gecko-dev/layout/base/nsCSSRendering.cpp
1999-07-28 04:48:34 +00:00

2735 lines
97 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Netscape
* Communications Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All Rights
* Reserved.
*/
#include "nsCSSRendering.h"
#include "nsStyleConsts.h"
#include "nsIPresContext.h"
#include "nsIImage.h"
#include "nsIFrame.h"
#include "nsPoint.h"
#include "nsRect.h"
#include "nsIViewManager.h"
#include "nsIPresShell.h"
#include "nsIFrameImageLoader.h"
#include "nsIStyleContext.h"
#include "nsStyleUtil.h"
#include "nsIScrollableView.h"
#include "nsLayoutAtoms.h"
static NS_DEFINE_IID(kScrollViewIID, NS_ISCROLLABLEVIEW_IID);
#define BORDER_FULL 0 //entire side
#define BORDER_INSIDE 1 //inside half
#define BORDER_OUTSIDE 2 //outside half
//thickness of dashed line relative to dotted line
#define DOT_LENGTH 1 //square
#define DASH_LENGTH 3 //3 times longer than dot
/** The following classes are used by CSSRendering for the rounded rect implementation */
#define MAXPATHSIZE 12
#define MAXPOLYPATHSIZE 1000
enum ePathTypes{
eOutside =0,
eInside,
eCalc,
eCalcRev
};
static void GetPath(nsPoint aPoints[],nsPoint aPolyPath[],PRInt32 *aCurIndex,ePathTypes aPathType,PRInt32 &aC1Index,float aFrac=0);
static void TileImage(nsIRenderingContext& aRC,nsDrawingSurface aDS,nsRect &aSrcRect,PRInt16 aWidth,PRInt16 aHeight,PRInt32 aFlag);
// Draw a line, skipping that portion which crosses aGap. aGap defines a rectangle gap
// This services fieldset legends and only works for coords defining horizontal lines.
void nsCSSRendering::DrawLine (nsIRenderingContext& aContext,
nscoord aX1, nscoord aY1, nscoord aX2, nscoord aY2,
nsRect* aGap)
{
if (nsnull == aGap) {
aContext.DrawLine(aX1, aY1, aX2, aY2);
} else {
nscoord x1 = (aX1 < aX2) ? aX1 : aX2;
nscoord x2 = (aX1 < aX2) ? aX2 : aX1;
nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y);
nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height);
if ((aGap->y <= aY1) && (gapLowerRight.y >= aY2)) {
if ((aGap->x > x1) && (aGap->x < x2)) {
aContext.DrawLine(x1, aY1, aGap->x, aY1);
}
if ((gapLowerRight.x > x1) && (gapLowerRight.x < x2)) {
aContext.DrawLine(gapUpperRight.x, aY2, x2, aY2);
}
} else {
aContext.DrawLine(aX1, aY1, aX2, aY2);
}
}
}
// Fill a polygon, skipping that portion which crosses aGap. aGap defines a rectangle gap
// This services fieldset legends and only works for points defining a horizontal rectangle
void nsCSSRendering::FillPolygon (nsIRenderingContext& aContext,
const nsPoint aPoints[],
PRInt32 aNumPoints,
nsRect* aGap)
{
if (nsnull == aGap) {
aContext.FillPolygon(aPoints, aNumPoints);
} else if (4 == aNumPoints) {
nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y);
nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height);
// sort the 4 points by x
nsPoint points[4];
for (PRInt32 pX = 0; pX < 4; pX++) {
points[pX] = aPoints[pX];
}
for (PRInt32 i = 0; i < 3; i++) {
for (PRInt32 j = i+1; j < 4; j++) {
if (points[j].x < points[i].x) {
nsPoint swap = points[i];
points[i] = points[j];
points[j] = swap;
}
}
}
nsPoint upperLeft = (points[0].y <= points[1].y) ? points[0] : points[1];
nsPoint lowerLeft = (points[0].y <= points[1].y) ? points[1] : points[0];
nsPoint upperRight = (points[2].y <= points[3].y) ? points[2] : points[3];
nsPoint lowerRight = (points[2].y <= points[3].y) ? points[3] : points[2];
if ((aGap->y <= upperLeft.y) && (gapLowerRight.y >= lowerRight.y)) {
if ((aGap->x > upperLeft.x) && (aGap->x < upperRight.x)) {
nsPoint leftRect[4];
leftRect[0] = upperLeft;
leftRect[1] = nsPoint(aGap->x, upperLeft.y);
leftRect[2] = nsPoint(aGap->x, lowerLeft.y);
leftRect[3] = lowerLeft;
aContext.FillPolygon(leftRect, 4);
}
if ((gapUpperRight.x > upperLeft.x) && (gapUpperRight.x < upperRight.x)) {
nsPoint rightRect[4];
rightRect[0] = nsPoint(gapUpperRight.x, upperRight.y);
rightRect[1] = upperRight;
rightRect[2] = lowerRight;
rightRect[3] = nsPoint(gapLowerRight.x, lowerRight.y);
aContext.FillPolygon(rightRect, 4);
}
} else {
aContext.FillPolygon(aPoints, aNumPoints);
}
}
}
/**
* Make a bevel color
*/
nscolor nsCSSRendering::MakeBevelColor(PRIntn whichSide, PRUint8 style,
nscolor aBackgroundColor,
nscolor aBorderColor,
PRBool aSpecialCase)
{
nscolor colors[2];
nscolor theColor;
// Given a background color and a border color
// calculate the color used for the shading
if(aSpecialCase)
NS_GetSpecial3DColors(colors, aBackgroundColor, aBorderColor);
else
NS_Get3DColors(colors, aBackgroundColor);
if ((style == NS_STYLE_BORDER_STYLE_BG_OUTSET) ||
(style == NS_STYLE_BORDER_STYLE_OUTSET) ||
(style == NS_STYLE_BORDER_STYLE_RIDGE)) {
// Flip colors for these two border style
switch (whichSide) {
case NS_SIDE_BOTTOM: whichSide = NS_SIDE_TOP; break;
case NS_SIDE_RIGHT: whichSide = NS_SIDE_LEFT; break;
case NS_SIDE_TOP: whichSide = NS_SIDE_BOTTOM; break;
case NS_SIDE_LEFT: whichSide = NS_SIDE_RIGHT; break;
}
}
switch (whichSide) {
case NS_SIDE_BOTTOM:
theColor = colors[1];
break;
case NS_SIDE_RIGHT:
theColor = colors[1];
break;
case NS_SIDE_TOP:
theColor = colors[0];
break;
case NS_SIDE_LEFT:
default:
theColor = colors[0];
break;
}
return theColor;
}
// Maximum poly points in any of the polygons we generate below
#define MAX_POLY_POINTS 4
// a nifty helper function to create a polygon representing a
// particular side of a border. This helps localize code for figuring
// mitered edges. It is mainly used by the solid, inset, and outset
// styles.
//
// If the side can be represented as a line segment (because the thickness
// is one pixel), then a line with two endpoints is returned
PRIntn nsCSSRendering::MakeSide(nsPoint aPoints[],
nsIRenderingContext& aContext,
PRIntn whichSide,
const nsRect& outside, const nsRect& inside,
PRIntn aSkipSides,
PRIntn borderPart, float borderFrac,
nscoord twipsPerPixel)
{
float borderRest = 1.0f - borderFrac;
PRIntn np = 0;
nscoord thickness, outsideEdge, insideEdge, outsideTL, insideTL, outsideBR,
insideBR;
// Initialize the following six nscoord's:
// outsideEdge, insideEdge, outsideTL, insideTL, outsideBR, insideBR
// so that outsideEdge is the x or y of the outside edge, etc., and
// outsideTR is the y or x at the top or right end, etc., e.g.:
//
// outsideEdge --- ----------------------------------------
// \ /
// \ /
// \ /
// insideEdge ------- ----------------------------------
// | | | |
// outsideTL insideTL insideBR outsideBR
//
// if we don't want the bevel, we'll get rid of it later by setting
// outsideXX to insideXX
switch (whichSide) {
case NS_SIDE_TOP:
// the TL points are the left end; the BR points are the right end
outsideEdge = outside.y;
insideEdge = inside.y;
outsideTL = outside.x;
insideTL = inside.x;
insideBR = inside.XMost();
outsideBR = outside.XMost();
break;
case NS_SIDE_BOTTOM:
// the TL points are the left end; the BR points are the right end
outsideEdge = outside.YMost();
insideEdge = inside.YMost();
outsideTL = outside.x;
insideTL = inside.x;
insideBR = inside.XMost();
outsideBR = outside.XMost();
break;
case NS_SIDE_LEFT:
// the TL points are the top end; the BR points are the bottom end
outsideEdge = outside.x;
insideEdge = inside.x;
outsideTL = outside.y;
insideTL = inside.y;
insideBR = inside.YMost();
outsideBR = outside.YMost();
break;
case NS_SIDE_RIGHT:
// the TL points are the top end; the BR points are the bottom end
outsideEdge = outside.XMost();
insideEdge = inside.XMost();
outsideTL = outside.y;
insideTL = inside.y;
insideBR = inside.YMost();
outsideBR = outside.YMost();
break;
}
// Don't draw the bevels if an adjacent side is skipped
if ( (whichSide == NS_SIDE_TOP) || (whichSide == NS_SIDE_BOTTOM) ) {
// a top or bottom side
if ((1<<NS_SIDE_LEFT) & aSkipSides) {
insideTL = outsideTL;
}
if ((1<<NS_SIDE_RIGHT) & aSkipSides) {
insideBR = outsideBR;
}
} else {
// a right or left side
if ((1<<NS_SIDE_TOP) & aSkipSides) {
insideTL = outsideTL;
}
if ((1<<NS_SIDE_BOTTOM) & aSkipSides) {
insideBR = outsideBR;
}
}
// move things around when only drawing part of the border
if (borderPart == BORDER_INSIDE) {
outsideEdge = nscoord(outsideEdge * borderFrac + insideEdge * borderRest);
outsideTL = nscoord(outsideTL * borderFrac + insideTL * borderRest);
outsideBR = nscoord(outsideBR * borderFrac + insideBR * borderRest);
} else if (borderPart == BORDER_OUTSIDE ) {
insideEdge = nscoord(insideEdge * borderFrac + outsideEdge * borderRest);
insideTL = nscoord(insideTL * borderFrac + outsideTL * borderRest);
insideBR = nscoord(insideBR * borderFrac + outsideBR * borderRest);
}
// Base our thickness check on the segment being less than a pixel and 1/2
twipsPerPixel += twipsPerPixel >> 2;
// find the thickness of the piece being drawn
if ((whichSide == NS_SIDE_TOP) || (whichSide == NS_SIDE_LEFT)) {
thickness = insideEdge - outsideEdge;
} else {
thickness = outsideEdge - insideEdge;
}
// if returning a line, do it along inside edge for bottom or right borders
// so that it's in the same place as it would be with polygons (why?)
// XXX The previous version of the code shortened the right border too.
if ( !((thickness >= twipsPerPixel) || (borderPart != BORDER_FULL)) &&
((whichSide == NS_SIDE_BOTTOM) || (whichSide == NS_SIDE_RIGHT))) {
outsideEdge = insideEdge;
}
// return the appropriate line or trapezoid
if ((whichSide == NS_SIDE_TOP) || (whichSide == NS_SIDE_BOTTOM)) {
// top and bottom borders
aPoints[np++].MoveTo(outsideTL,outsideEdge);
aPoints[np++].MoveTo(outsideBR,outsideEdge);
// XXX Making this condition only (thickness >= twipsPerPixel) will
// improve double borders and some cases of groove/ridge,
// but will cause problems with table borders. See last and third
// from last tests in test4.htm
// Doing it this way emulates the old behavior. It might be worth
// fixing.
if ((thickness >= twipsPerPixel) || (borderPart != BORDER_FULL) ) {
aPoints[np++].MoveTo(insideBR,insideEdge);
aPoints[np++].MoveTo(insideTL,insideEdge);
}
} else {
// right and left borders
// XXX Ditto above
if ((thickness >= twipsPerPixel) || (borderPart != BORDER_FULL) ) {
aPoints[np++].MoveTo(insideEdge,insideBR);
aPoints[np++].MoveTo(insideEdge,insideTL);
}
aPoints[np++].MoveTo(outsideEdge,outsideTL);
aPoints[np++].MoveTo(outsideEdge,outsideBR);
}
return np;
}
void nsCSSRendering::DrawSide(nsIRenderingContext& aContext,
PRIntn whichSide,
const PRUint8 borderStyle,
const nscolor borderColor,
const nscolor aBackgroundColor,
const nsRect& borderOutside,
const nsRect& borderInside,
PRIntn aSkipSides,
nscoord twipsPerPixel,
nsRect* aGap)
{
nsPoint theSide[MAX_POLY_POINTS];
nscolor theColor = borderColor;
PRUint8 theStyle = borderStyle;
PRInt32 np;
switch (theStyle) {
case NS_STYLE_BORDER_STYLE_NONE:
case NS_STYLE_BORDER_STYLE_BLANK:
return;
case NS_STYLE_BORDER_STYLE_DOTTED: //handled a special case elsewhere
case NS_STYLE_BORDER_STYLE_DASHED: //handled a special case elsewhere
break; // That was easy...
case NS_STYLE_BORDER_STYLE_GROOVE:
case NS_STYLE_BORDER_STYLE_RIDGE:
np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside, aSkipSides,
BORDER_INSIDE, 0.5f, twipsPerPixel);
aContext.SetColor ( MakeBevelColor (whichSide,
((theStyle == NS_STYLE_BORDER_STYLE_RIDGE) ?
NS_STYLE_BORDER_STYLE_GROOVE :
NS_STYLE_BORDER_STYLE_RIDGE),
aBackgroundColor, theColor,
PR_TRUE));
if (2 == np) {
//aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y);
DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap);
} else {
//aContext.FillPolygon (theSide, np);
FillPolygon (aContext, theSide, np, aGap);
}
np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside,aSkipSides,
BORDER_OUTSIDE, 0.5f, twipsPerPixel);
aContext.SetColor ( MakeBevelColor (whichSide, theStyle, aBackgroundColor,
theColor, PR_TRUE));
if (2 == np) {
//aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y);
DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap);
} else {
//aContext.FillPolygon (theSide, np);
FillPolygon (aContext, theSide, np, aGap);
}
break;
case NS_STYLE_BORDER_STYLE_SOLID:
np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside,aSkipSides,
BORDER_FULL, 1.0f, twipsPerPixel);
aContext.SetColor (borderColor);
if (2 == np) {
//aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y);
DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap);
} else {
//aContext.FillPolygon (theSide, np);
FillPolygon (aContext, theSide, np, aGap);
}
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside,aSkipSides,
BORDER_INSIDE, 0.333333f, twipsPerPixel);
aContext.SetColor (borderColor);
if (2 == np) {
//aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y);
DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap);
} else {
//aContext.FillPolygon (theSide, np);
FillPolygon (aContext, theSide, np, aGap);
}
np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside,aSkipSides,
BORDER_OUTSIDE, 0.333333f, twipsPerPixel);
if (2 == np) {
//aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y);
DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap);
} else {
//aContext.FillPolygon (theSide, np);
FillPolygon (aContext, theSide, np, aGap);
}
break;
case NS_STYLE_BORDER_STYLE_BG_OUTSET:
case NS_STYLE_BORDER_STYLE_BG_INSET:
np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside,aSkipSides,
BORDER_FULL, 1.0f, twipsPerPixel);
aContext.SetColor ( MakeBevelColor (whichSide, theStyle, aBackgroundColor,
theColor, PR_FALSE));
if (2 == np) {
//aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y);
DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap);
} else {
//aContext.FillPolygon (theSide, np);
FillPolygon (aContext, theSide, np, aGap);
}
break;
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_INSET:
np = MakeSide (theSide, aContext, whichSide, borderOutside, borderInside,aSkipSides,
BORDER_FULL, 1.0f, twipsPerPixel);
aContext.SetColor ( MakeBevelColor (whichSide, theStyle, aBackgroundColor,
theColor, PR_TRUE));
if (2 == np) {
//aContext.DrawLine (theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y);
DrawLine (aContext, theSide[0].x, theSide[0].y, theSide[1].x, theSide[1].y, aGap);
} else {
//aContext.FillPolygon (theSide, np);
FillPolygon (aContext, theSide, np, aGap);
}
break;
}
}
/**
* Draw a dotted/dashed sides of a box
*/
//XXX dashes which span more than two edges are not handled properly MMP
void nsCSSRendering::DrawDashedSides(PRIntn startSide,
nsIRenderingContext& aContext,
const PRUint8 borderStyles[],
const nscolor borderColors[],
const nsRect& borderOutside,
const nsRect& borderInside,
PRIntn aSkipSides,
nsRect* aGap)
{
PRIntn dashLength;
nsRect dashRect, firstRect, currRect;
PRBool bSolid = PR_TRUE;
float over = 0.0f;
PRUint8 style = borderStyles[startSide];
PRBool skippedSide = PR_FALSE;
for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) {
PRUint8 prevStyle = style;
style = borderStyles[whichSide];
if ((1<<whichSide) & aSkipSides) {
// Skipped side
skippedSide = PR_TRUE;
continue;
}
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
if ((style != prevStyle) || skippedSide) {
//style discontinuity
over = 0.0f;
bSolid = PR_TRUE;
}
// XXX units for dash & dot?
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashLength = DASH_LENGTH;
} else {
dashLength = DOT_LENGTH;
}
aContext.SetColor(borderColors[whichSide]);
switch (whichSide) {
case NS_SIDE_LEFT:
//XXX need to properly handle wrap around from last edge to first edge
//(this is the first edge) MMP
dashRect.width = borderInside.x - borderOutside.x;
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderOutside.x;
dashRect.y = borderInside.YMost() - dashRect.height;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.width = dashRect.width;
firstRect.height = nscoord(dashRect.height * over);
firstRect.y = dashRect.y + (dashRect.height - firstRect.height);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.YMost() > borderInside.y) {
//clip if necessary
if (currRect.y < borderInside.y) {
over = float(borderInside.y - dashRect.y) /
float(dashRect.height);
currRect.height = currRect.height - (borderInside.y - currRect.y);
currRect.y = borderInside.y;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y - currRect.height;
currRect = dashRect;
}
break;
case NS_SIDE_TOP:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderOutside.x, borderOutside.y,
borderInside.x - borderOutside.x,
borderInside.y - borderOutside.y);
}
dashRect.height = borderInside.y - borderOutside.y;
dashRect.width = dashRect.height * dashLength;
dashRect.x = borderInside.x;
dashRect.y = borderOutside.y;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.y = dashRect.y;
firstRect.width = nscoord(dashRect.width * over);
firstRect.height = dashRect.height;
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.x < borderInside.XMost()) {
//clip if necessary
if (currRect.XMost() > borderInside.XMost()) {
over = float(dashRect.XMost() - borderInside.XMost()) /
float(dashRect.width);
currRect.width = currRect.width -
(currRect.XMost() - borderInside.XMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x + currRect.width;
currRect = dashRect;
}
break;
case NS_SIDE_RIGHT:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderInside.XMost(), borderOutside.y,
borderOutside.XMost() - borderInside.XMost(),
borderInside.y - borderOutside.y);
}
dashRect.width = borderOutside.XMost() - borderInside.XMost();
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderInside.XMost();
dashRect.y = borderInside.y;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.y = dashRect.y;
firstRect.width = dashRect.width;
firstRect.height = nscoord(dashRect.height * over);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.y < borderInside.YMost()) {
//clip if necessary
if (currRect.YMost() > borderInside.YMost()) {
over = float(dashRect.YMost() - borderInside.YMost()) /
float(dashRect.height);
currRect.height = currRect.height -
(currRect.YMost() - borderInside.YMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y + currRect.height;
currRect = dashRect;
}
break;
case NS_SIDE_BOTTOM:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderInside.XMost(), borderInside.YMost(),
borderOutside.XMost() - borderInside.XMost(),
borderOutside.YMost() - borderInside.YMost());
}
dashRect.height = borderOutside.YMost() - borderInside.YMost();
dashRect.width = nscoord(dashRect.height * dashLength);
dashRect.x = borderInside.XMost() - dashRect.width;
dashRect.y = borderInside.YMost();
if (over > 0.0f) {
firstRect.y = dashRect.y;
firstRect.width = nscoord(dashRect.width * over);
firstRect.height = dashRect.height;
firstRect.x = dashRect.x + (dashRect.width - firstRect.width);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.XMost() > borderInside.x) {
//clip if necessary
if (currRect.x < borderInside.x) {
over = float(borderInside.x - dashRect.x) / float(dashRect.width);
currRect.width = currRect.width - (borderInside.x - currRect.x);
currRect.x = borderInside.x;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x - currRect.width;
currRect = dashRect;
}
break;
}
}
skippedSide = PR_FALSE;
}
}
void nsCSSRendering::DrawDashedSides(PRIntn startSide,
nsIRenderingContext& aContext,
const nsStyleSpacing& aSpacing,
const nsRect& borderOutside,
const nsRect& borderInside,
PRIntn aSkipSides,
nsRect* aGap)
{
PRIntn dashLength;
nsRect dashRect, firstRect, currRect;
PRBool bSolid = PR_TRUE;
float over = 0.0f;
PRUint8 style = aSpacing.GetBorderStyle(startSide);
PRBool skippedSide = PR_FALSE;
for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) {
PRUint8 prevStyle = style;
style = aSpacing.GetBorderStyle(whichSide);
if ((1<<whichSide) & aSkipSides) {
// Skipped side
skippedSide = PR_TRUE;
continue;
}
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
if ((style != prevStyle) || skippedSide) {
//style discontinuity
over = 0.0f;
bSolid = PR_TRUE;
}
// XXX units for dash & dot?
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashLength = DASH_LENGTH;
} else {
dashLength = DOT_LENGTH;
}
nscolor sideColor;
if (! aSpacing.GetBorderColor(whichSide, sideColor)) {
continue; // side is transparent
}
aContext.SetColor(sideColor);
switch (whichSide) {
case NS_SIDE_LEFT:
//XXX need to properly handle wrap around from last edge to first edge
//(this is the first edge) MMP
dashRect.width = borderInside.x - borderOutside.x;
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderOutside.x;
dashRect.y = borderInside.YMost() - dashRect.height;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.width = dashRect.width;
firstRect.height = nscoord(dashRect.height * over);
firstRect.y = dashRect.y + (dashRect.height - firstRect.height);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.YMost() > borderInside.y) {
//clip if necessary
if (currRect.y < borderInside.y) {
over = float(borderInside.y - dashRect.y) /
float(dashRect.height);
currRect.height = currRect.height - (borderInside.y - currRect.y);
currRect.y = borderInside.y;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y - currRect.height;
currRect = dashRect;
}
break;
case NS_SIDE_TOP:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderOutside.x, borderOutside.y,
borderInside.x - borderOutside.x,
borderInside.y - borderOutside.y);
}
dashRect.height = borderInside.y - borderOutside.y;
dashRect.width = dashRect.height * dashLength;
dashRect.x = borderInside.x;
dashRect.y = borderOutside.y;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.y = dashRect.y;
firstRect.width = nscoord(dashRect.width * over);
firstRect.height = dashRect.height;
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.x < borderInside.XMost()) {
//clip if necessary
if (currRect.XMost() > borderInside.XMost()) {
over = float(dashRect.XMost() - borderInside.XMost()) /
float(dashRect.width);
currRect.width = currRect.width -
(currRect.XMost() - borderInside.XMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x + currRect.width;
currRect = dashRect;
}
break;
case NS_SIDE_RIGHT:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderInside.XMost(), borderOutside.y,
borderOutside.XMost() - borderInside.XMost(),
borderInside.y - borderOutside.y);
}
dashRect.width = borderOutside.XMost() - borderInside.XMost();
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderInside.XMost();
dashRect.y = borderInside.y;
if (over > 0.0f) {
firstRect.x = dashRect.x;
firstRect.y = dashRect.y;
firstRect.width = dashRect.width;
firstRect.height = nscoord(dashRect.height * over);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.y < borderInside.YMost()) {
//clip if necessary
if (currRect.YMost() > borderInside.YMost()) {
over = float(dashRect.YMost() - borderInside.YMost()) /
float(dashRect.height);
currRect.height = currRect.height -
(currRect.YMost() - borderInside.YMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y + currRect.height;
currRect = dashRect;
}
break;
case NS_SIDE_BOTTOM:
//if we are continuing a solid rect, fill in the corner first
if (bSolid) {
aContext.FillRect(borderInside.XMost(), borderInside.YMost(),
borderOutside.XMost() - borderInside.XMost(),
borderOutside.YMost() - borderInside.YMost());
}
dashRect.height = borderOutside.YMost() - borderInside.YMost();
dashRect.width = nscoord(dashRect.height * dashLength);
dashRect.x = borderInside.XMost() - dashRect.width;
dashRect.y = borderInside.YMost();
if (over > 0.0f) {
firstRect.y = dashRect.y;
firstRect.width = nscoord(dashRect.width * over);
firstRect.height = dashRect.height;
firstRect.x = dashRect.x + (dashRect.width - firstRect.width);
over = 0.0f;
currRect = firstRect;
} else {
currRect = dashRect;
}
while (currRect.XMost() > borderInside.x) {
//clip if necessary
if (currRect.x < borderInside.x) {
over = float(borderInside.x - dashRect.x) / float(dashRect.width);
currRect.width = currRect.width - (borderInside.x - currRect.x);
currRect.x = borderInside.x;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x - currRect.width;
currRect = dashRect;
}
break;
}
}
skippedSide = PR_FALSE;
}
}
/* draw the portions of the border described in aBorderEdges that are dashed.
* a border has 4 edges. Each edge has 1 or more segments.
* "inside edges" are drawn differently than "outside edges" so the shared edges will match up.
* in the case of table collapsing borders, the table edge is the "outside" edge and
* cell edges are always "inside" edges (so adjacent cells have 2 shared "inside" edges.)
* There is a case for each of the four sides. Only the left side is well documented. The others
* are very similar.
*/
// XXX: doesn't do corners or junctions well at all. Just uses logic stolen
// from DrawDashedSides which is insufficient
void nsCSSRendering::DrawDashedSegments(nsIRenderingContext& aContext,
const nsRect& aBounds,
nsBorderEdges * aBorderEdges,
PRIntn aSkipSides,
nsRect* aGap)
{
PRIntn dashLength;
nsRect dashRect, currRect;
PRBool bSolid = PR_TRUE;
float over = 0.0f;
PRBool skippedSide = PR_FALSE;
PRIntn whichSide=0;
// do this just to set up initial condition for loop
// "segment" is the current portion of the edge we are computing
nsBorderEdge * segment = (nsBorderEdge *)(aBorderEdges->mEdges[whichSide].ElementAt(0));
PRUint8 style = segment->mStyle;
for ( ; whichSide < 4; whichSide++)
{
if ((1<<whichSide) & aSkipSides) {
// Skipped side
skippedSide = PR_TRUE;
continue;
}
nscoord x=0; nscoord y=0;
PRInt32 i;
PRInt32 segmentCount = aBorderEdges->mEdges[whichSide].Count();
nsBorderEdges * neighborBorderEdges=nsnull;
PRIntn neighborEdgeCount=0; // keeps track of which inside neighbor is shared with an outside segment
for (i=0; i<segmentCount; i++)
{
bSolid=PR_TRUE;
over = 0.0f;
segment = (nsBorderEdge *)(aBorderEdges->mEdges[whichSide].ElementAt(i));
style = segment->mStyle;
// XXX units for dash & dot?
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
dashLength = DASH_LENGTH;
} else {
dashLength = DOT_LENGTH;
}
aContext.SetColor(segment->mColor);
switch (whichSide) {
case NS_SIDE_LEFT:
{ // draw left segment i
nsBorderEdge * topEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(0));
if (0==y)
{ // y is the offset to the top of this segment. 0 means its the topmost left segment
y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth;
if (PR_TRUE==aBorderEdges->mOutsideEdge)
y += topEdge->mWidth;
}
// the x offset is the x position offset by the max width of the left edge minus this segment's width
x = aBounds.x + (aBorderEdges->mMaxBorderWidth.left - segment->mWidth);
nscoord height = segment->mLength;
// the space between borderOutside and borderInside inclusive is the segment.
nsRect borderOutside(x, y, aBounds.width, height);
y += segment->mLength; // keep track of the y offset for the next segment
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
nsRect borderInside(borderOutside);
nsMargin outsideMargin(segment->mWidth, 0, 0, 0);
borderInside.Deflate(outsideMargin);
nscoord totalLength = segment->mLength; // the computed length of this segment
// outside edges need info from their inside neighbor. The following code keeps track
// of which segment of the inside neighbor's shared edge we should use for this outside segment
if (PR_TRUE==aBorderEdges->mOutsideEdge)
{
if (segment->mInsideNeighbor == neighborBorderEdges)
{
neighborEdgeCount++;
}
else
{
neighborBorderEdges = segment->mInsideNeighbor;
neighborEdgeCount=0;
}
nsBorderEdge * neighborLeft = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_LEFT].ElementAt(neighborEdgeCount));
totalLength = neighborLeft->mLength;
}
dashRect.width = borderInside.x - borderOutside.x;
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderOutside.x;
dashRect.y = borderOutside.y + (totalLength/2) - dashRect.height;
if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i))
dashRect.y -= topEdge->mWidth; // account for the topmost left edge corner with the leftmost top edge
if (0)
{
printf(" L: totalLength = %d, borderOutside.y = %d, midpoint %d, dashRect.y = %d\n",
totalLength, borderOutside.y, borderOutside.y +(totalLength/2), dashRect.y);
}
currRect = dashRect;
// we draw the segment in 2 halves to get the inside and outside edges to line up on the
// centerline of the shared edge.
// draw the top half
while (currRect.YMost() > borderInside.y) {
//clip if necessary
if (currRect.y < borderInside.y) {
over = float(borderInside.y - dashRect.y) /
float(dashRect.height);
currRect.height = currRect.height - (borderInside.y - currRect.y);
currRect.y = borderInside.y;
}
//draw if necessary
if (0)
{
printf("DASHED LEFT: xywh in loop currRect = %d %d %d %d %s\n",
currRect.x, currRect.y, currRect.width, currRect.height, bSolid?"TRUE":"FALSE");
}
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y - currRect.height;
currRect = dashRect;
}
// draw the bottom half
dashRect.y = borderOutside.y + (totalLength/2) + dashRect.height;
if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i))
dashRect.y -= topEdge->mWidth;
currRect = dashRect;
bSolid=PR_TRUE;
over = 0.0f;
while (currRect.YMost() < borderInside.YMost()) {
//clip if necessary
if (currRect.y < borderInside.y) {
over = float(borderInside.y - dashRect.y) /
float(dashRect.height);
currRect.height = currRect.height - (borderInside.y - currRect.y);
currRect.y = borderInside.y;
}
//draw if necessary
if (0)
{
printf("DASHED LEFT: xywh in loop currRect = %d %d %d %d %s\n",
currRect.x, currRect.y, currRect.width, currRect.height, bSolid?"TRUE":"FALSE");
}
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y + currRect.height;
currRect = dashRect;
}
}
}
break;
case NS_SIDE_TOP:
{ // draw top segment i
if (0==x)
{
nsBorderEdge * leftEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0));
x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth;
}
y = aBounds.y;
if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are bottom-aligned
y += aBorderEdges->mMaxBorderWidth.top - segment->mWidth;
nsRect borderOutside(x, y, segment->mLength, aBounds.height);
x += segment->mLength;
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
nsRect borderInside(borderOutside);
nsBorderEdge * neighbor;
if (PR_TRUE==aBorderEdges->mOutsideEdge)
neighbor = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_LEFT].ElementAt(0));
else
neighbor = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0));
nsMargin outsideMargin(neighbor->mWidth, segment->mWidth, 0, segment->mWidth);
borderInside.Deflate(outsideMargin);
nscoord firstRectWidth = 0;
if (PR_TRUE==aBorderEdges->mOutsideEdge && 0==i)
{
firstRectWidth = borderInside.x - borderOutside.x;
aContext.FillRect(borderOutside.x, borderOutside.y,
firstRectWidth,
borderInside.y - borderOutside.y);
}
dashRect.height = borderInside.y - borderOutside.y;
dashRect.width = dashRect.height * dashLength;
dashRect.x = borderOutside.x + firstRectWidth;
dashRect.y = borderOutside.y;
currRect = dashRect;
while (currRect.x < borderInside.XMost()) {
//clip if necessary
if (currRect.XMost() > borderInside.XMost()) {
over = float(dashRect.XMost() - borderInside.XMost()) /
float(dashRect.width);
currRect.width = currRect.width -
(currRect.XMost() - borderInside.XMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x + currRect.width;
currRect = dashRect;
}
}
}
break;
case NS_SIDE_RIGHT:
{ // draw right segment i
nsBorderEdge * topEdge = (nsBorderEdge *)
(aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(aBorderEdges->mEdges[NS_SIDE_TOP].Count()-1));
if (0==y)
{
y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth;
if (PR_TRUE==aBorderEdges->mOutsideEdge)
y += topEdge->mWidth;
}
nscoord width;
if (PR_TRUE==aBorderEdges->mOutsideEdge)
{
width = aBounds.width - aBorderEdges->mMaxBorderWidth.right;
width += segment->mWidth;
}
else
{
width = aBounds.width;
}
nscoord height = segment->mLength;
nsRect borderOutside(aBounds.x, y, width, height);
y += segment->mLength;
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
nsRect borderInside(borderOutside);
nsMargin outsideMargin(segment->mWidth, 0, (segment->mWidth), 0);
borderInside.Deflate(outsideMargin);
nscoord totalLength = segment->mLength;
if (PR_TRUE==aBorderEdges->mOutsideEdge)
{
if (segment->mInsideNeighbor == neighborBorderEdges)
{
neighborEdgeCount++;
}
else
{
neighborBorderEdges = segment->mInsideNeighbor;
neighborEdgeCount=0;
}
nsBorderEdge * neighborRight = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_RIGHT].ElementAt(neighborEdgeCount));
totalLength = neighborRight->mLength;
}
dashRect.width = borderOutside.XMost() - borderInside.XMost();
dashRect.height = nscoord(dashRect.width * dashLength);
dashRect.x = borderInside.XMost();
dashRect.y = borderOutside.y + (totalLength/2) - dashRect.height;
if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i))
dashRect.y -= topEdge->mWidth;
currRect = dashRect;
// draw the top half
while (currRect.YMost() > borderInside.y) {
//clip if necessary
if (currRect.y < borderInside.y) {
over = float(borderInside.y - dashRect.y) /
float(dashRect.height);
currRect.height = currRect.height - (borderInside.y - currRect.y);
currRect.y = borderInside.y;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y - currRect.height;
currRect = dashRect;
}
// draw the bottom half
dashRect.y = borderOutside.y + (totalLength/2) + dashRect.height;
if ((PR_TRUE==aBorderEdges->mOutsideEdge) && (0!=i))
dashRect.y -= topEdge->mWidth;
currRect = dashRect;
bSolid=PR_TRUE;
over = 0.0f;
while (currRect.YMost() < borderInside.YMost()) {
//clip if necessary
if (currRect.y < borderInside.y) {
over = float(borderInside.y - dashRect.y) /
float(dashRect.height);
currRect.height = currRect.height - (borderInside.y - currRect.y);
currRect.y = borderInside.y;
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.y = dashRect.y + currRect.height;
currRect = dashRect;
}
}
}
break;
case NS_SIDE_BOTTOM:
{ // draw bottom segment i
if (0==x)
{
nsBorderEdge * leftEdge = (nsBorderEdge *)
(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(aBorderEdges->mEdges[NS_SIDE_LEFT].Count()-1));
x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth;
}
y = aBounds.y;
if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are top-aligned
y -= aBorderEdges->mMaxBorderWidth.bottom - segment->mWidth;
nsRect borderOutside(x, y, segment->mLength, aBounds.height);
x += segment->mLength;
if ((style == NS_STYLE_BORDER_STYLE_DASHED) ||
(style == NS_STYLE_BORDER_STYLE_DOTTED))
{
nsRect borderInside(borderOutside);
nsBorderEdge * neighbor;
if (PR_TRUE==aBorderEdges->mOutsideEdge)
neighbor = (nsBorderEdge *)(segment->mInsideNeighbor->mEdges[NS_SIDE_LEFT].ElementAt(0));
else
neighbor = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0));
nsMargin outsideMargin(neighbor->mWidth, segment->mWidth, 0, segment->mWidth);
borderInside.Deflate(outsideMargin);
nscoord firstRectWidth = 0;
if (PR_TRUE==aBorderEdges->mOutsideEdge && 0==i)
{
firstRectWidth = borderInside.x - borderOutside.x;
aContext.FillRect(borderOutside.x, borderInside.YMost(),
firstRectWidth,
borderOutside.YMost() - borderInside.YMost());
}
dashRect.height = borderOutside.YMost() - borderInside.YMost();
dashRect.width = nscoord(dashRect.height * dashLength);
dashRect.x = borderOutside.x + firstRectWidth;
dashRect.y = borderInside.YMost();
currRect = dashRect;
while (currRect.x < borderInside.XMost()) {
//clip if necessary
if (currRect.XMost() > borderInside.XMost()) {
over = float(dashRect.XMost() - borderInside.XMost()) /
float(dashRect.width);
currRect.width = currRect.width -
(currRect.XMost() - borderInside.XMost());
}
//draw if necessary
if (bSolid) {
aContext.FillRect(currRect);
}
//setup for next iteration
if (over == 0.0f) {
bSolid = PRBool(!bSolid);
}
dashRect.x = dashRect.x + currRect.width;
currRect = dashRect;
}
}
}
break;
}
}
skippedSide = PR_FALSE;
}
}
// XXX improve this to constrain rendering to the damaged area
void nsCSSRendering::PaintBorder(nsIPresContext& aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleSpacing& aBorderStyle,
nsIStyleContext* aStyleContext,
PRIntn aSkipSides,
nsRect* aGap)
{
PRIntn cnt;
nsMargin border;
const nsStyleColor* bgColor = nsStyleUtil::FindNonTransparentBackground(aStyleContext);
PRInt16 theRadius;
nsStyleCoord borderRadius;
aBorderStyle.CalcBorderFor(aForFrame, border);
if ((0 == border.left) && (0 == border.right) &&
(0 == border.top) && (0 == border.bottom)) {
// Empty border area
return;
}
// get the radius for our border
borderRadius = aBorderStyle.mBorderRadius;
theRadius = 0;
switch (borderRadius.GetUnit() ) {
case eStyleUnit_Inherit:
break;
case eStyleUnit_Percent:
break;
case eStyleUnit_Coord:
theRadius = borderRadius.GetCoordValue();
break;
}
// rounded version of the border
if (theRadius > 0){
PaintRoundedBorder(aPresContext,aRenderingContext,aForFrame,aDirtyRect,aBorderArea,aBorderStyle,aStyleContext,aSkipSides,theRadius,aGap);
return;
}
// Turn off rendering for all of the zero sized sides
if (0 == border.top) aSkipSides |= (1 << NS_SIDE_TOP);
if (0 == border.right) aSkipSides |= (1 << NS_SIDE_RIGHT);
if (0 == border.bottom) aSkipSides |= (1 << NS_SIDE_BOTTOM);
if (0 == border.left) aSkipSides |= (1 << NS_SIDE_LEFT);
nsRect inside(aBorderArea);
nsRect outside(inside);
outside.Deflate(border);
//see if any sides are dotted or dashed
for (cnt = 0; cnt < 4; cnt++) {
if ((aBorderStyle.GetBorderStyle(cnt) == NS_STYLE_BORDER_STYLE_DOTTED) ||
(aBorderStyle.GetBorderStyle(cnt) == NS_STYLE_BORDER_STYLE_DASHED)) {
break;
}
}
if (cnt < 4) {
DrawDashedSides(cnt, aRenderingContext,aBorderStyle,
inside, outside, aSkipSides, aGap);
}
// Draw all the other sides
/* XXX something is misnamed here!!!! */
nscoord twipsPerPixel;/* XXX */
float p2t;/* XXX */
aPresContext.GetPixelsToTwips(&p2t);/* XXX */
twipsPerPixel = (nscoord) p2t;/* XXX */
nscolor sideColor;
if (0 == (aSkipSides & (1<<NS_SIDE_TOP))) {
if (aBorderStyle.GetBorderColor(NS_SIDE_TOP, sideColor)) {
DrawSide(aRenderingContext, NS_SIDE_TOP,
aBorderStyle.GetBorderStyle(NS_SIDE_TOP),
sideColor,
bgColor->mBackgroundColor, inside,outside, aSkipSides,
twipsPerPixel, aGap);
}
}
if (0 == (aSkipSides & (1<<NS_SIDE_LEFT))) {
if (aBorderStyle.GetBorderColor(NS_SIDE_LEFT, sideColor)) {
DrawSide(aRenderingContext, NS_SIDE_LEFT,
aBorderStyle.GetBorderStyle(NS_SIDE_LEFT),
sideColor,
bgColor->mBackgroundColor,inside, outside,aSkipSides,
twipsPerPixel, aGap);
}
}
if (0 == (aSkipSides & (1<<NS_SIDE_BOTTOM))) {
if (aBorderStyle.GetBorderColor(NS_SIDE_BOTTOM, sideColor)) {
DrawSide(aRenderingContext, NS_SIDE_BOTTOM,
aBorderStyle.GetBorderStyle(NS_SIDE_BOTTOM),
sideColor,
bgColor->mBackgroundColor,inside, outside,aSkipSides,
twipsPerPixel, aGap);
}
}
if (0 == (aSkipSides & (1<<NS_SIDE_RIGHT))) {
if (aBorderStyle.GetBorderColor(NS_SIDE_RIGHT, sideColor)) {
DrawSide(aRenderingContext, NS_SIDE_RIGHT,
aBorderStyle.GetBorderStyle(NS_SIDE_RIGHT),
sideColor,
bgColor->mBackgroundColor,inside, outside,aSkipSides,
twipsPerPixel, aGap);
}
}
}
/* draw the edges of the border described in aBorderEdges one segment at a time.
* a border has 4 edges. Each edge has 1 or more segments.
* "inside edges" are drawn differently than "outside edges" so the shared edges will match up.
* in the case of table collapsing borders, the table edge is the "outside" edge and
* cell edges are always "inside" edges (so adjacent cells have 2 shared "inside" edges.)
* dashed segments are drawn by DrawDashedSegments().
*/
// XXX: doesn't do corners or junctions well at all. Just uses logic stolen
// from PaintBorder which is insufficient
void nsCSSRendering::PaintBorderEdges(nsIPresContext& aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
nsBorderEdges * aBorderEdges,
nsIStyleContext* aStyleContext,
PRIntn aSkipSides,
nsRect* aGap)
{
const nsStyleColor* bgColor = nsStyleUtil::FindNonTransparentBackground(aStyleContext);
if (nsnull==aBorderEdges) { // Empty border segments
return;
}
// Turn off rendering for all of the zero sized sides
if (0 == aBorderEdges->mMaxBorderWidth.top)
aSkipSides |= (1 << NS_SIDE_TOP);
if (0 == aBorderEdges->mMaxBorderWidth.right)
aSkipSides |= (1 << NS_SIDE_RIGHT);
if (0 == aBorderEdges->mMaxBorderWidth.bottom)
aSkipSides |= (1 << NS_SIDE_BOTTOM);
if (0 == aBorderEdges->mMaxBorderWidth.left)
aSkipSides |= (1 << NS_SIDE_LEFT);
// Draw any dashed or dotted segments separately
DrawDashedSegments(aRenderingContext, aBorderArea, aBorderEdges, aSkipSides, aGap);
// Draw all the other sides
nscoord twipsPerPixel;
float p2t;
aPresContext.GetPixelsToTwips(&p2t);
twipsPerPixel = (nscoord) p2t;/* XXX huh!*/
if (0 == (aSkipSides & (1<<NS_SIDE_TOP))) {
PRInt32 segmentCount = aBorderEdges->mEdges[NS_SIDE_TOP].Count();
PRInt32 i;
nsBorderEdge * leftEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(0));
nscoord x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth;
for (i=0; i<segmentCount; i++)
{
nsBorderEdge * borderEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(i));
nscoord y = aBorderArea.y;
if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are bottom-aligned
y += aBorderEdges->mMaxBorderWidth.top - borderEdge->mWidth;
nsRect inside(x, y, borderEdge->mLength, aBorderArea.height);
x += borderEdge->mLength;
nsRect outside(inside);
nsMargin outsideMargin(0, borderEdge->mWidth, 0, 0);
outside.Deflate(outsideMargin);
DrawSide(aRenderingContext, NS_SIDE_TOP,
borderEdge->mStyle,
borderEdge->mColor,
bgColor->mBackgroundColor,
inside, outside,aSkipSides,
twipsPerPixel, aGap);
}
}
if (0 == (aSkipSides & (1<<NS_SIDE_LEFT))) {
PRInt32 segmentCount = aBorderEdges->mEdges[NS_SIDE_LEFT].Count();
PRInt32 i;
nsBorderEdge * topEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(0));
nscoord y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth;
for (i=0; i<segmentCount; i++)
{
nsBorderEdge * borderEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(i));
nscoord x = aBorderArea.x + (aBorderEdges->mMaxBorderWidth.left - borderEdge->mWidth);
nsRect inside(x, y, aBorderArea.width, borderEdge->mLength);
y += borderEdge->mLength;
nsRect outside(inside);
nsMargin outsideMargin(borderEdge->mWidth, 0, 0, 0);
outside.Deflate(outsideMargin);
DrawSide(aRenderingContext, NS_SIDE_LEFT,
borderEdge->mStyle,
borderEdge->mColor,
bgColor->mBackgroundColor,
inside, outside, aSkipSides,
twipsPerPixel, aGap);
}
}
if (0 == (aSkipSides & (1<<NS_SIDE_BOTTOM))) {
PRInt32 segmentCount = aBorderEdges->mEdges[NS_SIDE_BOTTOM].Count();
PRInt32 i;
nsBorderEdge * leftEdge = (nsBorderEdge *)
(aBorderEdges->mEdges[NS_SIDE_LEFT].ElementAt(aBorderEdges->mEdges[NS_SIDE_LEFT].Count()-1));
nscoord x = aBorderEdges->mMaxBorderWidth.left - leftEdge->mWidth;
for (i=0; i<segmentCount; i++)
{
nsBorderEdge * borderEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_BOTTOM].ElementAt(i));
nscoord y = aBorderArea.y;
if (PR_TRUE==aBorderEdges->mOutsideEdge) // segments of the outside edge are top-aligned
y -= (aBorderEdges->mMaxBorderWidth.bottom - borderEdge->mWidth);
nsRect inside(x, y, borderEdge->mLength, aBorderArea.height);
x += borderEdge->mLength;
nsRect outside(inside);
nsMargin outsideMargin(0, 0, 0, borderEdge->mWidth);
outside.Deflate(outsideMargin);
DrawSide(aRenderingContext, NS_SIDE_BOTTOM,
borderEdge->mStyle,
borderEdge->mColor,
bgColor->mBackgroundColor,
inside, outside,aSkipSides,
twipsPerPixel, aGap);
}
}
if (0 == (aSkipSides & (1<<NS_SIDE_RIGHT))) {
PRInt32 segmentCount = aBorderEdges->mEdges[NS_SIDE_RIGHT].Count();
PRInt32 i;
nsBorderEdge * topEdge = (nsBorderEdge *)
(aBorderEdges->mEdges[NS_SIDE_TOP].ElementAt(aBorderEdges->mEdges[NS_SIDE_TOP].Count()-1));
nscoord y = aBorderEdges->mMaxBorderWidth.top - topEdge->mWidth;
for (i=0; i<segmentCount; i++)
{
nsBorderEdge * borderEdge = (nsBorderEdge *)(aBorderEdges->mEdges[NS_SIDE_RIGHT].ElementAt(i));
nscoord width;
if (PR_TRUE==aBorderEdges->mOutsideEdge)
{
width = aBorderArea.width - aBorderEdges->mMaxBorderWidth.right;
width += borderEdge->mWidth;
}
else
{
width = aBorderArea.width;
}
nsRect inside(aBorderArea.x, y, width, borderEdge->mLength);
y += borderEdge->mLength;
nsRect outside(inside);
nsMargin outsideMargin(0, 0, (borderEdge->mWidth), 0);
outside.Deflate(outsideMargin);
DrawSide(aRenderingContext, NS_SIDE_RIGHT,
borderEdge->mStyle,
borderEdge->mColor,
bgColor->mBackgroundColor,
inside, outside,aSkipSides,
twipsPerPixel, aGap);
}
}
}
//----------------------------------------------------------------------
// Returns the anchor point to use for the background image. The
// anchor point is the (x, y) location where the first tile should
// be placed
//
// For repeated tiling, the anchor values are normalized wrt to the upper-left
// edge of the bounds, and are always in the range:
// -(aTileWidth - 1) <= anchor.x <= 0
// -(aTileHeight - 1) <= anchor.y <= 0
//
// i.e., they are either 0 or a negative number whose absolute value is
// less than the tile size in that dimension
static void
ComputeBackgroundAnchorPoint(const nsStyleColor& aColor,
const nsRect& aBounds,
nscoord aTileWidth, nscoord aTileHeight,
nsPoint& aResult)
{
nscoord x;
if (NS_STYLE_BG_X_POSITION_LENGTH & aColor.mBackgroundFlags) {
x = aColor.mBackgroundXPosition;
}
else {
nscoord t = aColor.mBackgroundXPosition;
float pct = float(t) / 100.0f;
nscoord tilePos = nscoord(pct * aTileWidth);
nscoord boxPos = nscoord(pct * aBounds.width);
x = boxPos - tilePos;
}
if (NS_STYLE_BG_REPEAT_X & aColor.mBackgroundRepeat) {
// When we are tiling in the x direction the loop will run from
// the left edge of the box to the right edge of the box. We need
// to adjust the starting coordinate to lie within the band being
// rendered.
if (x < 0) {
x = -x;
if (x < 0) {
// Some joker gave us max-negative-integer.
x = 0;
}
x %= aTileWidth;
x = -x;
}
else if (x != 0) {
x %= aTileWidth;
if (x > 0) {
x = x - aTileWidth;
}
}
NS_POSTCONDITION((x >= -(aTileWidth - 1)) && (x <= 0), "bad computed anchor value");
}
aResult.x = x;
nscoord y;
if (NS_STYLE_BG_Y_POSITION_LENGTH & aColor.mBackgroundFlags) {
y = aColor.mBackgroundYPosition;
}
else {
nscoord t = aColor.mBackgroundYPosition;
float pct = float(t) / 100.0f;
nscoord tilePos = nscoord(pct * aTileHeight);
nscoord boxPos = nscoord(pct * aBounds.height);
y = boxPos - tilePos;
}
if (NS_STYLE_BG_REPEAT_Y & aColor.mBackgroundRepeat) {
// When we are tiling in the y direction the loop will run from
// the top edge of the box to the bottom edge of the box. We need
// to adjust the starting coordinate to lie within the band being
// rendered.
if (y < 0) {
y = -y;
if (y < 0) {
// Some joker gave us max-negative-integer.
y = 0;
}
y %= aTileHeight;
y = -y;
}
else if (y != 0) {
y %= aTileHeight;
if (y > 0) {
y = y - aTileHeight;
}
}
NS_POSTCONDITION((y >= -(aTileHeight - 1)) && (y <= 0), "bad computed anchor value");
}
aResult.y = y;
}
// Returns the clip view associated with the scroll frame's scrolling
// view
static const nsIView*
GetClipView(nsIFrame* aScrollFrame)
{
nsIView* view;
nsIScrollableView* scrollingView;
const nsIView* clipView;
// Get the scrolling view
aScrollFrame->GetView(&view);
view->QueryInterface(kScrollViewIID, (void**)&scrollingView);
// Get the clip view
scrollingView->GetClipView(&clipView);
return clipView;
}
// Returns the nearest scroll frame ancestor
static nsIFrame*
GetNearestScrollFrame(nsIFrame* aFrame)
{
for (nsIFrame* f = aFrame; f; f->GetParent(&f)) {
nsIAtom* frameType;
// Is it a scroll frame?
f->GetFrameType(&frameType);
if (nsLayoutAtoms::scrollFrame == frameType) {
NS_RELEASE(frameType);
return f;
}
NS_IF_RELEASE(frameType);
}
return nsnull;
}
void
nsCSSRendering::PaintBackground(nsIPresContext& aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleColor& aColor,
const nsStyleSpacing& aSpacing,
nscoord aDX,
nscoord aDY)
{
PRInt16 theRadius;
nsStyleCoord borderRadius;
if (0 < aColor.mBackgroundImage.Length()) {
// Lookup the image
nsSize imageSize;
nsIImage* image = nsnull;
nsIFrameImageLoader* loader = nsnull;
PRBool transparentBG = NS_STYLE_BG_COLOR_TRANSPARENT ==
(aColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT);
nsresult rv = aPresContext.StartLoadImage(aColor.mBackgroundImage,
transparentBG
? nsnull
: &aColor.mBackgroundColor,
nsnull,
aForFrame, nsnull, nsnull,
&loader);
if ((NS_OK != rv) || (nsnull == loader) ||
(loader->GetImage(&image), (nsnull == image))) {
NS_IF_RELEASE(loader);
// Redraw will happen later
if (!transparentBG) {
aRenderingContext.SetColor(aColor.mBackgroundColor);
aRenderingContext.FillRect(aBorderArea);
}
return;
}
loader->GetSize(imageSize);
NS_RELEASE(loader);
PRBool needBackgroundColor = PR_FALSE;
#if XXX
// XXX enable this code as soon as nsIImage can support it
if (image->NeedsBlend()) {
needBackgroundColor = PR_TRUE;
}
#endif
nscoord tileWidth = imageSize.width;
nscoord tileHeight = imageSize.height;
if ((tileWidth == 0) || (tileHeight == 0)) {
return;
}
// Background images are tiled over the 'content' and 'padding' areas
// only (not the 'border' area)
nsRect paddingArea(aBorderArea);
nsMargin border;
if (!aSpacing.GetBorder(border)) {
NS_NOTYETIMPLEMENTED("percentage border");
}
paddingArea.Deflate(border);
// The actual dirty rect is the intersection of the padding area and the
// dirty rect we were given
nsRect dirtyRect;
if (!dirtyRect.IntersectRect(paddingArea, aDirtyRect)) {
// Nothing to paint
return;
}
// Based on the repeat setting, compute how many tiles we should
// lay down for each axis. The value computed is the maximum based
// on the dirty rect before accounting for the background-position.
PRIntn repeat = aColor.mBackgroundRepeat;
nscoord xDistance, yDistance;
switch (repeat) {
case NS_STYLE_BG_REPEAT_OFF:
default:
xDistance = tileWidth;
yDistance = tileHeight;
needBackgroundColor = PR_TRUE;
break;
case NS_STYLE_BG_REPEAT_X:
xDistance = dirtyRect.width;
yDistance = tileHeight;
needBackgroundColor = PR_TRUE;
break;
case NS_STYLE_BG_REPEAT_Y:
xDistance = tileWidth;
yDistance = dirtyRect.height;
needBackgroundColor = PR_TRUE;
break;
case NS_STYLE_BG_REPEAT_XY:
xDistance = dirtyRect.width;
yDistance = dirtyRect.height;
break;
}
// The background color is rendered over the 'border' 'padding' and
// 'content' areas
if (needBackgroundColor) {
aRenderingContext.SetColor(aColor.mBackgroundColor);
aRenderingContext.FillRect(aBorderArea);
}
// If it's a fixed background attachment, then get the nearest scrolling
// ancestor
nsIFrame* scrollFrame = nsnull;
const nsIView* clipView = nsnull;
nsRect viewportArea(0, 0, 0, 0);
if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) {
scrollFrame = GetNearestScrollFrame(aForFrame);
// Get the viewport size
clipView = GetClipView(scrollFrame);
clipView->GetDimensions(&viewportArea.width, &viewportArea.height);
}
// Compute the anchor point. If it's a fixed background attachment, then
// the image is placed relative to the viewport; otherwise, it's placed
// relative to the element's padding area.
//
// When tiling, the anchor coordinate values will be negative offsets
// from the padding area
nsPoint anchor;
ComputeBackgroundAnchorPoint(aColor, scrollFrame ? viewportArea : paddingArea,
tileWidth, tileHeight, anchor);
// If it's a fixed background attachment, then convert the anchor point
// to aForFrame's coordinate space
if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) {
nsIView* view;
aForFrame->GetView(&view);
if (!view) {
nsPoint offset;
aForFrame->GetOffsetFromView(offset, &view);
anchor -= offset;
}
NS_ASSERTION(view, "expected a view");
while (view && (view != clipView)) {
nscoord x, y;
view->GetPosition(&x, &y);
anchor.x -= x;
anchor.y -= y;
// Get the parent view
view->GetParent(view);
}
}
// Setup clipping so that rendering doesn't leak out of the computed
// dirty rect
PRBool clipState;
aRenderingContext.PushState();
aRenderingContext.SetClipRect(dirtyRect, nsClipCombine_kIntersect,
clipState);
// Compute the x and y starting points and limits for tiling
nscoord x0, x1;
if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) {
if (NS_STYLE_BG_REPEAT_X & repeat) {
x0 = ((dirtyRect.x - anchor.x) / tileWidth) * tileWidth + anchor.x;
x1 = x0 + xDistance + tileWidth;
if (0 != anchor.x) {
x1 += tileWidth;
}
}
else {
// For fixed attachment, the anchor is relative to the nearest scrolling
// ancestor (or the viewport)
x0 = anchor.x;
x1 = x0 + tileWidth;
}
}
else {
if (NS_STYLE_BG_REPEAT_X & repeat) {
// When tiling in the x direction, adjust the starting position of the
// tile to account for dirtyRect.x. When tiling in x, the anchor.x value
// will be a negative value used to adjust the starting coordinate.
x0 = (dirtyRect.x / tileWidth) * tileWidth + anchor.x;
if(x0+tileWidth<dirtyRect.x)
x0+=tileWidth;
x1 = x0 + xDistance + tileWidth;
if (0 != anchor.x) {
x1 += tileWidth;
}
}
else {
// For scrolling attachment, the anchor is relative to the padding area
x0 = paddingArea.x + anchor.x;
x1 = x0 + tileWidth;
}
}
nscoord y0, y1;
if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) {
if (NS_STYLE_BG_REPEAT_Y & repeat) {
y0 = ((dirtyRect.y - anchor.y) / tileHeight) * tileHeight + anchor.y;
y1 = y0 + yDistance + tileHeight;
if (0 != anchor.y) {
y1 += tileHeight;
}
}
else {
// For fixed attachment, the anchor is relative to the nearest scrolling
// ancestor (or the viewport)
y0 = anchor.y;
y1 = y0 + tileHeight;
}
}
else {
if (NS_STYLE_BG_REPEAT_Y & repeat) {
// When tiling in the y direction, adjust the starting position of the
// tile to account for dirtyRect.y. When tiling in y, the anchor.y value
// will be a negative value used to adjust the starting coordinate.
y0 = (dirtyRect.y / tileHeight) * tileHeight + anchor.y;
if(y0+tileHeight<dirtyRect.y)
y0+=tileHeight;
y1 = y0 + yDistance + tileHeight;
if (0 != anchor.y) {
y1 += tileHeight;
}
}
else {
// For scrolling attachment, the anchor is relative to the padding area
y0 = paddingArea.y + anchor.y;
y1 = y0 + tileHeight;
}
}
#ifdef NOTNOW
nsDrawingSurface theSurface;
nsRect srcRect,destRect;
PRInt32 x,y;
PRInt32 flag = NS_COPYBITS_TO_BACK_BUFFER | NS_COPYBITS_XFORM_DEST_VALUES | NS_COPYBITS_XFORM_SOURCE_VALUES;
srcRect.x = x0;
srcRect.y = y0;
srcRect.width = tileWidth;
srcRect.height = tileHeight;
// create a bigger tile
// XXX pushing state to fix clipping problem, need to look into why the clip is set here
aRenderingContext.PushState();
PRBool clip;
aRenderingContext.SetClipRect(aBorderArea, nsClipCombine_kReplace, clip);
// copy the initial image to our buffer
aRenderingContext.DrawImage(image,srcRect.x,srcRect.y,tileWidth,tileHeight);
//if(anchor.x<0) {
if(x0<dirtyRect.x) {
aRenderingContext.DrawImage(image,x0+tileWidth,y0,tileWidth,tileHeight);
srcRect.x =dirtyRect.x;
}
//if(anchor.y<0) {
if(y0<dirtyRect.y) {
aRenderingContext.DrawImage(image,x0,y0+tileHeight,tileWidth,tileHeight);
srcRect.y = dirtyRect.y;
if(x0<dirtyRect.x) {
aRenderingContext.DrawImage(image,x0+tileWidth,y0+tileHeight,tileWidth,tileHeight);
}
}
aRenderingContext.GetDrawingSurface(&theSurface);
TileImage(aRenderingContext,theSurface,srcRect,x1-x0,y1-y0,flag);
// setting back the clip from the background clip push
aRenderingContext.PopState(clip);
// use the tile to fill in the rest of the image
destRect = srcRect;
for(y=srcRect.y;y<y1;y+=srcRect.height){
for(x=srcRect.x;x<x1;x+=srcRect.width){
destRect.x = x;
destRect.y = y;
aRenderingContext.CopyOffScreenBits(theSurface,srcRect.x,srcRect.y,destRect,flag);
}
}
#endif
nscoord x,y;
for(y=y0;y<y1;y+=tileHeight){
for(x=x0;x<x1;x+=tileWidth){
aRenderingContext.DrawImage(image,x,y,tileWidth,tileHeight);
}
}
// Restore clipping
aRenderingContext.PopState(clipState);
} else {
// See if there's a background color specified. The background color
// is rendered over the 'border' 'padding' and 'content' areas
if (0 == (aColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT)) {
// XXX This step can be avoided if we have an image and it doesn't
// have any transparent pixels, and the image is tiled in both
// the x and the y
// check to see if we have a radius
borderRadius = aSpacing.mBorderRadius;
theRadius = 0;
switch (borderRadius.GetUnit() ) {
case eStyleUnit_Inherit:
break;
case eStyleUnit_Percent:
break;
case eStyleUnit_Coord:
theRadius = borderRadius.GetCoordValue();
break;
}
// rounded version of the border
if (theRadius > 0){
PaintRoundedBackground(aPresContext,aRenderingContext,aForFrame,aDirtyRect,aBorderArea,aColor,aSpacing,aDX,aDY,theRadius);
return;
}
aRenderingContext.SetColor(aColor.mBackgroundColor);
aRenderingContext.FillRect(aBorderArea);
}
}
}
/** ---------------------------------------------------
* A bit blitter to tile images to the background recursively
* @update 4/13/99 dwc
* @param aRC -- Rendering Context to render to
* @param aDS -- Target drawing surface for the rendering context
* @param aWidth -- width of the tile
* @param aHeight -- height of the tile
* @param aWidth -- flags for the rendering context to use
*/
static void
TileImage(nsIRenderingContext& aRC,nsDrawingSurface aDS,nsRect &aSrcRect,PRInt16 aWidth,PRInt16 aHeight,PRInt32 aFlag)
{
nsRect destRect;
if( ((aSrcRect.width)<<1) < (aWidth)) {
// width is less than double so double our source bitmap width
destRect = aSrcRect;
destRect.x += aSrcRect.width;
aRC.CopyOffScreenBits(aDS,aSrcRect.x,aSrcRect.y,destRect,aFlag);
aSrcRect.width*=2;
TileImage(aRC,aDS,aSrcRect,aWidth,aHeight,aFlag);
} else if (((aSrcRect.height)<<1) < (aHeight)) {
// height is less than double so double our source bitmap height
destRect = aSrcRect;
destRect.y += aSrcRect.height;
aRC.CopyOffScreenBits(aDS,aSrcRect.x,aSrcRect.y,destRect,aFlag);
aSrcRect.height*=2;
TileImage(aRC,aDS,aSrcRect,aWidth,aHeight,aFlag);
}
}
static void AntiAliasPoly(nsIRenderingContext& aRenderingContext,nsPoint aPoints[],PRInt32 aStartIndex,PRInt32 curIndex,PRInt8 aSide,PRInt8 aCorner);
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 3/26/99 dwc
*/
void
nsCSSRendering::PaintRoundedBackground(nsIPresContext& aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleColor& aColor,
const nsStyleSpacing& aSpacing,
nscoord aDX,
nscoord aDY,
PRInt16 aTheRadius)
{
RoundedRect outerPath;
QBCurve cr1,cr2,cr3,cr4;
QBCurve UL,UR,LL,LR;
PRInt32 curIndex,c1Index;
nsPoint anc1,con,anc2;
nsPoint thePath[MAXPATHSIZE];
nsPoint polyPath[MAXPOLYPATHSIZE];
PRInt16 np;
nsMargin border;
nsStyleCoord borderRadius;
aRenderingContext.SetColor(aColor.mBackgroundColor);
// set the rounded rect up, and let'er rip
outerPath.Set(aBorderArea.x,aBorderArea.y,aBorderArea.width,aBorderArea.height,aTheRadius);
outerPath.GetRoundedBorders(UL,UR,LL,LR);
// BUILD THE ENTIRE OUTSIDE PATH
// TOP LINE ----------------------------------------------------------------
UL.MidPointDivide(&cr1,&cr2);
UR.MidPointDivide(&cr3,&cr4);
np=0;
thePath[np++].MoveTo(cr2.mAnc1.x,cr2.mAnc1.y);
thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y);
thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y);
thePath[np++].MoveTo(cr3.mAnc1.x, cr3.mAnc1.y);
thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y);
thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y);
polyPath[0].x = thePath[0].x;
polyPath[0].y = thePath[0].y;
curIndex = 1;
GetPath(thePath,polyPath,&curIndex,eOutside,c1Index);
// RIGHT LINE ----------------------------------------------------------------
LR.MidPointDivide(&cr2,&cr3);
np=0;
thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y);
thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y);
thePath[np++].MoveTo(cr4.mAnc2.x, cr4.mAnc2.y);
thePath[np++].MoveTo(cr2.mAnc1.x, cr2.mAnc1.y);
thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y);
thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y);
GetPath(thePath,polyPath,&curIndex,eOutside,c1Index);
// BOTTOM LINE ----------------------------------------------------------------
LL.MidPointDivide(&cr2,&cr4);
np=0;
thePath[np++].MoveTo(cr3.mAnc1.x,cr3.mAnc1.y);
thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y);
thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y);
thePath[np++].MoveTo(cr2.mAnc1.x, cr2.mAnc1.y);
thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y);
thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y);
GetPath(thePath,polyPath,&curIndex,eOutside,c1Index);
// LEFT LINE ----------------------------------------------------------------
np=0;
thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y);
thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y);
thePath[np++].MoveTo(cr4.mAnc2.x, cr4.mAnc2.y);
thePath[np++].MoveTo(cr1.mAnc1.x, cr1.mAnc1.y);
thePath[np++].MoveTo(cr1.mCon.x, cr1.mCon.y);
thePath[np++].MoveTo(cr1.mAnc2.x, cr1.mAnc2.y);
GetPath(thePath,polyPath,&curIndex,eOutside,c1Index);
aRenderingContext.FillPolygon(polyPath,curIndex);
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 3/26/99 dwc
*/
void
nsCSSRendering::PaintRoundedBorder(nsIPresContext& aPresContext,
nsIRenderingContext& aRenderingContext,
nsIFrame* aForFrame,
const nsRect& aDirtyRect,
const nsRect& aBorderArea,
const nsStyleSpacing& aBorderStyle,
nsIStyleContext* aStyleContext,
PRIntn aSkipSides,
PRInt16 aBorderRadius,
nsRect* aGap)
{
RoundedRect outerPath;
QBCurve UL,LL,UR,LR;
QBCurve IUL,ILL,IUR,ILR;
QBCurve cr1,cr2,cr3,cr4;
QBCurve Icr1,Icr2,Icr3,Icr4;
nsPoint anc1,con,anc2;
nsPoint thePath[MAXPATHSIZE];
PRInt16 np;
nsMargin border;
nscoord twipsPerPixel;
float p2t;
aBorderStyle.CalcBorderFor(aForFrame, border);
if ((0 == border.left) && (0 == border.right) &&
(0 == border.top) && (0 == border.bottom)) {
return;
}
// needed for our border thickness
aPresContext.GetPixelsToTwips(&p2t);
twipsPerPixel = (nscoord) p2t;
// Base our thickness check on the segment being less than a pixel and 1/2
twipsPerPixel += twipsPerPixel >> 2;
// set the rounded rect up, and let'er rip
outerPath.Set(aBorderArea.x,aBorderArea.y,aBorderArea.width,aBorderArea.height,aBorderRadius);
outerPath.GetRoundedBorders(UL,UR,LL,LR);
outerPath.CalcInsetCurves(IUL,IUR,ILL,ILR,border);
// TOP LINE -- construct and divide the curves first, then put together our top and bottom paths
if(0==border.top)
return;
// construct and divide the curves needed
UL.MidPointDivide(&cr1,&cr2);
UR.MidPointDivide(&cr3,&cr4);
IUL.MidPointDivide(&Icr1,&Icr2);
IUR.MidPointDivide(&Icr3,&Icr4);
// the outer part of the path
np=0;
thePath[np++].MoveTo(cr2.mAnc1.x,cr2.mAnc1.y);
thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y);
thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y);
thePath[np++].MoveTo(cr3.mAnc1.x, cr3.mAnc1.y);
thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y);
thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y);
thePath[np++].MoveTo(Icr3.mAnc2.x,Icr3.mAnc2.y);
thePath[np++].MoveTo(Icr3.mCon.x, Icr3.mCon.y);
thePath[np++].MoveTo(Icr3.mAnc1.x, Icr3.mAnc1.y);
thePath[np++].MoveTo(Icr2.mAnc2.x, Icr2.mAnc2.y);
thePath[np++].MoveTo(Icr2.mCon.x, Icr2.mCon.y);
thePath[np++].MoveTo(Icr2.mAnc1.x, Icr2.mAnc1.y);
RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_TOP,border,twipsPerPixel);
// RIGHT LINE ----------------------------------------------------------------
if(0==border.right)
return;
LR.MidPointDivide(&cr2,&cr3);
ILR.MidPointDivide(&Icr2,&Icr3);
np=0;
thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y);
thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y);
thePath[np++].MoveTo(cr4.mAnc2.x,cr4.mAnc2.y);
thePath[np++].MoveTo(cr2.mAnc1.x,cr2.mAnc1.y);
thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y);
thePath[np++].MoveTo(cr2.mAnc2.x,cr2.mAnc2.y);
thePath[np++].MoveTo(Icr2.mAnc2.x,Icr2.mAnc2.y);
thePath[np++].MoveTo(Icr2.mCon.x, Icr2.mCon.y);
thePath[np++].MoveTo(Icr2.mAnc1.x,Icr2.mAnc1.y);
thePath[np++].MoveTo(Icr4.mAnc2.x,Icr4.mAnc2.y);
thePath[np++].MoveTo(Icr4.mCon.x, Icr4.mCon.y);
thePath[np++].MoveTo(Icr4.mAnc1.x,Icr4.mAnc1.y);
RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_RIGHT,border,twipsPerPixel);
// bottom line ----------------------------------------------------------------
if(0==border.bottom)
return;
LL.MidPointDivide(&cr2,&cr4);
ILL.MidPointDivide(&Icr2,&Icr4);
np=0;
thePath[np++].MoveTo(cr3.mAnc1.x,cr3.mAnc1.y);
thePath[np++].MoveTo(cr3.mCon.x, cr3.mCon.y);
thePath[np++].MoveTo(cr3.mAnc2.x, cr3.mAnc2.y);
thePath[np++].MoveTo(cr2.mAnc1.x, cr2.mAnc1.y);
thePath[np++].MoveTo(cr2.mCon.x, cr2.mCon.y);
thePath[np++].MoveTo(cr2.mAnc2.x, cr2.mAnc2.y);
thePath[np++].MoveTo(Icr2.mAnc2.x,Icr2.mAnc2.y);
thePath[np++].MoveTo(Icr2.mCon.x, Icr2.mCon.y);
thePath[np++].MoveTo(Icr2.mAnc1.x, Icr2.mAnc1.y);
thePath[np++].MoveTo(Icr3.mAnc2.x, Icr3.mAnc2.y);
thePath[np++].MoveTo(Icr3.mCon.x, Icr3.mCon.y);
thePath[np++].MoveTo(Icr3.mAnc1.x, Icr3.mAnc1.y);
RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_BOTTOM,border,twipsPerPixel);
// left line ----------------------------------------------------------------
if(0==border.left)
return;
np=0;
thePath[np++].MoveTo(cr4.mAnc1.x,cr4.mAnc1.y);
thePath[np++].MoveTo(cr4.mCon.x, cr4.mCon.y);
thePath[np++].MoveTo(cr4.mAnc2.x, cr4.mAnc2.y);
thePath[np++].MoveTo(cr1.mAnc1.x, cr1.mAnc1.y);
thePath[np++].MoveTo(cr1.mCon.x, cr1.mCon.y);
thePath[np++].MoveTo(cr1.mAnc2.x, cr1.mAnc2.y);
thePath[np++].MoveTo(Icr1.mAnc2.x,Icr1.mAnc2.y);
thePath[np++].MoveTo(Icr1.mCon.x, Icr1.mCon.y);
thePath[np++].MoveTo(Icr1.mAnc1.x, Icr1.mAnc1.y);
thePath[np++].MoveTo(Icr4.mAnc2.x, Icr4.mAnc2.y);
thePath[np++].MoveTo(Icr4.mCon.x, Icr4.mCon.y);
thePath[np++].MoveTo(Icr4.mAnc1.x, Icr4.mAnc1.y);
RenderSide(thePath,aRenderingContext,aBorderStyle,aStyleContext,NS_SIDE_LEFT,border,twipsPerPixel);
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 3/26/99 dwc
*/
void
nsCSSRendering::RenderSide(nsPoint aPoints[],nsIRenderingContext& aRenderingContext,
const nsStyleSpacing& aBorderStyle,nsIStyleContext* aStyleContext,
PRUint8 aSide,nsMargin &aBorThick,nscoord aTwipsPerPixel)
{
QBCurve thecurve,cr1,cr2,cr3,cr4;
nscolor sideColor;
nsPoint thePath[MAXPATHSIZE];
nsPoint polypath[MAXPOLYPATHSIZE];
PRInt32 curIndex,c1Index,c2Index,junk;
PRInt8 border_Style;
PRInt16 r,g,b;
// set the style information
aBorderStyle.GetBorderColor(aSide,sideColor);
aRenderingContext.SetColor ( sideColor );
// if the border is thin, just draw it
if (aBorThick.top<aTwipsPerPixel) {
// NOTHING FANCY JUST DRAW OUR OUTSIDE BORDER
thecurve.SetPoints(aPoints[0].x,aPoints[0].y,aPoints[1].x,aPoints[1].y,aPoints[2].x,aPoints[2].y);
thecurve.SubDivide((nsIRenderingContext*)&aRenderingContext,0,0);
aRenderingContext.DrawLine(aPoints[2].x,aPoints[2].y,aPoints[3].x,aPoints[3].y);
thecurve.SetPoints(aPoints[3].x,aPoints[3].y,aPoints[4].x,aPoints[4].y,aPoints[5].x,aPoints[5].y);
thecurve.SubDivide((nsIRenderingContext*)&aRenderingContext,0,0);
} else {
border_Style = aBorderStyle.GetBorderStyle(aSide);
switch (border_Style){
case NS_STYLE_BORDER_STYLE_OUTSET:
case NS_STYLE_BORDER_STYLE_INSET:
{
const nsStyleColor* bgColor = nsStyleUtil::FindNonTransparentBackground(aStyleContext);
aBorderStyle.GetBorderColor(aSide,sideColor);
aRenderingContext.SetColor ( MakeBevelColor (aSide, border_Style, bgColor->mBackgroundColor,sideColor, PR_TRUE));
}
case NS_STYLE_BORDER_STYLE_SOLID:
polypath[0].x = aPoints[0].x;
polypath[0].y = aPoints[0].y;
curIndex = 1;
GetPath(aPoints,polypath,&curIndex,eOutside,c1Index);
c2Index = curIndex;
polypath[curIndex].x = aPoints[6].x;
polypath[curIndex].y = aPoints[6].y;
curIndex++;
GetPath(aPoints,polypath,&curIndex,eInside,junk);
polypath[curIndex].x = aPoints[0].x;
polypath[curIndex].y = aPoints[0].y;
curIndex++;
aRenderingContext.FillPolygon(polypath,curIndex);
// anti-alias this
r = NS_GET_R(sideColor);
g = NS_GET_G(sideColor);
b = NS_GET_B(sideColor);
r += (255-r)>>1;
g += (255-g)>>1;
b += (255-b)>>1;
sideColor = NS_RGB(r,g,b);
aRenderingContext.SetColor(sideColor);
AntiAliasPoly(aRenderingContext,polypath,0,c1Index,aSide,1);
AntiAliasPoly(aRenderingContext,polypath,c1Index+1,c2Index,aSide,2);
break;
case NS_STYLE_BORDER_STYLE_DOUBLE:
polypath[0].x = aPoints[0].x;
polypath[0].y = aPoints[0].y;
curIndex = 1;
GetPath(aPoints,polypath,&curIndex,eOutside,c1Index);
aRenderingContext.DrawPolyline(polypath,curIndex);
polypath[0].x = aPoints[6].x;
polypath[0].y = aPoints[6].y;
curIndex = 1;
GetPath(aPoints,polypath,&curIndex,eInside,c1Index);
aRenderingContext.DrawPolyline(polypath,curIndex);
break;
case NS_STYLE_BORDER_STYLE_NONE:
case NS_STYLE_BORDER_STYLE_BLANK:
break;
case NS_STYLE_BORDER_STYLE_DOTTED:
case NS_STYLE_BORDER_STYLE_DASHED:
break;
case NS_STYLE_BORDER_STYLE_RIDGE:
case NS_STYLE_BORDER_STYLE_GROOVE:
{
const nsStyleColor* bgColor = nsStyleUtil::FindNonTransparentBackground(aStyleContext);
aBorderStyle.GetBorderColor(aSide,sideColor);
aRenderingContext.SetColor ( MakeBevelColor (aSide, border_Style, bgColor->mBackgroundColor,sideColor, PR_TRUE));
polypath[0].x = aPoints[0].x;
polypath[0].y = aPoints[0].y;
curIndex = 1;
GetPath(aPoints,polypath,&curIndex,eOutside,c1Index);
polypath[curIndex].x = (aPoints[5].x + aPoints[6].x)>>1;
polypath[curIndex].y = (aPoints[5].y + aPoints[6].y)>>1;
curIndex++;
GetPath(aPoints,polypath,&curIndex,eCalcRev,c1Index,.5);
polypath[curIndex].x = aPoints[0].x;
polypath[curIndex].y = aPoints[0].y;
curIndex++;
aRenderingContext.FillPolygon(polypath,curIndex);
aRenderingContext.SetColor ( MakeBevelColor (aSide,
((border_Style == NS_STYLE_BORDER_STYLE_RIDGE) ?
NS_STYLE_BORDER_STYLE_GROOVE :
NS_STYLE_BORDER_STYLE_RIDGE),
bgColor->mBackgroundColor,sideColor, PR_TRUE));
polypath[0].x = (aPoints[0].x + aPoints[11].x)>>1;
polypath[0].y = (aPoints[0].y + aPoints[11].y)>>1;
curIndex = 1;
GetPath(aPoints,polypath,&curIndex,eCalc,c1Index,.5);
polypath[curIndex].x = aPoints[6].x ;
polypath[curIndex].y = aPoints[6].y;
curIndex++;
GetPath(aPoints,polypath,&curIndex,eInside,c1Index);
polypath[curIndex].x = aPoints[0].x;
polypath[curIndex].y = aPoints[0].y;
curIndex++;
aRenderingContext.FillPolygon(polypath,curIndex);
}
break;
default:
break;
}
}
}
/** ---------------------------------------------------
* AntiAlias the polygon
* @update 4/13/99 dwc
*/
static void
AntiAliasPoly(nsIRenderingContext& aRenderingContext,nsPoint aPoints[],PRInt32 aStartIndex,PRInt32 aCurIndex,PRInt8 aSide,PRInt8 aCorner)
{
PRInt32 i;
PRInt32 x0,y0,x1,y1,offsetx,offsety;
offsetx = offsety = 0;
switch (aSide) {
case NS_SIDE_TOP:
if( aCorner == 1) {
offsetx = 0;
}else{
offsetx = -10;
}
break;
case NS_SIDE_LEFT:
if( aCorner == 1) {
offsetx = 0;
}else{
offsetx = 0;
}
break;
case NS_SIDE_RIGHT:
if( aCorner == 1) {
offsetx = -10;
}else{
offsetx = -10;
}
break;
case NS_SIDE_BOTTOM:
if( aCorner == 1) {
offsety = -10;
}else{
offsety = -10;
}
break;
}
for(i=aStartIndex+1;i<aCurIndex;i++) {
x0 = aPoints[i-1].x+offsetx;
y0 = aPoints[i-1].y+offsety;
x1 = aPoints[i].x+offsetx;
y1 = aPoints[i].y+offsety;
aRenderingContext.DrawLine(x0,y0,x1,y1);
}
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 3/26/99 dwc
*/
void
RoundedRect::CalcInsetCurves(QBCurve &aULCurve,QBCurve &aURCurve,QBCurve &aLLCurve,QBCurve &aLRCurve,nsMargin &aBorder)
{
PRInt32 nLeft,nTop,nRight,nBottom;
nLeft = mOuterLeft+aBorder.left;
nTop = mOuterTop+aBorder.top;
nRight = mOuterRight-aBorder.right;
nBottom = mOuterBottom-aBorder.bottom;
if(nLeft > nRight){
nLeft = nRight;
}
if(nTop > nBottom){
nTop = nBottom;
}
// set the passed in curves to the rounded borders of the rectangle
aULCurve.SetPoints(nLeft,mInnerTop,nLeft,nTop,mInnerLeft,nTop);
aURCurve.SetPoints(mInnerRight,nTop,nRight,nTop,nRight,mInnerTop);
aLRCurve.SetPoints(nRight,mInnerBottom,nRight,nBottom,mInnerRight,nBottom);
aLLCurve.SetPoints(mInnerLeft,nBottom,nLeft,nBottom,nLeft,mInnerBottom);
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 4/13/99 dwc
*/
void
RoundedRect::Set(nscoord aLeft,nscoord aTop,PRInt32 aWidth,PRInt32 aHeight,PRInt16 aRadius)
{
PRInt32 width;
width = aLeft+aWidth;
if( aRadius > (aWidth>>1) )
mRoundness = aWidth>>1;
else
mRoundness = aRadius;
if( mRoundness > (aHeight>>1) )
mRoundness = aHeight>>1;
// important coordinates that the path hits
mOuterLeft = aLeft;
mOuterRight = aLeft + aWidth;
mOuterTop = aTop;
mOuterBottom = aTop+aHeight;
mInnerLeft = mOuterLeft + mRoundness;
mInnerRight = mOuterRight - mRoundness;
mInnerTop = mOuterTop + mRoundness;
mInnerBottom = mOuterBottom - mRoundness;
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 4/13/99 dwc
*/
void
RoundedRect::GetRoundedBorders(QBCurve &aULCurve,QBCurve &aURCurve,QBCurve &aLLCurve,QBCurve &aLRCurve)
{
// set the passed in curves to the rounded borders of the rectangle
aULCurve.SetPoints(mOuterLeft,mInnerTop,mOuterLeft,mOuterTop,mInnerLeft,mOuterTop);
aURCurve.SetPoints(mInnerRight,mOuterTop,mOuterRight,mOuterTop,mOuterRight,mInnerTop);
aLRCurve.SetPoints(mOuterRight,mInnerBottom,mOuterRight,mOuterBottom,mInnerRight,mOuterBottom);
aLLCurve.SetPoints(mInnerLeft,mOuterBottom,mOuterLeft,mOuterBottom,mOuterLeft,mInnerBottom);
}
/** ---------------------------------------------------
* Given a qbezier path, convert it into a polygon path
* @update 3/26/99 dwc
* @param aPoints -- an array of points to use for the path
* @param aPolyPath -- an array of points containing the flattened polygon to use
* @param aCurIndex -- the index that points to the last element of the array
* @param aPathType -- what kind of path that should be returned
* @param aFrac -- the inset amount for a eCalc type path
*/
static void
GetPath(nsPoint aPoints[],nsPoint aPolyPath[],PRInt32 *aCurIndex,ePathTypes aPathType,PRInt32 &aC1Index,float aFrac)
{
QBCurve thecurve;
switch (aPathType) {
case eOutside:
thecurve.SetPoints(aPoints[0].x,aPoints[0].y,aPoints[1].x,aPoints[1].y,aPoints[2].x,aPoints[2].y);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
aC1Index = *aCurIndex;
aPolyPath[*aCurIndex].x = aPoints[3].x;
aPolyPath[*aCurIndex].y = aPoints[3].y;
(*aCurIndex)++;
thecurve.SetPoints(aPoints[3].x,aPoints[3].y,aPoints[4].x,aPoints[4].y,aPoints[5].x,aPoints[5].y);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
break;
case eInside:
thecurve.SetPoints(aPoints[6].x,aPoints[6].y,aPoints[7].x,aPoints[7].y,aPoints[8].x,aPoints[8].y);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
aPolyPath[*aCurIndex].x = aPoints[9].x;
aPolyPath[*aCurIndex].y = aPoints[9].y;
(*aCurIndex)++;
thecurve.SetPoints(aPoints[9].x,aPoints[9].y,aPoints[10].x,aPoints[10].y,aPoints[11].x,aPoints[11].y);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
break;
case eCalc:
thecurve.SetPoints( (aPoints[0].x+aPoints[11].x)>>1,(aPoints[0].y+aPoints[11].y)>>1,
(aPoints[1].x+aPoints[10].x)>>1,(aPoints[1].y+aPoints[10].y)>>1,
(aPoints[2].x+aPoints[9].x)>>1,(aPoints[2].y+aPoints[9].y)>>1);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
aPolyPath[*aCurIndex].x = (aPoints[3].x+aPoints[8].x)>>1;
aPolyPath[*aCurIndex].y = (aPoints[3].y+aPoints[8].y)>>1;
(*aCurIndex)++;
thecurve.SetPoints( (aPoints[3].x+aPoints[8].x)>>1,(aPoints[3].y+aPoints[8].y)>>1,
(aPoints[4].x+aPoints[7].x)>>1,(aPoints[4].y+aPoints[7].y)>>1,
(aPoints[5].x+aPoints[6].x)>>1,(aPoints[5].y+aPoints[6].y)>>1);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
break;
case eCalcRev:
thecurve.SetPoints( (aPoints[5].x+aPoints[6].x)>>1,(aPoints[5].y+aPoints[6].y)>>1,
(aPoints[4].x+aPoints[7].x)>>1,(aPoints[4].y+aPoints[7].y)>>1,
(aPoints[3].x+aPoints[8].x)>>1,(aPoints[3].y+aPoints[8].y)>>1);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
aPolyPath[*aCurIndex].x = (aPoints[2].x+aPoints[9].x)>>1;
aPolyPath[*aCurIndex].y = (aPoints[2].y+aPoints[9].y)>>1;
(*aCurIndex)++;
thecurve.SetPoints( (aPoints[2].x+aPoints[9].x)>>1,(aPoints[2].y+aPoints[9].y)>>1,
(aPoints[1].x+aPoints[10].x)>>1,(aPoints[1].y+aPoints[10].y)>>1,
(aPoints[0].x+aPoints[11].x)>>1,(aPoints[0].y+aPoints[11].y)>>1);
thecurve.SubDivide(nsnull,aPolyPath,aCurIndex);
break;
}
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 4/13/99 dwc
*/
void
QBCurve::SubDivide(nsIRenderingContext *aRenderingContext,nsPoint aPointArray[],PRInt32 *aCurIndex)
{
QBCurve curve1,curve2;
PRInt16 fx,fy,smag;
// divide the curve into 2 pieces
MidPointDivide(&curve1,&curve2);
fx = (PRInt16)abs(curve1.mAnc2.x - this->mCon.x);
fy = (PRInt16)abs(curve1.mAnc2.y - this->mCon.y);
smag = fx+fy-(PR_MIN(fx,fy)>>1);
//smag = fx*fx + fy*fy;
if (smag>2){
// split the curve again
curve1.SubDivide(aRenderingContext,aPointArray,aCurIndex);
curve2.SubDivide(aRenderingContext,aPointArray,aCurIndex);
}else{
if(aPointArray ) {
// save the points for further processing
aPointArray[*aCurIndex].x = curve1.mAnc2.x;
aPointArray[*aCurIndex].y = curve1.mAnc2.y;
(*aCurIndex)++;
aPointArray[*aCurIndex].x = curve2.mAnc2.x;
aPointArray[*aCurIndex].y = curve2.mAnc2.y;
(*aCurIndex)++;
}else{
// draw the curve
aRenderingContext->DrawLine(curve1.mAnc1.x,curve1.mAnc1.y,curve1.mAnc2.x,curve1.mAnc2.y);
aRenderingContext->DrawLine(curve1.mAnc2.x,curve1.mAnc2.y,curve2.mAnc2.x,curve2.mAnc2.y);
}
}
}
/** ---------------------------------------------------
* See documentation in nsCSSRendering.h
* @update 4/13/99 dwc
*/
void
QBCurve::MidPointDivide(QBCurve *A,QBCurve *B)
{
nsPoint a1,control1,control2;
// do the math (averages inline)
control1.x = (PRInt32)((mAnc1.x + mCon.x)>>1);
control1.y = (PRInt32)((mAnc1.y + mCon.y)>>1);
control2.x = (PRInt32)((mAnc2.x + mCon.x)>>1);
control2.y = (PRInt32)((mAnc2.y + mCon.y)>>1);
a1.x = (PRInt32)((control1.x + control2.x)>>1);
a1.y = (PRInt32)((control1.y + control2.y)>>1);
// put the math into our 2 new curves
A->mAnc1 = this->mAnc1;
A->mCon = control1;
A->mAnc2 = a1;
B->mAnc1 = a1;
B->mCon = control2;
B->mAnc2 = this->mAnc2;
}