segment\n"));
|
|
mWriteCursor = seg;
|
|
mWriteLimit = mWriteCursor + mBuffer.GetSegmentSize();
|
|
++mWriteSegment;
|
|
}
|
|
|
|
// make sure read cursor is initialized
|
|
SetAllNullReadCursors();
|
|
|
|
// check to see if we can roll-back our read and write cursors to the
|
|
// beginning of the current/first segment. this is purely an optimization.
|
|
if (mWriteSegment == 0 && AllReadCursorsMatchWriteCursor()) {
|
|
char* head = mBuffer.GetSegment(0);
|
|
LOG(("OOO rolling back write cursor %" PRId64 " bytes\n",
|
|
static_cast<int64_t>(mWriteCursor - head)));
|
|
RollBackAllReadCursors(head);
|
|
mWriteCursor = head;
|
|
}
|
|
|
|
aSegment = mWriteCursor;
|
|
aSegmentLen = mWriteLimit - mWriteCursor;
|
|
return NS_OK;
|
|
}
|
|
|
|
void nsPipe::AdvanceWriteCursor(uint32_t aBytesWritten) {
|
|
MOZ_DIAGNOSTIC_ASSERT(aBytesWritten > 0);
|
|
|
|
nsPipeEvents events;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
LOG(("OOO advancing write cursor by %u\n", aBytesWritten));
|
|
|
|
char* newWriteCursor = mWriteCursor + aBytesWritten;
|
|
MOZ_DIAGNOSTIC_ASSERT(newWriteCursor <= mWriteLimit);
|
|
|
|
// update read limit if reading in the same segment
|
|
UpdateAllReadCursors(newWriteCursor);
|
|
|
|
mWriteCursor = newWriteCursor;
|
|
|
|
ValidateAllReadCursors();
|
|
|
|
// update the writable flag on the output stream
|
|
if (mWriteCursor == mWriteLimit) {
|
|
mOutput.SetWritable(!IsAdvanceBufferFull(mon));
|
|
}
|
|
|
|
// notify input stream that pipe now contains additional data
|
|
bool needNotify = false;
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
if (mInputList[i]->OnInputReadable(aBytesWritten, events, mon) ==
|
|
NotifyMonitor) {
|
|
needNotify = true;
|
|
}
|
|
}
|
|
|
|
if (needNotify) {
|
|
mon.NotifyAll();
|
|
}
|
|
}
|
|
}
|
|
|
|
void nsPipe::OnInputStreamException(nsPipeInputStream* aStream,
|
|
nsresult aReason) {
|
|
MOZ_DIAGNOSTIC_ASSERT(NS_FAILED(aReason));
|
|
|
|
nsPipeEvents events;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
// Its possible to re-enter this method when we call OnPipeException() or
|
|
// OnInputExection() below. If there is a caller stuck in our synchronous
|
|
// Wait() method, then they will get woken up with a failure code which
|
|
// re-enters this method. Therefore, gracefully handle unknown streams
|
|
// here.
|
|
|
|
// If we only have one stream open and it is the given stream, then shut
|
|
// down the entire pipe.
|
|
if (mInputList.Length() == 1) {
|
|
if (mInputList[0] == aStream) {
|
|
OnPipeException(aReason);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise just close the particular stream that hit an exception.
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
if (mInputList[i] != aStream) {
|
|
continue;
|
|
}
|
|
|
|
MonitorAction action =
|
|
mInputList[i]->OnInputException(aReason, events, mon);
|
|
|
|
// Notify after element is removed in case we re-enter as a result.
|
|
if (action == NotifyMonitor) {
|
|
mon.NotifyAll();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void nsPipe::OnPipeException(nsresult aReason, bool aOutputOnly) {
|
|
LOG(("PPP nsPipe::OnPipeException [reason=%" PRIx32 " output-only=%d]\n",
|
|
static_cast<uint32_t>(aReason), aOutputOnly));
|
|
|
|
nsPipeEvents events;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
|
|
// if we've already hit an exception, then ignore this one.
|
|
if (NS_FAILED(mStatus)) {
|
|
return;
|
|
}
|
|
|
|
mStatus = aReason;
|
|
|
|
bool needNotify = false;
|
|
|
|
// OnInputException() can drain the stream and remove it from
|
|
// mInputList. So iterate over a temp list instead.
|
|
nsTArray<nsPipeInputStream*> list = mInputList.Clone();
|
|
for (uint32_t i = 0; i < list.Length(); ++i) {
|
|
// an output-only exception applies to the input end if the pipe has
|
|
// zero bytes available.
|
|
if (aOutputOnly && list[i]->Available()) {
|
|
continue;
|
|
}
|
|
|
|
if (list[i]->OnInputException(aReason, events, mon) == NotifyMonitor) {
|
|
needNotify = true;
|
|
}
|
|
}
|
|
|
|
if (mOutput.OnOutputException(aReason, events) == NotifyMonitor) {
|
|
needNotify = true;
|
|
}
|
|
|
|
// Notify after we have removed any input streams from mInputList
|
|
if (needNotify) {
|
|
mon.NotifyAll();
|
|
}
|
|
}
|
|
}
|
|
|
|
nsresult nsPipe::CloneInputStream(nsPipeInputStream* aOriginal,
|
|
nsIInputStream** aCloneOut) {
|
|
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
|
|
RefPtr<nsPipeInputStream> ref = new nsPipeInputStream(*aOriginal);
|
|
mInputList.AppendElement(ref);
|
|
nsCOMPtr<nsIAsyncInputStream> upcast = std::move(ref);
|
|
upcast.forget(aCloneOut);
|
|
return NS_OK;
|
|
}
|
|
|
|
uint32_t nsPipe::CountSegmentReferences(int32_t aSegment) {
|
|
mReentrantMonitor.AssertCurrentThreadIn();
|
|
uint32_t count = 0;
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
if (aSegment >= mInputList[i]->ReadState().mSegment) {
|
|
count += 1;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void nsPipe::SetAllNullReadCursors() {
|
|
mReentrantMonitor.AssertCurrentThreadIn();
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
nsPipeReadState& readState = mInputList[i]->ReadState();
|
|
if (!readState.mReadCursor) {
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteSegment == readState.mSegment);
|
|
readState.mReadCursor = readState.mReadLimit = mWriteCursor;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool nsPipe::AllReadCursorsMatchWriteCursor() {
|
|
mReentrantMonitor.AssertCurrentThreadIn();
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
const nsPipeReadState& readState = mInputList[i]->ReadState();
|
|
if (readState.mSegment != mWriteSegment ||
|
|
readState.mReadCursor != mWriteCursor) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void nsPipe::RollBackAllReadCursors(char* aWriteCursor) {
|
|
mReentrantMonitor.AssertCurrentThreadIn();
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
nsPipeReadState& readState = mInputList[i]->ReadState();
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteSegment == readState.mSegment);
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteCursor == readState.mReadCursor);
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteCursor == readState.mReadLimit);
|
|
readState.mReadCursor = aWriteCursor;
|
|
readState.mReadLimit = aWriteCursor;
|
|
}
|
|
}
|
|
|
|
void nsPipe::UpdateAllReadCursors(char* aWriteCursor) {
|
|
mReentrantMonitor.AssertCurrentThreadIn();
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
nsPipeReadState& readState = mInputList[i]->ReadState();
|
|
if (mWriteSegment == readState.mSegment &&
|
|
readState.mReadLimit == mWriteCursor) {
|
|
readState.mReadLimit = aWriteCursor;
|
|
}
|
|
}
|
|
}
|
|
|
|
void nsPipe::ValidateAllReadCursors() {
|
|
mReentrantMonitor.AssertCurrentThreadIn();
|
|
// The only way mReadCursor == mWriteCursor is if:
|
|
//
|
|
// - mReadCursor is at the start of a segment (which, based on how
|
|
// nsSegmentedBuffer works, means that this segment is the "first"
|
|
// segment)
|
|
// - mWriteCursor points at the location past the end of the current
|
|
// write segment (so the current write filled the current write
|
|
// segment, so we've incremented mWriteCursor to point past the end
|
|
// of it)
|
|
// - the segment to which data has just been written is located
|
|
// exactly one segment's worth of bytes before the first segment
|
|
// where mReadCursor is located
|
|
//
|
|
// Consequently, the byte immediately after the end of the current
|
|
// write segment is the first byte of the first segment, so
|
|
// mReadCursor == mWriteCursor. (Another way to think about this is
|
|
// to consider the buffer architecture diagram above, but consider it
|
|
// with an arena allocator which allocates from the *end* of the
|
|
// arena to the *beginning* of the arena.)
|
|
#ifdef DEBUG
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
const nsPipeReadState& state = mInputList[i]->ReadState();
|
|
MOZ_ASSERT(state.mReadCursor != mWriteCursor ||
|
|
(mBuffer.GetSegment(state.mSegment) == state.mReadCursor &&
|
|
mWriteCursor == mWriteLimit));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint32_t nsPipe::GetBufferSegmentCount(
|
|
const nsPipeReadState& aReadState,
|
|
const ReentrantMonitorAutoEnter& ev) const {
|
|
// The write segment can be smaller than the current reader position
|
|
// in some cases. For example, when the first write segment has not
|
|
// been allocated yet mWriteSegment is negative. In these cases
|
|
// the stream is effectively using zero segments.
|
|
if (mWriteSegment < aReadState.mSegment) {
|
|
return 0;
|
|
}
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteSegment >= 0);
|
|
MOZ_DIAGNOSTIC_ASSERT(aReadState.mSegment >= 0);
|
|
|
|
// Otherwise at least one segment is being used. We add one here
|
|
// since a single segment is being used when the write and read
|
|
// segment indices are the same.
|
|
return 1 + mWriteSegment - aReadState.mSegment;
|
|
}
|
|
|
|
bool nsPipe::IsAdvanceBufferFull(const ReentrantMonitorAutoEnter& ev) const {
|
|
// If we have fewer total segments than the limit we can immediately
|
|
// determine we are not full. Note, we must add one to mWriteSegment
|
|
// to convert from a index to a count.
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteSegment >= -1);
|
|
MOZ_DIAGNOSTIC_ASSERT(mWriteSegment < INT32_MAX);
|
|
uint32_t totalWriteSegments = mWriteSegment + 1;
|
|
if (totalWriteSegments < mMaxAdvanceBufferSegmentCount) {
|
|
return false;
|
|
}
|
|
|
|
// Otherwise we must inspect all of our reader streams. We need
|
|
// to determine the buffer depth of the fastest reader.
|
|
uint32_t minBufferSegments = UINT32_MAX;
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
// Only count buffer segments from input streams that are open.
|
|
if (NS_FAILED(mInputList[i]->Status(ev))) {
|
|
continue;
|
|
}
|
|
const nsPipeReadState& state = mInputList[i]->ReadState();
|
|
uint32_t bufferSegments = GetBufferSegmentCount(state, ev);
|
|
minBufferSegments = std::min(minBufferSegments, bufferSegments);
|
|
// We only care if any reader has fewer segments buffered than
|
|
// our threshold. We can stop once we hit that threshold.
|
|
if (minBufferSegments < mMaxAdvanceBufferSegmentCount) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Note, its possible for minBufferSegments to exceed our
|
|
// mMaxAdvanceBufferSegmentCount here. This happens when a cloned
|
|
// reader gets far behind, but then the fastest reader stream is
|
|
// closed. This leaves us with a single stream that is buffered
|
|
// beyond our max. Naturally we continue to indicate the pipe
|
|
// is full at this point.
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsPipeEvents methods:
|
|
//-----------------------------------------------------------------------------
|
|
|
|
nsPipeEvents::~nsPipeEvents() {
|
|
// dispatch any pending events
|
|
|
|
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
|
|
mInputList[i].mCallback->OnInputStreamReady(mInputList[i].mStream);
|
|
}
|
|
mInputList.Clear();
|
|
|
|
if (mOutputCallback) {
|
|
mOutputCallback->OnOutputStreamReady(mOutputStream);
|
|
mOutputCallback = nullptr;
|
|
mOutputStream = nullptr;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsPipeInputStream methods:
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMPL_ADDREF(nsPipeInputStream);
|
|
NS_IMPL_RELEASE(nsPipeInputStream);
|
|
|
|
NS_INTERFACE_TABLE_HEAD(nsPipeInputStream)
|
|
NS_INTERFACE_TABLE_BEGIN
|
|
NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIAsyncInputStream)
|
|
NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsITellableStream)
|
|
NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsISearchableInputStream)
|
|
NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsICloneableInputStream)
|
|
NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIBufferedInputStream)
|
|
NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIClassInfo)
|
|
NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIInputStreamPriority)
|
|
NS_INTERFACE_TABLE_ENTRY_AMBIGUOUS(nsPipeInputStream, nsIInputStream,
|
|
nsIAsyncInputStream)
|
|
NS_INTERFACE_TABLE_ENTRY_AMBIGUOUS(nsPipeInputStream, nsISupports,
|
|
nsIAsyncInputStream)
|
|
NS_INTERFACE_TABLE_END
|
|
NS_INTERFACE_TABLE_TAIL
|
|
|
|
NS_IMPL_CI_INTERFACE_GETTER(nsPipeInputStream, nsIInputStream,
|
|
nsIAsyncInputStream, nsITellableStream,
|
|
nsISearchableInputStream, nsICloneableInputStream,
|
|
nsIBufferedInputStream)
|
|
|
|
NS_IMPL_THREADSAFE_CI(nsPipeInputStream)
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::Init(nsIInputStream*, uint32_t) {
|
|
MOZ_CRASH(
|
|
"nsPipeInputStream should never be initialized with "
|
|
"nsIBufferedInputStream::Init!\n");
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::GetData(nsIInputStream** aResult) {
|
|
// as this was not created with init() we are not
|
|
// wrapping anything
|
|
return NS_ERROR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
uint32_t nsPipeInputStream::Available() {
|
|
mPipe->mReentrantMonitor.AssertCurrentThreadIn();
|
|
return mReadState.mAvailable;
|
|
}
|
|
|
|
nsresult nsPipeInputStream::Wait() {
|
|
MOZ_DIAGNOSTIC_ASSERT(mBlocking);
|
|
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
while (NS_SUCCEEDED(Status(mon)) && (mReadState.mAvailable == 0)) {
|
|
LOG(("III pipe input: waiting for data\n"));
|
|
|
|
mBlocked = true;
|
|
mon.Wait();
|
|
mBlocked = false;
|
|
|
|
LOG(("III pipe input: woke up [status=%" PRIx32 " available=%u]\n",
|
|
static_cast<uint32_t>(Status(mon)), mReadState.mAvailable));
|
|
}
|
|
|
|
return Status(mon) == NS_BASE_STREAM_CLOSED ? NS_OK : Status(mon);
|
|
}
|
|
|
|
MonitorAction nsPipeInputStream::OnInputReadable(
|
|
uint32_t aBytesWritten, nsPipeEvents& aEvents,
|
|
const ReentrantMonitorAutoEnter& ev) {
|
|
MonitorAction result = DoNotNotifyMonitor;
|
|
|
|
mPipe->mReentrantMonitor.AssertCurrentThreadIn();
|
|
mReadState.mAvailable += aBytesWritten;
|
|
|
|
if (mCallback && !(mCallbackFlags & WAIT_CLOSURE_ONLY)) {
|
|
aEvents.NotifyInputReady(this, mCallback);
|
|
mCallback = nullptr;
|
|
mCallbackFlags = 0;
|
|
} else if (mBlocked) {
|
|
result = NotifyMonitor;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MonitorAction nsPipeInputStream::OnInputException(
|
|
nsresult aReason, nsPipeEvents& aEvents,
|
|
const ReentrantMonitorAutoEnter& ev) {
|
|
LOG(("nsPipeInputStream::OnInputException [this=%p reason=%" PRIx32 "]\n",
|
|
this, static_cast<uint32_t>(aReason)));
|
|
|
|
MonitorAction result = DoNotNotifyMonitor;
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(NS_FAILED(aReason));
|
|
|
|
if (NS_SUCCEEDED(mInputStatus)) {
|
|
mInputStatus = aReason;
|
|
}
|
|
|
|
// force count of available bytes to zero.
|
|
mPipe->DrainInputStream(mReadState, aEvents);
|
|
|
|
if (mCallback) {
|
|
aEvents.NotifyInputReady(this, mCallback);
|
|
mCallback = nullptr;
|
|
mCallbackFlags = 0;
|
|
} else if (mBlocked) {
|
|
result = NotifyMonitor;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::CloseWithStatus(nsresult aReason) {
|
|
LOG(("III CloseWithStatus [this=%p reason=%" PRIx32 "]\n", this,
|
|
static_cast<uint32_t>(aReason)));
|
|
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
if (NS_FAILED(mInputStatus)) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (NS_SUCCEEDED(aReason)) {
|
|
aReason = NS_BASE_STREAM_CLOSED;
|
|
}
|
|
|
|
mPipe->OnInputStreamException(this, aReason);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::SetPriority(uint32_t priority) {
|
|
mPriority = priority;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::GetPriority(uint32_t* priority) {
|
|
*priority = mPriority;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::Close() { return CloseWithStatus(NS_BASE_STREAM_CLOSED); }
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::Available(uint64_t* aResult) {
|
|
// nsPipeInputStream supports under 4GB stream only
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
// return error if closed
|
|
if (!mReadState.mAvailable && NS_FAILED(Status(mon))) {
|
|
return Status(mon);
|
|
}
|
|
|
|
*aResult = (uint64_t)mReadState.mAvailable;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::ReadSegments(nsWriteSegmentFun aWriter, void* aClosure,
|
|
uint32_t aCount, uint32_t* aReadCount) {
|
|
LOG(("III ReadSegments [this=%p count=%u]\n", this, aCount));
|
|
|
|
nsresult rv = NS_OK;
|
|
|
|
*aReadCount = 0;
|
|
while (aCount) {
|
|
AutoReadSegment segment(mPipe, mReadState, aCount);
|
|
rv = segment.Status();
|
|
if (NS_FAILED(rv)) {
|
|
// ignore this error if we've already read something.
|
|
if (*aReadCount > 0) {
|
|
rv = NS_OK;
|
|
break;
|
|
}
|
|
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
|
|
// pipe is empty
|
|
if (!mBlocking) {
|
|
break;
|
|
}
|
|
// wait for some data to be written to the pipe
|
|
rv = Wait();
|
|
if (NS_SUCCEEDED(rv)) {
|
|
continue;
|
|
}
|
|
}
|
|
// ignore this error, just return.
|
|
if (rv == NS_BASE_STREAM_CLOSED) {
|
|
rv = NS_OK;
|
|
break;
|
|
}
|
|
mPipe->OnInputStreamException(this, rv);
|
|
break;
|
|
}
|
|
|
|
uint32_t writeCount;
|
|
while (segment.Length()) {
|
|
writeCount = 0;
|
|
|
|
rv = aWriter(static_cast<nsIAsyncInputStream*>(this), aClosure,
|
|
segment.Data(), *aReadCount, segment.Length(), &writeCount);
|
|
|
|
if (NS_FAILED(rv) || writeCount == 0) {
|
|
aCount = 0;
|
|
// any errors returned from the writer end here: do not
|
|
// propagate to the caller of ReadSegments.
|
|
rv = NS_OK;
|
|
break;
|
|
}
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(writeCount <= segment.Length());
|
|
segment.Advance(writeCount);
|
|
aCount -= writeCount;
|
|
*aReadCount += writeCount;
|
|
mLogicalOffset += writeCount;
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::Read(char* aToBuf, uint32_t aBufLen, uint32_t* aReadCount) {
|
|
return ReadSegments(NS_CopySegmentToBuffer, aToBuf, aBufLen, aReadCount);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::IsNonBlocking(bool* aNonBlocking) {
|
|
*aNonBlocking = !mBlocking;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::AsyncWait(nsIInputStreamCallback* aCallback, uint32_t aFlags,
|
|
uint32_t aRequestedCount,
|
|
nsIEventTarget* aTarget) {
|
|
LOG(("III AsyncWait [this=%p]\n", this));
|
|
|
|
nsPipeEvents pipeEvents;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
// replace a pending callback
|
|
mCallback = nullptr;
|
|
mCallbackFlags = 0;
|
|
|
|
if (!aCallback) {
|
|
return NS_OK;
|
|
}
|
|
|
|
nsCOMPtr<nsIInputStreamCallback> proxy;
|
|
if (aTarget) {
|
|
proxy = NS_NewInputStreamReadyEvent("nsPipeInputStream::AsyncWait",
|
|
aCallback, aTarget, mPriority);
|
|
aCallback = proxy;
|
|
}
|
|
|
|
if (NS_FAILED(Status(mon)) ||
|
|
(mReadState.mAvailable && !(aFlags & WAIT_CLOSURE_ONLY))) {
|
|
// stream is already closed or readable; post event.
|
|
pipeEvents.NotifyInputReady(this, aCallback);
|
|
} else {
|
|
// queue up callback object to be notified when data becomes available
|
|
mCallback = aCallback;
|
|
mCallbackFlags = aFlags;
|
|
}
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::Tell(int64_t* aOffset) {
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
// return error if closed
|
|
if (!mReadState.mAvailable && NS_FAILED(Status(mon))) {
|
|
return Status(mon);
|
|
}
|
|
|
|
*aOffset = mLogicalOffset;
|
|
return NS_OK;
|
|
}
|
|
|
|
static bool strings_equal(bool aIgnoreCase, const char* aS1, const char* aS2,
|
|
uint32_t aLen) {
|
|
return aIgnoreCase ? !nsCRT::strncasecmp(aS1, aS2, aLen)
|
|
: !strncmp(aS1, aS2, aLen);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::Search(const char* aForString, bool aIgnoreCase,
|
|
bool* aFound, uint32_t* aOffsetSearchedTo) {
|
|
LOG(("III Search [for=%s ic=%u]\n", aForString, aIgnoreCase));
|
|
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
char* cursor1;
|
|
char* limit1;
|
|
uint32_t index = 0, offset = 0;
|
|
uint32_t strLen = strlen(aForString);
|
|
|
|
mPipe->PeekSegment(mReadState, 0, cursor1, limit1);
|
|
if (cursor1 == limit1) {
|
|
*aFound = false;
|
|
*aOffsetSearchedTo = 0;
|
|
LOG((" result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
|
|
return NS_OK;
|
|
}
|
|
|
|
while (true) {
|
|
uint32_t i, len1 = limit1 - cursor1;
|
|
|
|
// check if the string is in the buffer segment
|
|
for (i = 0; i < len1 - strLen + 1; i++) {
|
|
if (strings_equal(aIgnoreCase, &cursor1[i], aForString, strLen)) {
|
|
*aFound = true;
|
|
*aOffsetSearchedTo = offset + i;
|
|
LOG((" result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
|
|
return NS_OK;
|
|
}
|
|
}
|
|
|
|
// get the next segment
|
|
char* cursor2;
|
|
char* limit2;
|
|
uint32_t len2;
|
|
|
|
index++;
|
|
offset += len1;
|
|
|
|
mPipe->PeekSegment(mReadState, index, cursor2, limit2);
|
|
if (cursor2 == limit2) {
|
|
*aFound = false;
|
|
*aOffsetSearchedTo = offset - strLen + 1;
|
|
LOG((" result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
|
|
return NS_OK;
|
|
}
|
|
len2 = limit2 - cursor2;
|
|
|
|
// check if the string is straddling the next buffer segment
|
|
uint32_t lim = XPCOM_MIN(strLen, len2 + 1);
|
|
for (i = 0; i < lim; ++i) {
|
|
uint32_t strPart1Len = strLen - i - 1;
|
|
uint32_t strPart2Len = strLen - strPart1Len;
|
|
const char* strPart2 = &aForString[strLen - strPart2Len];
|
|
uint32_t bufSeg1Offset = len1 - strPart1Len;
|
|
if (strings_equal(aIgnoreCase, &cursor1[bufSeg1Offset], aForString,
|
|
strPart1Len) &&
|
|
strings_equal(aIgnoreCase, cursor2, strPart2, strPart2Len)) {
|
|
*aFound = true;
|
|
*aOffsetSearchedTo = offset - strPart1Len;
|
|
LOG((" result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
|
|
return NS_OK;
|
|
}
|
|
}
|
|
|
|
// finally continue with the next buffer
|
|
cursor1 = cursor2;
|
|
limit1 = limit2;
|
|
}
|
|
|
|
MOZ_ASSERT_UNREACHABLE("can't get here");
|
|
return NS_ERROR_UNEXPECTED; // keep compiler happy
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::GetCloneable(bool* aCloneableOut) {
|
|
*aCloneableOut = true;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeInputStream::Clone(nsIInputStream** aCloneOut) {
|
|
return mPipe->CloneInputStream(this, aCloneOut);
|
|
}
|
|
|
|
nsresult nsPipeInputStream::Status(const ReentrantMonitorAutoEnter& ev) const {
|
|
if (NS_FAILED(mInputStatus)) {
|
|
return mInputStatus;
|
|
}
|
|
|
|
if (mReadState.mAvailable) {
|
|
// Still something to read and this input stream state is OK.
|
|
return NS_OK;
|
|
}
|
|
|
|
// Nothing to read, just fall through to the pipe's state that
|
|
// may reflect state of its output stream side (already closed).
|
|
return mPipe->mStatus;
|
|
}
|
|
|
|
nsresult nsPipeInputStream::Status() const {
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
return Status(mon);
|
|
}
|
|
|
|
nsPipeInputStream::~nsPipeInputStream() { Close(); }
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsPipeOutputStream methods:
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NS_IMPL_QUERY_INTERFACE(nsPipeOutputStream, nsIOutputStream,
|
|
nsIAsyncOutputStream, nsIClassInfo)
|
|
|
|
NS_IMPL_CI_INTERFACE_GETTER(nsPipeOutputStream, nsIOutputStream,
|
|
nsIAsyncOutputStream)
|
|
|
|
NS_IMPL_THREADSAFE_CI(nsPipeOutputStream)
|
|
|
|
nsresult nsPipeOutputStream::Wait() {
|
|
MOZ_DIAGNOSTIC_ASSERT(mBlocking);
|
|
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
if (NS_SUCCEEDED(mPipe->mStatus) && !mWritable) {
|
|
LOG(("OOO pipe output: waiting for space\n"));
|
|
mBlocked = true;
|
|
mon.Wait();
|
|
mBlocked = false;
|
|
LOG(("OOO pipe output: woke up [pipe-status=%" PRIx32 " writable=%u]\n",
|
|
static_cast<uint32_t>(mPipe->mStatus), mWritable));
|
|
}
|
|
|
|
return mPipe->mStatus == NS_BASE_STREAM_CLOSED ? NS_OK : mPipe->mStatus;
|
|
}
|
|
|
|
MonitorAction nsPipeOutputStream::OnOutputWritable(nsPipeEvents& aEvents) {
|
|
MonitorAction result = DoNotNotifyMonitor;
|
|
|
|
mWritable = true;
|
|
|
|
if (mCallback && !(mCallbackFlags & WAIT_CLOSURE_ONLY)) {
|
|
aEvents.NotifyOutputReady(this, mCallback);
|
|
mCallback = nullptr;
|
|
mCallbackFlags = 0;
|
|
} else if (mBlocked) {
|
|
result = NotifyMonitor;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MonitorAction nsPipeOutputStream::OnOutputException(nsresult aReason,
|
|
nsPipeEvents& aEvents) {
|
|
LOG(("nsPipeOutputStream::OnOutputException [this=%p reason=%" PRIx32 "]\n",
|
|
this, static_cast<uint32_t>(aReason)));
|
|
|
|
MonitorAction result = DoNotNotifyMonitor;
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(NS_FAILED(aReason));
|
|
mWritable = false;
|
|
|
|
if (mCallback) {
|
|
aEvents.NotifyOutputReady(this, mCallback);
|
|
mCallback = nullptr;
|
|
mCallbackFlags = 0;
|
|
} else if (mBlocked) {
|
|
result = NotifyMonitor;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsPipeOutputStream::AddRef() {
|
|
++mWriterRefCnt;
|
|
return mPipe->AddRef();
|
|
}
|
|
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsPipeOutputStream::Release() {
|
|
if (--mWriterRefCnt == 0) {
|
|
Close();
|
|
}
|
|
return mPipe->Release();
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::CloseWithStatus(nsresult aReason) {
|
|
LOG(("OOO CloseWithStatus [this=%p reason=%" PRIx32 "]\n", this,
|
|
static_cast<uint32_t>(aReason)));
|
|
|
|
if (NS_SUCCEEDED(aReason)) {
|
|
aReason = NS_BASE_STREAM_CLOSED;
|
|
}
|
|
|
|
// input stream may remain open
|
|
mPipe->OnPipeException(aReason, true);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::Close() { return CloseWithStatus(NS_BASE_STREAM_CLOSED); }
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::WriteSegments(nsReadSegmentFun aReader, void* aClosure,
|
|
uint32_t aCount, uint32_t* aWriteCount) {
|
|
LOG(("OOO WriteSegments [this=%p count=%u]\n", this, aCount));
|
|
|
|
nsresult rv = NS_OK;
|
|
|
|
char* segment;
|
|
uint32_t segmentLen;
|
|
|
|
*aWriteCount = 0;
|
|
while (aCount) {
|
|
rv = mPipe->GetWriteSegment(segment, segmentLen);
|
|
if (NS_FAILED(rv)) {
|
|
if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
|
|
// pipe is full
|
|
if (!mBlocking) {
|
|
// ignore this error if we've already written something
|
|
if (*aWriteCount > 0) {
|
|
rv = NS_OK;
|
|
}
|
|
break;
|
|
}
|
|
// wait for the pipe to have an empty segment.
|
|
rv = Wait();
|
|
if (NS_SUCCEEDED(rv)) {
|
|
continue;
|
|
}
|
|
}
|
|
mPipe->OnPipeException(rv);
|
|
break;
|
|
}
|
|
|
|
// write no more than aCount
|
|
if (segmentLen > aCount) {
|
|
segmentLen = aCount;
|
|
}
|
|
|
|
uint32_t readCount, originalLen = segmentLen;
|
|
while (segmentLen) {
|
|
readCount = 0;
|
|
|
|
rv = aReader(this, aClosure, segment, *aWriteCount, segmentLen,
|
|
&readCount);
|
|
|
|
if (NS_FAILED(rv) || readCount == 0) {
|
|
aCount = 0;
|
|
// any errors returned from the aReader end here: do not
|
|
// propagate to the caller of WriteSegments.
|
|
rv = NS_OK;
|
|
break;
|
|
}
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(readCount <= segmentLen);
|
|
segment += readCount;
|
|
segmentLen -= readCount;
|
|
aCount -= readCount;
|
|
*aWriteCount += readCount;
|
|
mLogicalOffset += readCount;
|
|
}
|
|
|
|
if (segmentLen < originalLen) {
|
|
mPipe->AdvanceWriteCursor(originalLen - segmentLen);
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static nsresult nsReadFromRawBuffer(nsIOutputStream* aOutStr, void* aClosure,
|
|
char* aToRawSegment, uint32_t aOffset,
|
|
uint32_t aCount, uint32_t* aReadCount) {
|
|
const char* fromBuf = (const char*)aClosure;
|
|
memcpy(aToRawSegment, &fromBuf[aOffset], aCount);
|
|
*aReadCount = aCount;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::Write(const char* aFromBuf, uint32_t aBufLen,
|
|
uint32_t* aWriteCount) {
|
|
return WriteSegments(nsReadFromRawBuffer, (void*)aFromBuf, aBufLen,
|
|
aWriteCount);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::Flush(void) {
|
|
// nothing to do
|
|
return NS_OK;
|
|
}
|
|
|
|
static nsresult nsReadFromInputStream(nsIOutputStream* aOutStr, void* aClosure,
|
|
char* aToRawSegment, uint32_t aOffset,
|
|
uint32_t aCount, uint32_t* aReadCount) {
|
|
nsIInputStream* fromStream = (nsIInputStream*)aClosure;
|
|
return fromStream->Read(aToRawSegment, aCount, aReadCount);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::WriteFrom(nsIInputStream* aFromStream, uint32_t aCount,
|
|
uint32_t* aWriteCount) {
|
|
return WriteSegments(nsReadFromInputStream, aFromStream, aCount, aWriteCount);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::IsNonBlocking(bool* aNonBlocking) {
|
|
*aNonBlocking = !mBlocking;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsPipeOutputStream::AsyncWait(nsIOutputStreamCallback* aCallback,
|
|
uint32_t aFlags, uint32_t aRequestedCount,
|
|
nsIEventTarget* aTarget) {
|
|
LOG(("OOO AsyncWait [this=%p]\n", this));
|
|
|
|
nsPipeEvents pipeEvents;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
|
|
|
|
// replace a pending callback
|
|
mCallback = nullptr;
|
|
mCallbackFlags = 0;
|
|
|
|
if (!aCallback) {
|
|
return NS_OK;
|
|
}
|
|
|
|
nsCOMPtr<nsIOutputStreamCallback> proxy;
|
|
if (aTarget) {
|
|
proxy = NS_NewOutputStreamReadyEvent(aCallback, aTarget);
|
|
aCallback = proxy;
|
|
}
|
|
|
|
if (NS_FAILED(mPipe->mStatus) ||
|
|
(mWritable && !(aFlags & WAIT_CLOSURE_ONLY))) {
|
|
// stream is already closed or writable; post event.
|
|
pipeEvents.NotifyOutputReady(this, aCallback);
|
|
} else {
|
|
// queue up callback object to be notified when data becomes available
|
|
mCallback = aCallback;
|
|
mCallbackFlags = aFlags;
|
|
}
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
nsresult NS_NewPipe(nsIInputStream** aPipeIn, nsIOutputStream** aPipeOut,
|
|
uint32_t aSegmentSize, uint32_t aMaxSize,
|
|
bool aNonBlockingInput, bool aNonBlockingOutput) {
|
|
if (aSegmentSize == 0) {
|
|
aSegmentSize = DEFAULT_SEGMENT_SIZE;
|
|
}
|
|
|
|
// Handle aMaxSize of UINT32_MAX as a special case
|
|
uint32_t segmentCount;
|
|
if (aMaxSize == UINT32_MAX) {
|
|
segmentCount = UINT32_MAX;
|
|
} else {
|
|
segmentCount = aMaxSize / aSegmentSize;
|
|
}
|
|
|
|
nsIAsyncInputStream* in;
|
|
nsIAsyncOutputStream* out;
|
|
nsresult rv = NS_NewPipe2(&in, &out, aNonBlockingInput, aNonBlockingOutput,
|
|
aSegmentSize, segmentCount);
|
|
if (NS_FAILED(rv)) {
|
|
return rv;
|
|
}
|
|
|
|
*aPipeIn = in;
|
|
*aPipeOut = out;
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult NS_NewPipe2(nsIAsyncInputStream** aPipeIn,
|
|
nsIAsyncOutputStream** aPipeOut, bool aNonBlockingInput,
|
|
bool aNonBlockingOutput, uint32_t aSegmentSize,
|
|
uint32_t aSegmentCount) {
|
|
nsPipe* pipe = new nsPipe();
|
|
nsresult rv = pipe->Init(aNonBlockingInput, aNonBlockingOutput, aSegmentSize,
|
|
aSegmentCount);
|
|
if (NS_FAILED(rv)) {
|
|
NS_ADDREF(pipe);
|
|
NS_RELEASE(pipe);
|
|
return rv;
|
|
}
|
|
|
|
// These always succeed because the pipe is initialized above.
|
|
MOZ_ALWAYS_SUCCEEDS(pipe->GetInputStream(aPipeIn));
|
|
MOZ_ALWAYS_SUCCEEDS(pipe->GetOutputStream(aPipeOut));
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult nsPipeConstructor(nsISupports* aOuter, REFNSIID aIID, void** aResult) {
|
|
if (aOuter) {
|
|
return NS_ERROR_NO_AGGREGATION;
|
|
}
|
|
nsPipe* pipe = new nsPipe();
|
|
NS_ADDREF(pipe);
|
|
nsresult rv = pipe->QueryInterface(aIID, aResult);
|
|
NS_RELEASE(pipe);
|
|
return rv;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|