mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-26 14:22:01 +00:00
bac452f9ad
Currently static atoms are stored on the heap, but their char buffers are stored in read-only static memory. This patch changes the representation of nsStaticAtom (thus making it a non-trivial subclass of nsAtom). Instead of a pointer to the string, it now has an mStringOffset field which is a 32-bit offset to the string. (This requires placement of the string and the atom within the same object so that the offset is known to be small. The docs and macros in nsStaticAtom.h handle that.) Static and dynamic atoms now store their chars in different ways: nsStaticAtom stores them inline, nsDynamicAtom has a pointer to separate storage. So `mString` and GetStringBuffer() move from nsAtom to nsDynamicAtom. The change to static atoms means they can be made constexpr and stored in read-only memory instead of on the heap. On 64-bit this reduces the per-process overhead by 16 bytes; on 32-bit the saving is 12 bytes. (Further reductions will be possible in follow-up patches.) The increased use of constexpr required multiple workarounds for MSVC. - Multiple uses of MOZ_{PUSH,POP}_DISABLE_INTEGRAL_CONSTANT_OVERFLOW_WARNING to disable warnings about (well-defined!) overflow of unsigned integer arithmetic. - The use of -Zc:externConstexpr on all files defining static atoms, to make MSVC follow the C++ standard(!) and let constexpr variables have external linkage. - The use of -constexpr:steps300000 to increase the number of operations allowed in a constexpr value, in order to handle gGkAtoms, which requires hashing ~2,500 atom strings. The patch also changes how HTML5 atoms are handled. They are now treated as dynamic atoms, i.e. we have "dynamic normal" atoms and "dynamic HTML5 atoms", and "dynamic atoms" covers both cases, and both are represented via nsDynamicAtom. The main difference between the two kinds is that dynamic HTML5 atoms still aren't allowed to be used in various operations, most notably AddRef()/Release(). All this also required moving nsDynamicAtom into the header file. There is a slight performance cost to all these changes: now that nsStaticAtom and nsDynamicAtom store their chars in different ways, a conditional branch is required in the following functions: Equals(), GetUTF16String(), WeakAtom::as_slice(). Finally, in about:memory the "explicit/atoms/static/atom-objects" value is no longer needed, because that memory is static instead of heap-allocated. MozReview-Commit-ID: 4AxPv05ngZy
344 lines
11 KiB
C++
344 lines
11 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef mozilla_dom_DOMString_h
|
|
#define mozilla_dom_DOMString_h
|
|
|
|
#include "nsString.h"
|
|
#include "nsStringBuffer.h"
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Maybe.h"
|
|
#include "nsDOMString.h"
|
|
#include "nsAtom.h"
|
|
|
|
namespace mozilla {
|
|
namespace dom {
|
|
|
|
/**
|
|
* A class for representing string return values. This can be either passed to
|
|
* callees that have an nsString or nsAString out param or passed to a callee
|
|
* that actually knows about this class and can work with it. Such a callee may
|
|
* call these setters:
|
|
*
|
|
* SetKnownLiveStringBuffer
|
|
* SetStringBuffer
|
|
* SetKnownLiveString
|
|
* SetKnownLiveAtom
|
|
* SetNull
|
|
*
|
|
* to assign a value to the DOMString without instantiating an actual nsString
|
|
* in the process, or use AsAString() to instantiate an nsString and work with
|
|
* it. These options are mutually exclusive! Don't do more than one of them.
|
|
*
|
|
* It's only OK to call
|
|
* SetKnownLiveStringBuffer/SetKnownLiveString/SetKnownLiveAtom if the caller of
|
|
* the method in question plans to keep holding a strong ref to the stringbuffer
|
|
* involved, whether it's a raw nsStringBuffer, or stored inside the string or
|
|
* atom being passed. In the string/atom cases that means the caller must own
|
|
* the string or atom, and not mutate it (in the string case) for the lifetime
|
|
* of the DOMString.
|
|
*
|
|
* The proper way to extract a value is to check IsNull(). If not null, then
|
|
* check IsEmpty(). If neither of those is true, check HasStringBuffer(). If
|
|
* that's true, call StringBuffer()/StringBufferLength(). If HasStringBuffer()
|
|
* returns false, check HasLiteral, and if that returns true call
|
|
* Literal()/LiteralLength(). If HasLiteral() is false, call AsAString() and
|
|
* get the value from that.
|
|
*/
|
|
class MOZ_STACK_CLASS DOMString {
|
|
public:
|
|
DOMString()
|
|
: mStringBuffer(nullptr)
|
|
, mLength(0)
|
|
, mState(State::Empty)
|
|
{}
|
|
~DOMString()
|
|
{
|
|
MOZ_ASSERT(!mString || !mStringBuffer,
|
|
"Shouldn't have both present!");
|
|
if (mState == State::OwnedStringBuffer) {
|
|
MOZ_ASSERT(mStringBuffer);
|
|
mStringBuffer->Release();
|
|
}
|
|
}
|
|
|
|
operator nsString&()
|
|
{
|
|
return AsAString();
|
|
}
|
|
|
|
// It doesn't make any sense to convert a DOMString to a const nsString or
|
|
// nsAString reference; this class is meant for outparams only.
|
|
operator const nsString&() = delete;
|
|
operator const nsAString&() = delete;
|
|
|
|
nsString& AsAString()
|
|
{
|
|
MOZ_ASSERT(mState == State::Empty || mState == State::String,
|
|
"Moving from nonempty state to another nonempty state?");
|
|
MOZ_ASSERT(!mStringBuffer, "We already have a stringbuffer?");
|
|
if (!mString) {
|
|
mString.emplace();
|
|
mState = State::String;
|
|
}
|
|
return *mString;
|
|
}
|
|
|
|
bool HasStringBuffer() const
|
|
{
|
|
MOZ_ASSERT(!mString || !mStringBuffer,
|
|
"Shouldn't have both present!");
|
|
MOZ_ASSERT(mState > State::Null,
|
|
"Caller should have checked IsNull() and IsEmpty() first");
|
|
return mState >= State::OwnedStringBuffer;
|
|
}
|
|
|
|
// Get the stringbuffer. This can only be called if HasStringBuffer()
|
|
// returned true. If that's true, it will never return null. Note that
|
|
// constructing a string from this nsStringBuffer with length given by
|
|
// StringBufferLength() might give you something that is not null-terminated.
|
|
nsStringBuffer* StringBuffer() const
|
|
{
|
|
MOZ_ASSERT(HasStringBuffer(),
|
|
"Don't ask for the stringbuffer if we don't have it");
|
|
MOZ_ASSERT(mStringBuffer,
|
|
"We better have a stringbuffer if we claim to");
|
|
return mStringBuffer;
|
|
}
|
|
|
|
// Get the length of the stringbuffer. Can only be called if
|
|
// HasStringBuffer().
|
|
uint32_t StringBufferLength() const
|
|
{
|
|
MOZ_ASSERT(HasStringBuffer(), "Don't call this if there is no stringbuffer");
|
|
return mLength;
|
|
}
|
|
|
|
// Tell the DOMString to relinquish ownership of its nsStringBuffer to the
|
|
// caller. Can only be called if HasStringBuffer().
|
|
void RelinquishBufferOwnership()
|
|
{
|
|
MOZ_ASSERT(HasStringBuffer(), "Don't call this if there is no stringbuffer");
|
|
if (mState == State::OwnedStringBuffer) {
|
|
// Just hand that ref over.
|
|
mState = State::UnownedStringBuffer;
|
|
} else {
|
|
// Caller should end up holding a ref.
|
|
mStringBuffer->AddRef();
|
|
}
|
|
}
|
|
|
|
bool HasLiteral() const
|
|
{
|
|
MOZ_ASSERT(!mString || !mStringBuffer,
|
|
"Shouldn't have both present!");
|
|
MOZ_ASSERT(mState > State::Null,
|
|
"Caller should have checked IsNull() and IsEmpty() first");
|
|
return mState == State::Literal;
|
|
}
|
|
|
|
// Get the literal string. This can only be called if HasLiteral()
|
|
// returned true. If that's true, it will never return null.
|
|
const char16_t* Literal() const
|
|
{
|
|
MOZ_ASSERT(HasLiteral(),
|
|
"Don't ask for the literal if we don't have it");
|
|
MOZ_ASSERT(mLiteral,
|
|
"We better have a literal if we claim to");
|
|
return mLiteral;
|
|
}
|
|
|
|
// Get the length of the literal. Can only be called if HasLiteral().
|
|
uint32_t LiteralLength() const
|
|
{
|
|
MOZ_ASSERT(HasLiteral(), "Don't call this if there is no literal");
|
|
return mLength;
|
|
}
|
|
|
|
// Initialize the DOMString to a (nsStringBuffer, length) pair. The length
|
|
// does NOT have to be the full length of the (null-terminated) string in the
|
|
// nsStringBuffer.
|
|
void SetKnownLiveStringBuffer(nsStringBuffer* aStringBuffer, uint32_t aLength)
|
|
{
|
|
MOZ_ASSERT(mState == State::Empty, "We're already set to a value");
|
|
if (aLength != 0) {
|
|
SetStringBufferInternal(aStringBuffer, aLength);
|
|
mState = State::UnownedStringBuffer;
|
|
}
|
|
// else nothing to do
|
|
}
|
|
|
|
// Like SetKnownLiveStringBuffer, but holds a reference to the nsStringBuffer.
|
|
void SetStringBuffer(nsStringBuffer* aStringBuffer, uint32_t aLength)
|
|
{
|
|
MOZ_ASSERT(mState == State::Empty, "We're already set to a value");
|
|
if (aLength != 0) {
|
|
SetStringBufferInternal(aStringBuffer, aLength);
|
|
aStringBuffer->AddRef();
|
|
mState = State::OwnedStringBuffer;
|
|
}
|
|
// else nothing to do
|
|
}
|
|
|
|
void SetKnownLiveString(const nsAString& aString)
|
|
{
|
|
MOZ_ASSERT(mString.isNothing(), "We already have a string?");
|
|
MOZ_ASSERT(mState == State::Empty, "We're already set to a value");
|
|
MOZ_ASSERT(!mStringBuffer, "Setting stringbuffer twice?");
|
|
if (MOZ_UNLIKELY(aString.IsVoid())) {
|
|
SetNull();
|
|
} else if (!aString.IsEmpty()) {
|
|
nsStringBuffer* buf = nsStringBuffer::FromString(aString);
|
|
if (buf) {
|
|
SetKnownLiveStringBuffer(buf, aString.Length());
|
|
} else if (aString.IsLiteral()) {
|
|
SetLiteralInternal(aString.BeginReading(), aString.Length());
|
|
} else {
|
|
AsAString() = aString;
|
|
}
|
|
}
|
|
}
|
|
|
|
enum NullHandling
|
|
{
|
|
eTreatNullAsNull,
|
|
eTreatNullAsEmpty,
|
|
eNullNotExpected
|
|
};
|
|
|
|
void SetKnownLiveAtom(nsAtom* aAtom, NullHandling aNullHandling)
|
|
{
|
|
MOZ_ASSERT(mString.isNothing(), "We already have a string?");
|
|
MOZ_ASSERT(mState == State::Empty, "We're already set to a value");
|
|
MOZ_ASSERT(!mStringBuffer, "Setting stringbuffer twice?");
|
|
MOZ_ASSERT(aAtom || aNullHandling != eNullNotExpected);
|
|
if (aNullHandling == eNullNotExpected || aAtom) {
|
|
if (aAtom->IsStatic()) {
|
|
// Static atoms are backed by literals.
|
|
SetLiteralInternal(aAtom->GetUTF16String(), aAtom->GetLength());
|
|
} else {
|
|
// Dynamic atoms always have a string buffer and never have 0 length,
|
|
// because nsGkAtoms::_empty is a static atom.
|
|
SetKnownLiveStringBuffer(
|
|
aAtom->AsDynamic()->GetStringBuffer(), aAtom->GetLength());
|
|
}
|
|
} else if (aNullHandling == eTreatNullAsNull) {
|
|
SetNull();
|
|
}
|
|
}
|
|
|
|
void SetNull()
|
|
{
|
|
MOZ_ASSERT(!mStringBuffer, "Should have no stringbuffer if null");
|
|
MOZ_ASSERT(mString.isNothing(), "Should have no string if null");
|
|
MOZ_ASSERT(mState == State::Empty, "Already set to a value?");
|
|
mState = State::Null;
|
|
}
|
|
|
|
bool IsNull() const
|
|
{
|
|
MOZ_ASSERT(!mStringBuffer || mString.isNothing(),
|
|
"How could we have a stringbuffer and a nonempty string?");
|
|
return mState == State::Null || (mString && mString->IsVoid());
|
|
}
|
|
|
|
bool IsEmpty() const
|
|
{
|
|
MOZ_ASSERT(!mStringBuffer || mString.isNothing(),
|
|
"How could we have a stringbuffer and a nonempty string?");
|
|
// This is not exact, because we might still have an empty XPCOM string.
|
|
// But that's OK; in that case the callers will try the XPCOM string
|
|
// themselves.
|
|
return mState == State::Empty;
|
|
}
|
|
|
|
void ToString(nsAString& aString)
|
|
{
|
|
if (IsNull()) {
|
|
SetDOMStringToNull(aString);
|
|
} else if (IsEmpty()) {
|
|
aString.Truncate();
|
|
} else if (HasStringBuffer()) {
|
|
// Don't share the nsStringBuffer with aString if the result would not
|
|
// be null-terminated.
|
|
nsStringBuffer* buf = StringBuffer();
|
|
uint32_t len = StringBufferLength();
|
|
auto chars = static_cast<char16_t*>(buf->Data());
|
|
if (chars[len] == '\0') {
|
|
// Safe to share the buffer.
|
|
buf->ToString(len, aString);
|
|
} else {
|
|
// We need to copy, unfortunately.
|
|
aString.Assign(chars, len);
|
|
}
|
|
} else if (HasLiteral()) {
|
|
aString.AssignLiteral(Literal(), LiteralLength());
|
|
} else {
|
|
aString = AsAString();
|
|
}
|
|
}
|
|
|
|
private:
|
|
void SetStringBufferInternal(nsStringBuffer* aStringBuffer, uint32_t aLength)
|
|
{
|
|
MOZ_ASSERT(mString.isNothing(), "We already have a string?");
|
|
MOZ_ASSERT(mState == State::Empty, "We're already set to a value");
|
|
MOZ_ASSERT(!mStringBuffer, "Setting stringbuffer twice?");
|
|
MOZ_ASSERT(aStringBuffer, "Why are we getting null?");
|
|
MOZ_ASSERT(aLength != 0, "Should not have empty string here");
|
|
mStringBuffer = aStringBuffer;
|
|
mLength = aLength;
|
|
}
|
|
|
|
void SetLiteralInternal(const char16_t* aLiteral, uint32_t aLength)
|
|
{
|
|
MOZ_ASSERT(!mLiteral, "What's going on here?");
|
|
mLiteral = aLiteral;
|
|
mLength = aLength;
|
|
mState = State::Literal;
|
|
}
|
|
|
|
enum class State : uint8_t
|
|
{
|
|
Empty, // An empty string. Default state.
|
|
Null, // Null (not a string at all)
|
|
|
|
// All states that involve actual string data should come after
|
|
// Empty and Null.
|
|
|
|
String, // An XPCOM string stored in mString.
|
|
Literal, // A string literal (static lifetime).
|
|
OwnedStringBuffer, // mStringBuffer is valid and we have a ref to it.
|
|
UnownedStringBuffer, // mStringBuffer is valid; we are not holding a ref.
|
|
// The two string buffer values must come last. This lets us avoid doing
|
|
// two tests to figure out whether we have a stringbuffer.
|
|
};
|
|
|
|
// We need to be able to act like a string as needed
|
|
Maybe<nsAutoString> mString;
|
|
|
|
union
|
|
{
|
|
// The nsStringBuffer in the OwnedStringBuffer/UnownedStringBuffer cases.
|
|
nsStringBuffer* MOZ_UNSAFE_REF("The ways in which this can be safe are "
|
|
"documented above and enforced through "
|
|
"assertions") mStringBuffer;
|
|
// The literal in the Literal case.
|
|
const char16_t* mLiteral;
|
|
};
|
|
|
|
// Length in the stringbuffer and literal cases.
|
|
uint32_t mLength;
|
|
|
|
State mState;
|
|
};
|
|
|
|
} // namespace dom
|
|
} // namespace mozilla
|
|
|
|
#endif // mozilla_dom_DOMString_h
|