mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-01-14 05:44:20 +00:00
1385 lines
39 KiB
C
1385 lines
39 KiB
C
/* vim: set ts=8 sw=8 noexpandtab: */
|
|
// qcms
|
|
// Copyright (C) 2009 Mozilla Foundation
|
|
// Copyright (C) 1998-2007 Marti Maria
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the "Software"),
|
|
// to deal in the Software without restriction, including without limitation
|
|
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
// and/or sell copies of the Software, and to permit persons to whom the Software
|
|
// is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
|
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h> //memset
|
|
#include "qcmsint.h"
|
|
|
|
/* It might be worth having a unified limit on content controlled
|
|
* allocation per profile. This would remove the need for many
|
|
* of the arbitrary limits that we used */
|
|
|
|
typedef uint32_t be32;
|
|
typedef uint16_t be16;
|
|
|
|
static be32 cpu_to_be32(uint32_t v)
|
|
{
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
|
|
#else
|
|
return v;
|
|
#endif
|
|
}
|
|
|
|
static be16 cpu_to_be16(uint16_t v)
|
|
{
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
return ((v & 0xff) << 8) | ((v & 0xff00) >> 8);
|
|
#else
|
|
return v;
|
|
#endif
|
|
}
|
|
|
|
static uint32_t be32_to_cpu(be32 v)
|
|
{
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
|
|
//return __builtin_bswap32(v);
|
|
#else
|
|
return v;
|
|
#endif
|
|
}
|
|
|
|
static uint16_t be16_to_cpu(be16 v)
|
|
{
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
return ((v & 0xff) << 8) | ((v & 0xff00) >> 8);
|
|
#else
|
|
return v;
|
|
#endif
|
|
}
|
|
|
|
/* a wrapper around the memory that we are going to parse
|
|
* into a qcms_profile */
|
|
struct mem_source
|
|
{
|
|
const unsigned char *buf;
|
|
size_t size;
|
|
qcms_bool valid;
|
|
const char *invalid_reason;
|
|
};
|
|
|
|
static void invalid_source(struct mem_source *mem, const char *reason)
|
|
{
|
|
mem->valid = false;
|
|
mem->invalid_reason = reason;
|
|
}
|
|
|
|
static uint32_t read_u32(struct mem_source *mem, size_t offset)
|
|
{
|
|
/* Subtract from mem->size instead of the more intuitive adding to offset.
|
|
* This avoids overflowing offset. The subtraction is safe because
|
|
* mem->size is guaranteed to be > 4 */
|
|
if (offset > mem->size - 4) {
|
|
invalid_source(mem, "Invalid offset");
|
|
return 0;
|
|
} else {
|
|
be32 k;
|
|
memcpy(&k, mem->buf + offset, sizeof(k));
|
|
return be32_to_cpu(k);
|
|
}
|
|
}
|
|
|
|
static uint16_t read_u16(struct mem_source *mem, size_t offset)
|
|
{
|
|
if (offset > mem->size - 2) {
|
|
invalid_source(mem, "Invalid offset");
|
|
return 0;
|
|
} else {
|
|
be16 k;
|
|
memcpy(&k, mem->buf + offset, sizeof(k));
|
|
return be16_to_cpu(k);
|
|
}
|
|
}
|
|
|
|
static uint8_t read_u8(struct mem_source *mem, size_t offset)
|
|
{
|
|
if (offset > mem->size - 1) {
|
|
invalid_source(mem, "Invalid offset");
|
|
return 0;
|
|
} else {
|
|
return *(uint8_t*)(mem->buf + offset);
|
|
}
|
|
}
|
|
|
|
static s15Fixed16Number read_s15Fixed16Number(struct mem_source *mem, size_t offset)
|
|
{
|
|
return read_u32(mem, offset);
|
|
}
|
|
|
|
static uInt8Number read_uInt8Number(struct mem_source *mem, size_t offset)
|
|
{
|
|
return read_u8(mem, offset);
|
|
}
|
|
|
|
static uInt16Number read_uInt16Number(struct mem_source *mem, size_t offset)
|
|
{
|
|
return read_u16(mem, offset);
|
|
}
|
|
|
|
static void write_u32(void *mem, size_t offset, uint32_t value)
|
|
{
|
|
*((uint32_t *)((unsigned char*)mem + offset)) = cpu_to_be32(value);
|
|
}
|
|
|
|
static void write_u16(void *mem, size_t offset, uint16_t value)
|
|
{
|
|
*((uint16_t *)((unsigned char*)mem + offset)) = cpu_to_be16(value);
|
|
}
|
|
|
|
#define BAD_VALUE_PROFILE NULL
|
|
#define INVALID_PROFILE NULL
|
|
#define NO_MEM_PROFILE NULL
|
|
|
|
/* An arbitrary 4MB limit on profile size */
|
|
#define MAX_PROFILE_SIZE 1024*1024*4
|
|
#define MAX_TAG_COUNT 1024
|
|
|
|
static void check_CMM_type_signature(struct mem_source *src)
|
|
{
|
|
//uint32_t CMM_type_signature = read_u32(src, 4);
|
|
//TODO: do the check?
|
|
|
|
}
|
|
|
|
static void check_profile_version(struct mem_source *src)
|
|
{
|
|
|
|
/*
|
|
uint8_t major_revision = read_u8(src, 8 + 0);
|
|
uint8_t minor_revision = read_u8(src, 8 + 1);
|
|
*/
|
|
uint8_t reserved1 = read_u8(src, 8 + 2);
|
|
uint8_t reserved2 = read_u8(src, 8 + 3);
|
|
/* Checking the version doesn't buy us anything
|
|
if (major_revision != 0x4) {
|
|
if (major_revision > 0x2)
|
|
invalid_source(src, "Unsupported major revision");
|
|
if (minor_revision > 0x40)
|
|
invalid_source(src, "Unsupported minor revision");
|
|
}
|
|
*/
|
|
if (reserved1 != 0 || reserved2 != 0)
|
|
invalid_source(src, "Invalid reserved bytes");
|
|
}
|
|
|
|
#define INPUT_DEVICE_PROFILE 0x73636e72 // 'scnr'
|
|
#define DISPLAY_DEVICE_PROFILE 0x6d6e7472 // 'mntr'
|
|
#define OUTPUT_DEVICE_PROFILE 0x70727472 // 'prtr'
|
|
#define DEVICE_LINK_PROFILE 0x6c696e6b // 'link'
|
|
#define COLOR_SPACE_PROFILE 0x73706163 // 'spac'
|
|
#define ABSTRACT_PROFILE 0x61627374 // 'abst'
|
|
#define NAMED_COLOR_PROFILE 0x6e6d636c // 'nmcl'
|
|
|
|
static void read_class_signature(qcms_profile *profile, struct mem_source *mem)
|
|
{
|
|
profile->class = read_u32(mem, 12);
|
|
switch (profile->class) {
|
|
case DISPLAY_DEVICE_PROFILE:
|
|
case INPUT_DEVICE_PROFILE:
|
|
case OUTPUT_DEVICE_PROFILE:
|
|
case COLOR_SPACE_PROFILE:
|
|
break;
|
|
default:
|
|
invalid_source(mem, "Invalid Profile/Device Class signature");
|
|
}
|
|
}
|
|
|
|
static void read_color_space(qcms_profile *profile, struct mem_source *mem)
|
|
{
|
|
profile->color_space = read_u32(mem, 16);
|
|
switch (profile->color_space) {
|
|
case RGB_SIGNATURE:
|
|
case GRAY_SIGNATURE:
|
|
break;
|
|
default:
|
|
invalid_source(mem, "Unsupported colorspace");
|
|
}
|
|
}
|
|
|
|
static void read_pcs(qcms_profile *profile, struct mem_source *mem)
|
|
{
|
|
profile->pcs = read_u32(mem, 20);
|
|
switch (profile->pcs) {
|
|
case XYZ_SIGNATURE:
|
|
case LAB_SIGNATURE:
|
|
break;
|
|
default:
|
|
invalid_source(mem, "Unsupported pcs");
|
|
}
|
|
}
|
|
|
|
struct tag
|
|
{
|
|
uint32_t signature;
|
|
uint32_t offset;
|
|
uint32_t size;
|
|
};
|
|
|
|
struct tag_index {
|
|
uint32_t count;
|
|
struct tag *tags;
|
|
};
|
|
|
|
static struct tag_index read_tag_table(qcms_profile *profile, struct mem_source *mem)
|
|
{
|
|
struct tag_index index = {0, NULL};
|
|
unsigned int i;
|
|
|
|
index.count = read_u32(mem, 128);
|
|
if (index.count > MAX_TAG_COUNT) {
|
|
invalid_source(mem, "max number of tags exceeded");
|
|
return index;
|
|
}
|
|
|
|
index.tags = malloc(sizeof(struct tag)*index.count);
|
|
if (index.tags) {
|
|
for (i = 0; i < index.count; i++) {
|
|
index.tags[i].signature = read_u32(mem, 128 + 4 + 4*i*3);
|
|
index.tags[i].offset = read_u32(mem, 128 + 4 + 4*i*3 + 4);
|
|
index.tags[i].size = read_u32(mem, 128 + 4 + 4*i*3 + 8);
|
|
}
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
// Checks a profile for obvious inconsistencies and returns
|
|
// true if the profile looks bogus and should probably be
|
|
// ignored.
|
|
qcms_bool qcms_profile_is_bogus(qcms_profile *profile)
|
|
{
|
|
float sum[3], target[3], tolerance[3];
|
|
float rX, rY, rZ, gX, gY, gZ, bX, bY, bZ;
|
|
bool negative;
|
|
unsigned i;
|
|
|
|
// We currently only check the bogosity of RGB profiles
|
|
if (profile->color_space != RGB_SIGNATURE)
|
|
return false;
|
|
|
|
if (profile->A2B0 || profile->B2A0)
|
|
return false;
|
|
|
|
rX = s15Fixed16Number_to_float(profile->redColorant.X);
|
|
rY = s15Fixed16Number_to_float(profile->redColorant.Y);
|
|
rZ = s15Fixed16Number_to_float(profile->redColorant.Z);
|
|
|
|
gX = s15Fixed16Number_to_float(profile->greenColorant.X);
|
|
gY = s15Fixed16Number_to_float(profile->greenColorant.Y);
|
|
gZ = s15Fixed16Number_to_float(profile->greenColorant.Z);
|
|
|
|
bX = s15Fixed16Number_to_float(profile->blueColorant.X);
|
|
bY = s15Fixed16Number_to_float(profile->blueColorant.Y);
|
|
bZ = s15Fixed16Number_to_float(profile->blueColorant.Z);
|
|
|
|
// Check if any of the XYZ values are negative (see mozilla bug 498245)
|
|
// CIEXYZ tristimulus values cannot be negative according to the spec.
|
|
negative =
|
|
(rX < 0) || (rY < 0) || (rZ < 0) ||
|
|
(gX < 0) || (gY < 0) || (gZ < 0) ||
|
|
(bX < 0) || (bY < 0) || (bZ < 0);
|
|
|
|
if (negative)
|
|
return true;
|
|
|
|
|
|
// Sum the values; they should add up to something close to white
|
|
sum[0] = rX + gX + bX;
|
|
sum[1] = rY + gY + bY;
|
|
sum[2] = rZ + gZ + bZ;
|
|
|
|
// Build our target vector (see mozilla bug 460629)
|
|
target[0] = 0.96420;
|
|
target[1] = 1.00000;
|
|
target[2] = 0.82491;
|
|
|
|
// Our tolerance vector - Recommended by Chris Murphy based on
|
|
// conversion from the LAB space criterion of no more than 3 in any one
|
|
// channel. This is similar to, but slightly more tolerant than Adobe's
|
|
// criterion.
|
|
tolerance[0] = 0.02;
|
|
tolerance[1] = 0.02;
|
|
tolerance[2] = 0.04;
|
|
|
|
// Compare with our tolerance
|
|
for (i = 0; i < 3; ++i) {
|
|
if (!(((sum[i] - tolerance[i]) <= target[i]) &&
|
|
((sum[i] + tolerance[i]) >= target[i])))
|
|
return true;
|
|
}
|
|
|
|
// All Good
|
|
return false;
|
|
}
|
|
|
|
#define TAG_bXYZ 0x6258595a
|
|
#define TAG_gXYZ 0x6758595a
|
|
#define TAG_rXYZ 0x7258595a
|
|
#define TAG_rTRC 0x72545243
|
|
#define TAG_bTRC 0x62545243
|
|
#define TAG_gTRC 0x67545243
|
|
#define TAG_kTRC 0x6b545243
|
|
#define TAG_A2B0 0x41324230
|
|
#define TAG_B2A0 0x42324130
|
|
#define TAG_CHAD 0x63686164
|
|
|
|
static struct tag *find_tag(struct tag_index index, uint32_t tag_id)
|
|
{
|
|
unsigned int i;
|
|
struct tag *tag = NULL;
|
|
for (i = 0; i < index.count; i++) {
|
|
if (index.tags[i].signature == tag_id) {
|
|
return &index.tags[i];
|
|
}
|
|
}
|
|
return tag;
|
|
}
|
|
|
|
#define XYZ_TYPE 0x58595a20 // 'XYZ '
|
|
#define CURVE_TYPE 0x63757276 // 'curv'
|
|
#define PARAMETRIC_CURVE_TYPE 0x70617261 // 'para'
|
|
#define LUT16_TYPE 0x6d667432 // 'mft2'
|
|
#define LUT8_TYPE 0x6d667431 // 'mft1'
|
|
#define LUT_MAB_TYPE 0x6d414220 // 'mAB '
|
|
#define LUT_MBA_TYPE 0x6d424120 // 'mBA '
|
|
#define CHROMATIC_TYPE 0x73663332 // 'sf32'
|
|
|
|
static struct matrix read_tag_s15Fixed16ArrayType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
|
|
{
|
|
struct tag *tag = find_tag(index, tag_id);
|
|
struct matrix matrix;
|
|
if (tag) {
|
|
uint8_t i;
|
|
uint32_t offset = tag->offset;
|
|
uint32_t type = read_u32(src, offset);
|
|
|
|
// Check mandatory type signature for s16Fixed16ArrayType
|
|
if (type != CHROMATIC_TYPE) {
|
|
invalid_source(src, "unexpected type, expected 'sf32'");
|
|
}
|
|
|
|
for (i = 0; i < 9; i++) {
|
|
matrix.m[i/3][i%3] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset+8+i*4));
|
|
}
|
|
matrix.invalid = false;
|
|
} else {
|
|
matrix.invalid = true;
|
|
invalid_source(src, "missing sf32tag");
|
|
}
|
|
return matrix;
|
|
}
|
|
|
|
static struct XYZNumber read_tag_XYZType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
|
|
{
|
|
struct XYZNumber num = {0, 0, 0};
|
|
struct tag *tag = find_tag(index, tag_id);
|
|
if (tag) {
|
|
uint32_t offset = tag->offset;
|
|
|
|
uint32_t type = read_u32(src, offset);
|
|
if (type != XYZ_TYPE)
|
|
invalid_source(src, "unexpected type, expected XYZ");
|
|
num.X = read_s15Fixed16Number(src, offset+8);
|
|
num.Y = read_s15Fixed16Number(src, offset+12);
|
|
num.Z = read_s15Fixed16Number(src, offset+16);
|
|
} else {
|
|
invalid_source(src, "missing xyztag");
|
|
}
|
|
return num;
|
|
}
|
|
|
|
// Read the tag at a given offset rather then the tag_index.
|
|
// This method is used when reading mAB tags where nested curveType are
|
|
// present that are not part of the tag_index.
|
|
static struct curveType *read_curveType(struct mem_source *src, uint32_t offset, uint32_t *len)
|
|
{
|
|
static const uint32_t COUNT_TO_LENGTH[5] = {1, 3, 4, 5, 7};
|
|
struct curveType *curve = NULL;
|
|
uint32_t type = read_u32(src, offset);
|
|
uint32_t count;
|
|
uint32_t i;
|
|
|
|
if (type != CURVE_TYPE && type != PARAMETRIC_CURVE_TYPE) {
|
|
invalid_source(src, "unexpected type, expected CURV or PARA");
|
|
return NULL;
|
|
}
|
|
|
|
if (type == CURVE_TYPE) {
|
|
count = read_u32(src, offset+8);
|
|
|
|
#define MAX_CURVE_ENTRIES 40000 //arbitrary
|
|
if (count > MAX_CURVE_ENTRIES) {
|
|
invalid_source(src, "curve size too large");
|
|
return NULL;
|
|
}
|
|
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*count);
|
|
if (!curve)
|
|
return NULL;
|
|
|
|
curve->count = count;
|
|
curve->type = CURVE_TYPE;
|
|
|
|
for (i=0; i<count; i++) {
|
|
curve->data[i] = read_u16(src, offset + 12 + i*2);
|
|
}
|
|
*len = 12 + count * 2;
|
|
} else { //PARAMETRIC_CURVE_TYPE
|
|
count = read_u16(src, offset+8);
|
|
|
|
if (count > 4) {
|
|
invalid_source(src, "parametric function type not supported.");
|
|
return NULL;
|
|
}
|
|
|
|
curve = malloc(sizeof(struct curveType));
|
|
if (!curve)
|
|
return NULL;
|
|
|
|
curve->count = count;
|
|
curve->type = PARAMETRIC_CURVE_TYPE;
|
|
|
|
for (i=0; i < COUNT_TO_LENGTH[count]; i++) {
|
|
curve->parameter[i] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset + 12 + i*4));
|
|
}
|
|
*len = 12 + COUNT_TO_LENGTH[count] * 4;
|
|
|
|
if ((count == 1 || count == 2)) {
|
|
/* we have a type 1 or type 2 function that has a division by 'a' */
|
|
float a = curve->parameter[1];
|
|
if (a == 0.f)
|
|
invalid_source(src, "parametricCurve definition causes division by zero.");
|
|
}
|
|
}
|
|
|
|
return curve;
|
|
}
|
|
|
|
static struct curveType *read_tag_curveType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
|
|
{
|
|
struct tag *tag = find_tag(index, tag_id);
|
|
struct curveType *curve = NULL;
|
|
if (tag) {
|
|
uint32_t len;
|
|
return read_curveType(src, tag->offset, &len);
|
|
} else {
|
|
invalid_source(src, "missing curvetag");
|
|
}
|
|
|
|
return curve;
|
|
}
|
|
|
|
#define MAX_CLUT_SIZE 500000 // arbitrary
|
|
#define MAX_CHANNELS 10 // arbitrary
|
|
static void read_nested_curveType(struct mem_source *src, struct curveType *(*curveArray)[MAX_CHANNELS], uint8_t num_channels, uint32_t curve_offset)
|
|
{
|
|
uint32_t channel_offset = 0;
|
|
int i;
|
|
for (i = 0; i < num_channels; i++) {
|
|
uint32_t tag_len;
|
|
|
|
(*curveArray)[i] = read_curveType(src, curve_offset + channel_offset, &tag_len);
|
|
if (!(*curveArray)[i]) {
|
|
invalid_source(src, "invalid nested curveType curve");
|
|
}
|
|
|
|
channel_offset += tag_len;
|
|
// 4 byte aligned
|
|
if ((tag_len % 4) != 0)
|
|
channel_offset += 4 - (tag_len % 4);
|
|
}
|
|
|
|
}
|
|
|
|
static void mAB_release(struct lutmABType *lut)
|
|
{
|
|
uint8_t i;
|
|
|
|
for (i = 0; i < lut->num_in_channels; i++){
|
|
free(lut->a_curves[i]);
|
|
}
|
|
for (i = 0; i < lut->num_out_channels; i++){
|
|
free(lut->b_curves[i]);
|
|
free(lut->m_curves[i]);
|
|
}
|
|
free(lut);
|
|
}
|
|
|
|
/* See section 10.10 for specs */
|
|
static struct lutmABType *read_tag_lutmABType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
|
|
{
|
|
struct tag *tag = find_tag(index, tag_id);
|
|
uint32_t offset = tag->offset;
|
|
uint32_t a_curve_offset, b_curve_offset, m_curve_offset;
|
|
uint32_t matrix_offset;
|
|
uint32_t clut_offset;
|
|
uint32_t clut_size = 1;
|
|
uint8_t clut_precision;
|
|
uint32_t type = read_u32(src, offset);
|
|
uint8_t num_in_channels, num_out_channels;
|
|
struct lutmABType *lut;
|
|
uint32_t i;
|
|
|
|
if (type != LUT_MAB_TYPE && type != LUT_MBA_TYPE) {
|
|
return NULL;
|
|
}
|
|
|
|
num_in_channels = read_u8(src, offset + 8);
|
|
num_out_channels = read_u8(src, offset + 8);
|
|
if (num_in_channels > MAX_CHANNELS || num_out_channels > MAX_CHANNELS)
|
|
return NULL;
|
|
|
|
// We require 3in/out channels since we only support RGB->XYZ (or RGB->LAB)
|
|
// XXX: If we remove this restriction make sure that the number of channels
|
|
// is less or equal to the maximum number of mAB curves in qcmsint.h
|
|
// also check for clut_size overflow.
|
|
if (num_in_channels != 3 || num_out_channels != 3)
|
|
return NULL;
|
|
|
|
// some of this data is optional and is denoted by a zero offset
|
|
// we also use this to track their existance
|
|
a_curve_offset = read_u32(src, offset + 28);
|
|
clut_offset = read_u32(src, offset + 24);
|
|
m_curve_offset = read_u32(src, offset + 20);
|
|
matrix_offset = read_u32(src, offset + 16);
|
|
b_curve_offset = read_u32(src, offset + 12);
|
|
|
|
// Convert offsets relative to the tag to relative to the profile
|
|
// preserve zero for optional fields
|
|
if (a_curve_offset)
|
|
a_curve_offset += offset;
|
|
if (clut_offset)
|
|
clut_offset += offset;
|
|
if (m_curve_offset)
|
|
m_curve_offset += offset;
|
|
if (matrix_offset)
|
|
matrix_offset += offset;
|
|
if (b_curve_offset)
|
|
b_curve_offset += offset;
|
|
|
|
if (clut_offset) {
|
|
assert (num_in_channels == 3);
|
|
// clut_size can not overflow since lg(256^num_in_channels) = 24 bits.
|
|
for (i = 0; i < num_in_channels; i++) {
|
|
clut_size *= read_u8(src, clut_offset + i);
|
|
}
|
|
} else {
|
|
clut_size = 0;
|
|
}
|
|
|
|
// 24bits * 3 won't overflow either
|
|
clut_size = clut_size * num_out_channels;
|
|
|
|
if (clut_size > MAX_CLUT_SIZE)
|
|
return NULL;
|
|
|
|
lut = malloc(sizeof(struct lutmABType) + (clut_size) * sizeof(float));
|
|
if (!lut)
|
|
return NULL;
|
|
// we'll fill in the rest below
|
|
memset(lut, 0, sizeof(struct lutmABType));
|
|
lut->clut_table = &lut->clut_table_data[0];
|
|
|
|
for (i = 0; i < num_in_channels; i++) {
|
|
lut->num_grid_points[i] = read_u8(src, clut_offset + i);
|
|
}
|
|
|
|
// Reverse the processing of transformation elements for mBA type.
|
|
lut->reversed = (type == LUT_MBA_TYPE);
|
|
|
|
lut->num_in_channels = num_in_channels;
|
|
lut->num_out_channels = num_out_channels;
|
|
|
|
if (matrix_offset) {
|
|
// read the matrix if we have it
|
|
lut->e00 = read_s15Fixed16Number(src, matrix_offset+4*0);
|
|
lut->e01 = read_s15Fixed16Number(src, matrix_offset+4*1);
|
|
lut->e02 = read_s15Fixed16Number(src, matrix_offset+4*2);
|
|
lut->e10 = read_s15Fixed16Number(src, matrix_offset+4*3);
|
|
lut->e11 = read_s15Fixed16Number(src, matrix_offset+4*4);
|
|
lut->e12 = read_s15Fixed16Number(src, matrix_offset+4*5);
|
|
lut->e20 = read_s15Fixed16Number(src, matrix_offset+4*6);
|
|
lut->e21 = read_s15Fixed16Number(src, matrix_offset+4*7);
|
|
lut->e22 = read_s15Fixed16Number(src, matrix_offset+4*8);
|
|
lut->e03 = read_s15Fixed16Number(src, matrix_offset+4*9);
|
|
lut->e13 = read_s15Fixed16Number(src, matrix_offset+4*10);
|
|
lut->e23 = read_s15Fixed16Number(src, matrix_offset+4*11);
|
|
}
|
|
|
|
if (a_curve_offset) {
|
|
read_nested_curveType(src, &lut->a_curves, num_in_channels, a_curve_offset);
|
|
}
|
|
if (m_curve_offset) {
|
|
read_nested_curveType(src, &lut->m_curves, num_out_channels, m_curve_offset);
|
|
}
|
|
if (b_curve_offset) {
|
|
read_nested_curveType(src, &lut->b_curves, num_out_channels, b_curve_offset);
|
|
} else {
|
|
invalid_source(src, "B curves required");
|
|
}
|
|
|
|
if (clut_offset) {
|
|
clut_precision = read_u8(src, clut_offset + 16);
|
|
if (clut_precision == 1) {
|
|
for (i = 0; i < clut_size; i++) {
|
|
lut->clut_table[i] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + 20 + i*1));
|
|
}
|
|
} else if (clut_precision == 2) {
|
|
for (i = 0; i < clut_size; i++) {
|
|
lut->clut_table[i] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + 20 + i*2));
|
|
}
|
|
} else {
|
|
invalid_source(src, "Invalid clut precision");
|
|
}
|
|
}
|
|
|
|
if (!src->valid) {
|
|
mAB_release(lut);
|
|
return NULL;
|
|
}
|
|
|
|
return lut;
|
|
}
|
|
|
|
static struct lutType *read_tag_lutType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
|
|
{
|
|
struct tag *tag = find_tag(index, tag_id);
|
|
uint32_t offset = tag->offset;
|
|
uint32_t type = read_u32(src, offset);
|
|
uint16_t num_input_table_entries;
|
|
uint16_t num_output_table_entries;
|
|
uint8_t in_chan, grid_points, out_chan;
|
|
uint32_t clut_offset, output_offset;
|
|
uint32_t clut_size;
|
|
size_t entry_size;
|
|
struct lutType *lut;
|
|
uint32_t i;
|
|
|
|
/* I'm not sure why the spec specifies a fixed number of entries for LUT8 tables even though
|
|
* they have room for the num_entries fields */
|
|
if (type == LUT8_TYPE) {
|
|
num_input_table_entries = 256;
|
|
num_output_table_entries = 256;
|
|
entry_size = 1;
|
|
} else if (type == LUT16_TYPE) {
|
|
num_input_table_entries = read_u16(src, offset + 48);
|
|
num_output_table_entries = read_u16(src, offset + 50);
|
|
entry_size = 2;
|
|
} else {
|
|
assert(0); // the caller checks that this doesn't happen
|
|
invalid_source(src, "Unexpected lut type");
|
|
return NULL;
|
|
}
|
|
|
|
in_chan = read_u8(src, offset + 8);
|
|
out_chan = read_u8(src, offset + 9);
|
|
grid_points = read_u8(src, offset + 10);
|
|
|
|
clut_size = pow(grid_points, in_chan);
|
|
if (clut_size > MAX_CLUT_SIZE) {
|
|
return NULL;
|
|
}
|
|
|
|
if (in_chan != 3 || out_chan != 3) {
|
|
return NULL;
|
|
}
|
|
|
|
lut = malloc(sizeof(struct lutType) + (num_input_table_entries * in_chan + clut_size*out_chan + num_output_table_entries * out_chan)*sizeof(float));
|
|
if (!lut) {
|
|
return NULL;
|
|
}
|
|
|
|
/* compute the offsets of tables */
|
|
lut->input_table = &lut->table_data[0];
|
|
lut->clut_table = &lut->table_data[in_chan*num_input_table_entries];
|
|
lut->output_table = &lut->table_data[in_chan*num_input_table_entries + clut_size*out_chan];
|
|
|
|
lut->num_input_table_entries = num_input_table_entries;
|
|
lut->num_output_table_entries = num_output_table_entries;
|
|
lut->num_input_channels = read_u8(src, offset + 8);
|
|
lut->num_output_channels = read_u8(src, offset + 9);
|
|
lut->num_clut_grid_points = read_u8(src, offset + 10);
|
|
lut->e00 = read_s15Fixed16Number(src, offset+12);
|
|
lut->e01 = read_s15Fixed16Number(src, offset+16);
|
|
lut->e02 = read_s15Fixed16Number(src, offset+20);
|
|
lut->e10 = read_s15Fixed16Number(src, offset+24);
|
|
lut->e11 = read_s15Fixed16Number(src, offset+28);
|
|
lut->e12 = read_s15Fixed16Number(src, offset+32);
|
|
lut->e20 = read_s15Fixed16Number(src, offset+36);
|
|
lut->e21 = read_s15Fixed16Number(src, offset+40);
|
|
lut->e22 = read_s15Fixed16Number(src, offset+44);
|
|
|
|
for (i = 0; i < lut->num_input_table_entries * in_chan; i++) {
|
|
if (type == LUT8_TYPE) {
|
|
lut->input_table[i] = uInt8Number_to_float(read_uInt8Number(src, offset + 52 + i * entry_size));
|
|
} else {
|
|
lut->input_table[i] = uInt16Number_to_float(read_uInt16Number(src, offset + 52 + i * entry_size));
|
|
}
|
|
}
|
|
|
|
clut_offset = offset + 52 + lut->num_input_table_entries * in_chan * entry_size;
|
|
for (i = 0; i < clut_size * out_chan; i+=3) {
|
|
if (type == LUT8_TYPE) {
|
|
lut->clut_table[i+0] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 0));
|
|
lut->clut_table[i+1] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 1));
|
|
lut->clut_table[i+2] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 2));
|
|
} else {
|
|
lut->clut_table[i+0] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 0));
|
|
lut->clut_table[i+1] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 2));
|
|
lut->clut_table[i+2] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 4));
|
|
}
|
|
}
|
|
|
|
output_offset = clut_offset + clut_size * out_chan * entry_size;
|
|
for (i = 0; i < lut->num_output_table_entries * out_chan; i++) {
|
|
if (type == LUT8_TYPE) {
|
|
lut->output_table[i] = uInt8Number_to_float(read_uInt8Number(src, output_offset + i*entry_size));
|
|
} else {
|
|
lut->output_table[i] = uInt16Number_to_float(read_uInt16Number(src, output_offset + i*entry_size));
|
|
}
|
|
}
|
|
|
|
return lut;
|
|
}
|
|
|
|
static void read_rendering_intent(qcms_profile *profile, struct mem_source *src)
|
|
{
|
|
profile->rendering_intent = read_u32(src, 64);
|
|
switch (profile->rendering_intent) {
|
|
case QCMS_INTENT_PERCEPTUAL:
|
|
case QCMS_INTENT_SATURATION:
|
|
case QCMS_INTENT_RELATIVE_COLORIMETRIC:
|
|
case QCMS_INTENT_ABSOLUTE_COLORIMETRIC:
|
|
break;
|
|
default:
|
|
invalid_source(src, "unknown rendering intent");
|
|
}
|
|
}
|
|
|
|
qcms_profile *qcms_profile_create(void)
|
|
{
|
|
return calloc(sizeof(qcms_profile), 1);
|
|
}
|
|
|
|
|
|
|
|
/* build sRGB gamma table */
|
|
/* based on cmsBuildParametricGamma() */
|
|
static uint16_t *build_sRGB_gamma_table(int num_entries)
|
|
{
|
|
int i;
|
|
/* taken from lcms: Build_sRGBGamma() */
|
|
double gamma = 2.4;
|
|
double a = 1./1.055;
|
|
double b = 0.055/1.055;
|
|
double c = 1./12.92;
|
|
double d = 0.04045;
|
|
|
|
uint16_t *table = malloc(sizeof(uint16_t) * num_entries);
|
|
if (!table)
|
|
return NULL;
|
|
|
|
for (i=0; i<num_entries; i++) {
|
|
double x = (double)i / (num_entries-1);
|
|
double y, output;
|
|
// IEC 61966-2.1 (sRGB)
|
|
// Y = (aX + b)^Gamma | X >= d
|
|
// Y = cX | X < d
|
|
if (x >= d) {
|
|
double e = (a*x + b);
|
|
if (e > 0)
|
|
y = pow(e, gamma);
|
|
else
|
|
y = 0;
|
|
} else {
|
|
y = c*x;
|
|
}
|
|
|
|
// Saturate -- this could likely move to a separate function
|
|
output = y * 65535. + .5;
|
|
if (output > 65535.)
|
|
output = 65535;
|
|
if (output < 0)
|
|
output = 0;
|
|
table[i] = (uint16_t)floor(output);
|
|
}
|
|
return table;
|
|
}
|
|
|
|
static struct curveType *curve_from_table(uint16_t *table, int num_entries)
|
|
{
|
|
struct curveType *curve;
|
|
int i;
|
|
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
|
|
if (!curve)
|
|
return NULL;
|
|
curve->type = CURVE_TYPE;
|
|
curve->count = num_entries;
|
|
for (i = 0; i < num_entries; i++) {
|
|
curve->data[i] = table[i];
|
|
}
|
|
return curve;
|
|
}
|
|
|
|
static uint16_t float_to_u8Fixed8Number(float a)
|
|
{
|
|
if (a > (255.f + 255.f/256))
|
|
return 0xffff;
|
|
else if (a < 0.f)
|
|
return 0;
|
|
else
|
|
return floorf(a*256.f + .5f);
|
|
}
|
|
|
|
static struct curveType *curve_from_gamma(float gamma)
|
|
{
|
|
struct curveType *curve;
|
|
int num_entries = 1;
|
|
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
|
|
if (!curve)
|
|
return NULL;
|
|
curve->count = num_entries;
|
|
curve->data[0] = float_to_u8Fixed8Number(gamma);
|
|
curve->type = CURVE_TYPE;
|
|
return curve;
|
|
}
|
|
|
|
//XXX: it would be nice if we had a way of ensuring
|
|
// everything in a profile was initialized regardless of how it was created
|
|
|
|
//XXX: should this also be taking a black_point?
|
|
/* similar to CGColorSpaceCreateCalibratedRGB */
|
|
qcms_profile* qcms_profile_create_rgb_with_gamma(
|
|
qcms_CIE_xyY white_point,
|
|
qcms_CIE_xyYTRIPLE primaries,
|
|
float gamma)
|
|
{
|
|
qcms_profile* profile = qcms_profile_create();
|
|
if (!profile)
|
|
return NO_MEM_PROFILE;
|
|
|
|
//XXX: should store the whitepoint
|
|
if (!set_rgb_colorants(profile, white_point, primaries)) {
|
|
qcms_profile_release(profile);
|
|
return INVALID_PROFILE;
|
|
}
|
|
|
|
profile->redTRC = curve_from_gamma(gamma);
|
|
profile->blueTRC = curve_from_gamma(gamma);
|
|
profile->greenTRC = curve_from_gamma(gamma);
|
|
|
|
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
|
|
qcms_profile_release(profile);
|
|
return NO_MEM_PROFILE;
|
|
}
|
|
profile->class = DISPLAY_DEVICE_PROFILE;
|
|
profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
|
|
profile->color_space = RGB_SIGNATURE;
|
|
return profile;
|
|
}
|
|
|
|
qcms_profile* qcms_profile_create_rgb_with_table(
|
|
qcms_CIE_xyY white_point,
|
|
qcms_CIE_xyYTRIPLE primaries,
|
|
uint16_t *table, int num_entries)
|
|
{
|
|
qcms_profile* profile = qcms_profile_create();
|
|
if (!profile)
|
|
return NO_MEM_PROFILE;
|
|
|
|
//XXX: should store the whitepoint
|
|
if (!set_rgb_colorants(profile, white_point, primaries)) {
|
|
qcms_profile_release(profile);
|
|
return INVALID_PROFILE;
|
|
}
|
|
|
|
profile->redTRC = curve_from_table(table, num_entries);
|
|
profile->blueTRC = curve_from_table(table, num_entries);
|
|
profile->greenTRC = curve_from_table(table, num_entries);
|
|
|
|
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
|
|
qcms_profile_release(profile);
|
|
return NO_MEM_PROFILE;
|
|
}
|
|
profile->class = DISPLAY_DEVICE_PROFILE;
|
|
profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
|
|
profile->color_space = RGB_SIGNATURE;
|
|
return profile;
|
|
}
|
|
|
|
/* from lcms: cmsWhitePointFromTemp */
|
|
/* tempK must be >= 4000. and <= 25000.
|
|
* Invalid values of tempK will return
|
|
* (x,y,Y) = (-1.0, -1.0, -1.0)
|
|
* similar to argyll: icx_DTEMP2XYZ() */
|
|
static qcms_CIE_xyY white_point_from_temp(int temp_K)
|
|
{
|
|
qcms_CIE_xyY white_point;
|
|
double x, y;
|
|
double T, T2, T3;
|
|
// double M1, M2;
|
|
|
|
// No optimization provided.
|
|
T = temp_K;
|
|
T2 = T*T; // Square
|
|
T3 = T2*T; // Cube
|
|
|
|
// For correlated color temperature (T) between 4000K and 7000K:
|
|
if (T >= 4000. && T <= 7000.) {
|
|
x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
|
|
} else {
|
|
// or for correlated color temperature (T) between 7000K and 25000K:
|
|
if (T > 7000.0 && T <= 25000.0) {
|
|
x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
|
|
} else {
|
|
// Invalid tempK
|
|
white_point.x = -1.0;
|
|
white_point.y = -1.0;
|
|
white_point.Y = -1.0;
|
|
|
|
assert(0 && "invalid temp");
|
|
|
|
return white_point;
|
|
}
|
|
}
|
|
|
|
// Obtain y(x)
|
|
|
|
y = -3.000*(x*x) + 2.870*x - 0.275;
|
|
|
|
// wave factors (not used, but here for futures extensions)
|
|
|
|
// M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
|
|
// M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
|
|
|
|
// Fill white_point struct
|
|
white_point.x = x;
|
|
white_point.y = y;
|
|
white_point.Y = 1.0;
|
|
|
|
return white_point;
|
|
}
|
|
|
|
qcms_profile* qcms_profile_sRGB(void)
|
|
{
|
|
qcms_profile *profile;
|
|
uint16_t *table;
|
|
|
|
qcms_CIE_xyYTRIPLE Rec709Primaries = {
|
|
{0.6400, 0.3300, 1.0},
|
|
{0.3000, 0.6000, 1.0},
|
|
{0.1500, 0.0600, 1.0}
|
|
};
|
|
qcms_CIE_xyY D65;
|
|
|
|
D65 = white_point_from_temp(6504);
|
|
|
|
table = build_sRGB_gamma_table(1024);
|
|
|
|
if (!table)
|
|
return NO_MEM_PROFILE;
|
|
|
|
profile = qcms_profile_create_rgb_with_table(D65, Rec709Primaries, table, 1024);
|
|
free(table);
|
|
return profile;
|
|
}
|
|
|
|
|
|
/* qcms_profile_from_memory does not hold a reference to the memory passed in */
|
|
qcms_profile* qcms_profile_from_memory(const void *mem, size_t size)
|
|
{
|
|
uint32_t length;
|
|
struct mem_source source;
|
|
struct mem_source *src = &source;
|
|
struct tag_index index;
|
|
qcms_profile *profile;
|
|
|
|
source.buf = mem;
|
|
source.size = size;
|
|
source.valid = true;
|
|
|
|
if (size < 4)
|
|
return INVALID_PROFILE;
|
|
|
|
length = read_u32(src, 0);
|
|
if (length <= size) {
|
|
// shrink the area that we can read if appropriate
|
|
source.size = length;
|
|
} else {
|
|
return INVALID_PROFILE;
|
|
}
|
|
|
|
/* ensure that the profile size is sane so it's easier to reason about */
|
|
if (source.size <= 64 || source.size >= MAX_PROFILE_SIZE)
|
|
return INVALID_PROFILE;
|
|
|
|
profile = qcms_profile_create();
|
|
if (!profile)
|
|
return NO_MEM_PROFILE;
|
|
|
|
check_CMM_type_signature(src);
|
|
check_profile_version(src);
|
|
read_class_signature(profile, src);
|
|
read_rendering_intent(profile, src);
|
|
read_color_space(profile, src);
|
|
read_pcs(profile, src);
|
|
//TODO read rest of profile stuff
|
|
|
|
if (!src->valid)
|
|
goto invalid_profile;
|
|
|
|
index = read_tag_table(profile, src);
|
|
if (!src->valid || !index.tags)
|
|
goto invalid_tag_table;
|
|
|
|
if (find_tag(index, TAG_CHAD)) {
|
|
profile->chromaticAdaption = read_tag_s15Fixed16ArrayType(src, index, TAG_CHAD);
|
|
} else {
|
|
profile->chromaticAdaption.invalid = true; //Signal the data is not present
|
|
}
|
|
|
|
if (profile->class == DISPLAY_DEVICE_PROFILE || profile->class == INPUT_DEVICE_PROFILE ||
|
|
profile->class == OUTPUT_DEVICE_PROFILE || profile->class == COLOR_SPACE_PROFILE) {
|
|
if (profile->color_space == RGB_SIGNATURE) {
|
|
if (find_tag(index, TAG_A2B0)) {
|
|
if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT8_TYPE ||
|
|
read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT16_TYPE) {
|
|
profile->A2B0 = read_tag_lutType(src, index, TAG_A2B0);
|
|
} else if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT_MAB_TYPE) {
|
|
profile->mAB = read_tag_lutmABType(src, index, TAG_A2B0);
|
|
}
|
|
}
|
|
if (find_tag(index, TAG_B2A0)) {
|
|
if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT8_TYPE ||
|
|
read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT16_TYPE) {
|
|
profile->B2A0 = read_tag_lutType(src, index, TAG_B2A0);
|
|
} else if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT_MBA_TYPE) {
|
|
profile->mBA = read_tag_lutmABType(src, index, TAG_B2A0);
|
|
}
|
|
}
|
|
if (find_tag(index, TAG_rXYZ) || !qcms_supports_iccv4) {
|
|
profile->redColorant = read_tag_XYZType(src, index, TAG_rXYZ);
|
|
profile->greenColorant = read_tag_XYZType(src, index, TAG_gXYZ);
|
|
profile->blueColorant = read_tag_XYZType(src, index, TAG_bXYZ);
|
|
}
|
|
|
|
if (!src->valid)
|
|
goto invalid_tag_table;
|
|
|
|
if (find_tag(index, TAG_rTRC) || !qcms_supports_iccv4) {
|
|
profile->redTRC = read_tag_curveType(src, index, TAG_rTRC);
|
|
profile->greenTRC = read_tag_curveType(src, index, TAG_gTRC);
|
|
profile->blueTRC = read_tag_curveType(src, index, TAG_bTRC);
|
|
|
|
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC)
|
|
goto invalid_tag_table;
|
|
}
|
|
} else if (profile->color_space == GRAY_SIGNATURE) {
|
|
|
|
profile->grayTRC = read_tag_curveType(src, index, TAG_kTRC);
|
|
if (!profile->grayTRC)
|
|
goto invalid_tag_table;
|
|
|
|
} else {
|
|
assert(0 && "read_color_space protects against entering here");
|
|
goto invalid_tag_table;
|
|
}
|
|
} else {
|
|
goto invalid_tag_table;
|
|
}
|
|
|
|
if (!src->valid)
|
|
goto invalid_tag_table;
|
|
|
|
free(index.tags);
|
|
|
|
return profile;
|
|
|
|
invalid_tag_table:
|
|
free(index.tags);
|
|
invalid_profile:
|
|
qcms_profile_release(profile);
|
|
return INVALID_PROFILE;
|
|
}
|
|
|
|
qcms_intent qcms_profile_get_rendering_intent(qcms_profile *profile)
|
|
{
|
|
return profile->rendering_intent;
|
|
}
|
|
|
|
icColorSpaceSignature
|
|
qcms_profile_get_color_space(qcms_profile *profile)
|
|
{
|
|
return profile->color_space;
|
|
}
|
|
|
|
static void lut_release(struct lutType *lut)
|
|
{
|
|
free(lut);
|
|
}
|
|
|
|
void qcms_profile_release(qcms_profile *profile)
|
|
{
|
|
if (profile->output_table_r)
|
|
precache_release(profile->output_table_r);
|
|
if (profile->output_table_g)
|
|
precache_release(profile->output_table_g);
|
|
if (profile->output_table_b)
|
|
precache_release(profile->output_table_b);
|
|
|
|
if (profile->A2B0)
|
|
lut_release(profile->A2B0);
|
|
if (profile->B2A0)
|
|
lut_release(profile->B2A0);
|
|
|
|
if (profile->mAB)
|
|
mAB_release(profile->mAB);
|
|
if (profile->mBA)
|
|
mAB_release(profile->mBA);
|
|
|
|
free(profile->redTRC);
|
|
free(profile->blueTRC);
|
|
free(profile->greenTRC);
|
|
free(profile->grayTRC);
|
|
free(profile);
|
|
}
|
|
|
|
|
|
#include <stdio.h>
|
|
static void qcms_data_from_file(FILE *file, void **mem, size_t *size)
|
|
{
|
|
uint32_t length, remaining_length;
|
|
size_t read_length;
|
|
be32 length_be;
|
|
void *data;
|
|
|
|
*mem = NULL;
|
|
*size = 0;
|
|
|
|
if (fread(&length_be, 1, sizeof(length_be), file) != sizeof(length_be))
|
|
return;
|
|
|
|
length = be32_to_cpu(length_be);
|
|
if (length > MAX_PROFILE_SIZE || length < sizeof(length_be))
|
|
return;
|
|
|
|
/* allocate room for the entire profile */
|
|
data = malloc(length);
|
|
if (!data)
|
|
return;
|
|
|
|
/* copy in length to the front so that the buffer will contain the entire profile */
|
|
*((be32*)data) = length_be;
|
|
remaining_length = length - sizeof(length_be);
|
|
|
|
/* read the rest profile */
|
|
read_length = fread((unsigned char*)data + sizeof(length_be), 1, remaining_length, file);
|
|
if (read_length != remaining_length) {
|
|
free(data);
|
|
return;
|
|
}
|
|
|
|
/* successfully get the profile.*/
|
|
*mem = data;
|
|
*size = length;
|
|
}
|
|
|
|
qcms_profile* qcms_profile_from_file(FILE *file)
|
|
{
|
|
size_t length;
|
|
qcms_profile *profile;
|
|
void *data;
|
|
|
|
qcms_data_from_file(file, &data, &length);
|
|
if ((data == NULL) || (length == 0))
|
|
return INVALID_PROFILE;
|
|
|
|
profile = qcms_profile_from_memory(data, length);
|
|
free(data);
|
|
return profile;
|
|
}
|
|
|
|
qcms_profile* qcms_profile_from_path(const char *path)
|
|
{
|
|
qcms_profile *profile = NULL;
|
|
FILE *file = fopen(path, "rb");
|
|
if (file) {
|
|
profile = qcms_profile_from_file(file);
|
|
fclose(file);
|
|
}
|
|
return profile;
|
|
}
|
|
|
|
void qcms_data_from_path(const char *path, void **mem, size_t *size)
|
|
{
|
|
FILE *file = NULL;
|
|
*mem = NULL;
|
|
*size = 0;
|
|
|
|
file = fopen(path, "rb");
|
|
if (file) {
|
|
qcms_data_from_file(file, mem, size);
|
|
fclose(file);
|
|
}
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
/* Unicode path version */
|
|
qcms_profile* qcms_profile_from_unicode_path(const wchar_t *path)
|
|
{
|
|
qcms_profile *profile = NULL;
|
|
FILE *file = _wfopen(path, L"rb");
|
|
if (file) {
|
|
profile = qcms_profile_from_file(file);
|
|
fclose(file);
|
|
}
|
|
return profile;
|
|
}
|
|
|
|
void qcms_data_from_unicode_path(const wchar_t *path, void **mem, size_t *size)
|
|
{
|
|
FILE *file = NULL;
|
|
*mem = NULL;
|
|
*size = 0;
|
|
|
|
file = _wfopen(path, L"rb");
|
|
if (file) {
|
|
qcms_data_from_file(file, mem, size);
|
|
fclose(file);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This function constructs an ICC profile memory with given header and tag data,
|
|
* which can be read via qcms_profile_from_memory(). that means, we must satisfy
|
|
* the profiler header type check (which seems not complete till now) and proper
|
|
* information to read data from the tag table and tag data elements memory.
|
|
*
|
|
* To construct a valid ICC profile, its divided into three steps :
|
|
* (1) construct the r/g/bXYZ part
|
|
* (2) construct the r/g/bTRC part
|
|
* (3) construct the profile header
|
|
* this is a hardcode step just for "create_rgb_with_gamma", it is the only
|
|
* requirement till now, maybe we can make this method more general in future,
|
|
*
|
|
* NOTE : some of the parameters below are hardcode, please refer to the ICC documentation.
|
|
*/
|
|
#define ICC_PROFILE_HEADER_LENGTH 128
|
|
void qcms_data_create_rgb_with_gamma(qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries, float gamma, void **mem, size_t *size)
|
|
{
|
|
uint32_t length, offset, index, xyz_count, trc_count;
|
|
size_t tag_table_offset, tag_data_offset;
|
|
void *data;
|
|
struct matrix colorants;
|
|
|
|
uint32_t TAG_XYZ[3] = {TAG_rXYZ, TAG_gXYZ, TAG_bXYZ};
|
|
uint32_t TAG_TRC[3] = {TAG_rTRC, TAG_gTRC, TAG_bTRC};
|
|
|
|
if ((mem == NULL) || (size == NULL))
|
|
return;
|
|
|
|
*mem = NULL;
|
|
*size = 0;
|
|
|
|
/*
|
|
* total length = icc profile header(128) + tag count(4) +
|
|
* (tag table item (12) * total tag (6 = 3 rTRC + 3 rXYZ)) + rTRC elements data (3 * 20)
|
|
* + rXYZ elements data (3*16), and all tag data elements must start at the 4-byte boundary.
|
|
*/
|
|
xyz_count = 3; // rXYZ, gXYZ, bXYZ
|
|
trc_count = 3; // rTRC, gTRC, bTRC
|
|
length = ICC_PROFILE_HEADER_LENGTH + 4 + (12 * (xyz_count + trc_count)) + (xyz_count * 20) + (trc_count * 16);
|
|
|
|
// reserve the total memory.
|
|
data = malloc(length);
|
|
if (!data)
|
|
return;
|
|
memset(data, 0, length);
|
|
|
|
// Part1 : write rXYZ, gXYZ and bXYZ
|
|
if (!get_rgb_colorants(&colorants, white_point, primaries)) {
|
|
free(data);
|
|
return;
|
|
}
|
|
|
|
// the position of first tag's signature in tag table
|
|
tag_table_offset = ICC_PROFILE_HEADER_LENGTH + 4;
|
|
tag_data_offset = ICC_PROFILE_HEADER_LENGTH + 4 +
|
|
(12 * (xyz_count + trc_count)); // the start of tag data elements.
|
|
|
|
for (index = 0; index < xyz_count; ++index) {
|
|
// tag table
|
|
write_u32(data, tag_table_offset, TAG_XYZ[index]);
|
|
write_u32(data, tag_table_offset+4, tag_data_offset);
|
|
write_u32(data, tag_table_offset+8, 20); // 20 bytes per TAG_(r/g/b)XYZ tag element
|
|
|
|
// tag data element
|
|
write_u32(data, tag_data_offset, XYZ_TYPE);
|
|
// reserved 4 bytes.
|
|
write_u32(data, tag_data_offset+8, double_to_s15Fixed16Number(colorants.m[0][index]));
|
|
write_u32(data, tag_data_offset+12, double_to_s15Fixed16Number(colorants.m[1][index]));
|
|
write_u32(data, tag_data_offset+16, double_to_s15Fixed16Number(colorants.m[2][index]));
|
|
|
|
tag_table_offset += 12;
|
|
tag_data_offset += 20;
|
|
}
|
|
|
|
// Part2 : write rTRC, gTRC and bTRC
|
|
for (index = 0; index < trc_count; ++index) {
|
|
// tag table
|
|
write_u32(data, tag_table_offset, TAG_TRC[index]);
|
|
write_u32(data, tag_table_offset+4, tag_data_offset);
|
|
write_u32(data, tag_table_offset+8, 14); // 14 bytes per TAG_(r/g/b)TRC element
|
|
|
|
// tag data element
|
|
write_u32(data, tag_data_offset, CURVE_TYPE);
|
|
// reserved 4 bytes.
|
|
write_u32(data, tag_data_offset+8, 1); // count
|
|
write_u16(data, tag_data_offset+12, float_to_u8Fixed8Number(gamma));
|
|
|
|
tag_table_offset += 12;
|
|
tag_data_offset += 16;
|
|
}
|
|
|
|
/* Part3 : write profile header
|
|
*
|
|
* Important header fields are left empty. This generates a profile for internal use only.
|
|
* We should be generating: Profile version (04300000h), Profile signature (acsp),
|
|
* PCS illumiant field. Likewise mandatory profile tags are omitted.
|
|
*/
|
|
write_u32(data, 0, length); // the total length of this memory
|
|
write_u32(data, 12, DISPLAY_DEVICE_PROFILE); // profile->class
|
|
write_u32(data, 16, RGB_SIGNATURE); // profile->color_space
|
|
write_u32(data, 20, XYZ_SIGNATURE); // profile->pcs
|
|
write_u32(data, 64, QCMS_INTENT_PERCEPTUAL); // profile->rendering_intent
|
|
|
|
write_u32(data, ICC_PROFILE_HEADER_LENGTH, 6); // total tag count
|
|
|
|
// prepare the result
|
|
*mem = data;
|
|
*size = length;
|
|
}
|