gecko-dev/xpcom/threads/StateMirroring.h

393 lines
13 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(StateMirroring_h_)
#define StateMirroring_h_
#include "mozilla/Maybe.h"
#include "mozilla/MozPromise.h"
#include "mozilla/StateWatching.h"
#include "mozilla/TaskDispatcher.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"
#include "mozilla/Logging.h"
#include "nsISupportsImpl.h"
/*
* The state-mirroring machinery allows pieces of interesting state to be
* observed on multiple thread without locking. The basic strategy is to track
* changes in a canonical value and post updates to other threads that hold
* mirrors for that value.
*
* One problem with the naive implementation of such a system is that some pieces
* of state need to be updated atomically, and certain other operations need to
* wait for these atomic updates to complete before executing. The state-mirroring
* machinery solves this problem by requiring that its owner thread uses tail
* dispatch, and posting state update events (which should always be run first by
* TaskDispatcher implementations) to that tail dispatcher. This ensures that
* state changes are always atomic from the perspective of observing threads.
*
* Given that state-mirroring is an automatic background process, we try to avoid
* burdening the caller with worrying too much about teardown. To that end, we
* don't assert dispatch success for any of the notifications, and assume that
* any canonical or mirror owned by a thread for whom dispatch fails will soon
* be disconnected by its holder anyway.
*
* Given that semantics may change and comments tend to go out of date, we
* deliberately don't provide usage examples here. Grep around to find them.
*/
namespace mozilla {
// Mirror<T> and Canonical<T> inherit WatchTarget, so we piggy-back on the
// logging that WatchTarget already does. Given that, it makes sense to share
// the same log module.
#define MIRROR_LOG(x, ...) \
MOZ_ASSERT(gStateWatchingLog); \
MOZ_LOG(gStateWatchingLog, LogLevel::Debug, (x, ##__VA_ARGS__))
template<typename T> class AbstractMirror;
/*
* AbstractCanonical is a superclass from which all Canonical values must
* inherit. It serves as the interface of operations which may be performed (via
* asynchronous dispatch) by other threads, in particular by the corresponding
* Mirror value.
*/
template<typename T>
class AbstractCanonical
{
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(AbstractCanonical)
AbstractCanonical(AbstractThread* aThread) : mOwnerThread(aThread) {}
virtual void AddMirror(AbstractMirror<T>* aMirror) = 0;
virtual void RemoveMirror(AbstractMirror<T>* aMirror) = 0;
AbstractThread* OwnerThread() const { return mOwnerThread; }
protected:
virtual ~AbstractCanonical() {}
RefPtr<AbstractThread> mOwnerThread;
};
/*
* AbstractMirror is a superclass from which all Mirror values must
* inherit. It serves as the interface of operations which may be performed (via
* asynchronous dispatch) by other threads, in particular by the corresponding
* Canonical value.
*/
template<typename T>
class AbstractMirror
{
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(AbstractMirror)
AbstractMirror(AbstractThread* aThread) : mOwnerThread(aThread) {}
virtual void UpdateValue(const T& aNewValue) = 0;
virtual void NotifyDisconnected() = 0;
AbstractThread* OwnerThread() const { return mOwnerThread; }
protected:
virtual ~AbstractMirror() {}
RefPtr<AbstractThread> mOwnerThread;
};
/*
* Canonical<T> is a wrapper class that allows a given value to be mirrored by other
* threads. It maintains a list of active mirrors, and queues updates for them
* when the internal value changes. When changing the value, the caller needs to
* pass a TaskDispatcher object, which fires the updates at the appropriate time.
* Canonical<T> is also a WatchTarget, and may be set up to trigger other routines
* (on the same thread) when the canonical value changes.
*
* Canonical<T> is intended to be used as a member variable, so it doesn't actually
* inherit AbstractCanonical<T> (a refcounted type). Rather, it contains an inner
* class called |Impl| that implements most of the interesting logic.
*/
template<typename T>
class Canonical
{
public:
Canonical(AbstractThread* aThread, const T& aInitialValue, const char* aName)
{
mImpl = new Impl(aThread, aInitialValue, aName);
}
~Canonical() {}
private:
class Impl : public AbstractCanonical<T>, public WatchTarget
{
public:
using AbstractCanonical<T>::OwnerThread;
Impl(AbstractThread* aThread, const T& aInitialValue, const char* aName)
: AbstractCanonical<T>(aThread), WatchTarget(aName), mValue(aInitialValue)
{
MIRROR_LOG("%s [%p] initialized", mName, this);
MOZ_ASSERT(aThread->SupportsTailDispatch(), "Can't get coherency without tail dispatch");
}
void AddMirror(AbstractMirror<T>* aMirror) override
{
MIRROR_LOG("%s [%p] adding mirror %p", mName, this, aMirror);
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
MOZ_ASSERT(!mMirrors.Contains(aMirror));
mMirrors.AppendElement(aMirror);
aMirror->OwnerThread()->DispatchStateChange(MakeNotifier(aMirror));
}
void RemoveMirror(AbstractMirror<T>* aMirror) override
{
MIRROR_LOG("%s [%p] removing mirror %p", mName, this, aMirror);
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
MOZ_ASSERT(mMirrors.Contains(aMirror));
mMirrors.RemoveElement(aMirror);
}
void DisconnectAll()
{
MIRROR_LOG("%s [%p] Disconnecting all mirrors", mName, this);
for (size_t i = 0; i < mMirrors.Length(); ++i) {
mMirrors[i]->OwnerThread()->Dispatch(
NewRunnableMethod("AbstractMirror::NotifyDisconnected",
mMirrors[i],
&AbstractMirror<T>::NotifyDisconnected));
}
mMirrors.Clear();
}
operator const T&()
{
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
return mValue;
}
void Set(const T& aNewValue)
{
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
if (aNewValue == mValue) {
return;
}
// Notify same-thread watchers. The state watching machinery will make sure
// that notifications run at the right time.
NotifyWatchers();
// Check if we've already got a pending update. If so we won't schedule another
// one.
bool alreadyNotifying = mInitialValue.isSome();
// Stash the initial value if needed, then update to the new value.
if (mInitialValue.isNothing()) {
mInitialValue.emplace(mValue);
}
mValue = aNewValue;
// We wait until things have stablized before sending state updates so that
// we can avoid sending multiple updates, and possibly avoid sending any
// updates at all if the value ends up where it started.
if (!alreadyNotifying) {
AbstractThread::DispatchDirectTask(NewRunnableMethod(
"Canonical::Impl::DoNotify", this, &Impl::DoNotify));
}
}
Impl& operator=(const T& aNewValue) { Set(aNewValue); return *this; }
Impl& operator=(const Impl& aOther) { Set(aOther); return *this; }
Impl(const Impl& aOther) = delete;
protected:
~Impl() { MOZ_DIAGNOSTIC_ASSERT(mMirrors.IsEmpty()); }
private:
void DoNotify()
{
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
MOZ_ASSERT(mInitialValue.isSome());
bool same = mInitialValue.ref() == mValue;
mInitialValue.reset();
if (same) {
MIRROR_LOG("%s [%p] unchanged - not sending update", mName, this);
return;
}
for (size_t i = 0; i < mMirrors.Length(); ++i) {
mMirrors[i]->OwnerThread()->DispatchStateChange(MakeNotifier(mMirrors[i]));
}
}
already_AddRefed<nsIRunnable> MakeNotifier(AbstractMirror<T>* aMirror)
{
return NewRunnableMethod<T>("AbstractMirror::UpdateValue",
aMirror,
&AbstractMirror<T>::UpdateValue,
mValue);
;
}
T mValue;
Maybe<T> mInitialValue;
nsTArray<RefPtr<AbstractMirror<T>>> mMirrors;
};
public:
// NB: Because mirror-initiated disconnection can race with canonical-
// initiated disconnection, a canonical should never be reinitialized.
// Forward control operations to the Impl.
void DisconnectAll() { return mImpl->DisconnectAll(); }
// Access to the Impl.
operator Impl&() { return *mImpl; }
Impl* operator&() { return mImpl; }
// Access to the T.
const T& Ref() const { return *mImpl; }
operator const T&() const { return Ref(); }
void Set(const T& aNewValue) { mImpl->Set(aNewValue); }
Canonical& operator=(const T& aNewValue) { Set(aNewValue); return *this; }
Canonical& operator=(const Canonical& aOther) { Set(aOther); return *this; }
Canonical(const Canonical& aOther) = delete;
private:
RefPtr<Impl> mImpl;
};
/*
* Mirror<T> is a wrapper class that allows a given value to mirror that of a
* Canonical<T> owned by another thread. It registers itself with a Canonical<T>,
* and is periodically updated with new values. Mirror<T> is also a WatchTarget,
* and may be set up to trigger other routines (on the same thread) when the
* mirrored value changes.
*
* Mirror<T> is intended to be used as a member variable, so it doesn't actually
* inherit AbstractMirror<T> (a refcounted type). Rather, it contains an inner
* class called |Impl| that implements most of the interesting logic.
*/
template<typename T>
class Mirror
{
public:
Mirror(AbstractThread* aThread, const T& aInitialValue, const char* aName)
{
mImpl = new Impl(aThread, aInitialValue, aName);
}
~Mirror()
{
// As a member of complex objects, a Mirror<T> may be destroyed on a
// different thread than its owner, or late in shutdown during CC. Given
// that, we require manual disconnection so that callers can put things in
// the right place.
MOZ_DIAGNOSTIC_ASSERT(!mImpl->IsConnected());
}
private:
class Impl : public AbstractMirror<T>, public WatchTarget
{
public:
using AbstractMirror<T>::OwnerThread;
Impl(AbstractThread* aThread, const T& aInitialValue, const char* aName)
: AbstractMirror<T>(aThread), WatchTarget(aName), mValue(aInitialValue)
{
MIRROR_LOG("%s [%p] initialized", mName, this);
MOZ_ASSERT(aThread->SupportsTailDispatch(), "Can't get coherency without tail dispatch");
}
operator const T&()
{
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
return mValue;
}
virtual void UpdateValue(const T& aNewValue) override
{
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
if (mValue != aNewValue) {
mValue = aNewValue;
WatchTarget::NotifyWatchers();
}
}
virtual void NotifyDisconnected() override
{
MIRROR_LOG("%s [%p] Notifed of disconnection from %p", mName, this, mCanonical.get());
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
mCanonical = nullptr;
}
bool IsConnected() const { return !!mCanonical; }
void Connect(AbstractCanonical<T>* aCanonical)
{
MIRROR_LOG("%s [%p] Connecting to %p", mName, this, aCanonical);
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
MOZ_ASSERT(!IsConnected());
MOZ_ASSERT(OwnerThread()->RequiresTailDispatch(aCanonical->OwnerThread()), "Can't get coherency without tail dispatch");
nsCOMPtr<nsIRunnable> r =
NewRunnableMethod<StoreRefPtrPassByPtr<AbstractMirror<T>>>(
"AbstractCanonical::AddMirror",
aCanonical,
&AbstractCanonical<T>::AddMirror,
this);
aCanonical->OwnerThread()->Dispatch(r.forget());
mCanonical = aCanonical;
}
public:
void DisconnectIfConnected()
{
MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
if (!IsConnected()) {
return;
}
MIRROR_LOG("%s [%p] Disconnecting from %p", mName, this, mCanonical.get());
nsCOMPtr<nsIRunnable> r =
NewRunnableMethod<StoreRefPtrPassByPtr<AbstractMirror<T>>>(
"AbstractCanonical::RemoveMirror",
mCanonical,
&AbstractCanonical<T>::RemoveMirror,
this);
mCanonical->OwnerThread()->Dispatch(r.forget());
mCanonical = nullptr;
}
protected:
~Impl() { MOZ_DIAGNOSTIC_ASSERT(!IsConnected()); }
private:
T mValue;
RefPtr<AbstractCanonical<T>> mCanonical;
};
public:
// Forward control operations to the Impl<T>.
void Connect(AbstractCanonical<T>* aCanonical) { mImpl->Connect(aCanonical); }
void DisconnectIfConnected() { mImpl->DisconnectIfConnected(); }
// Access to the Impl<T>.
operator Impl&() { return *mImpl; }
Impl* operator&() { return mImpl; }
// Access to the T.
const T& Ref() const { return *mImpl; }
operator const T&() const { return Ref(); }
private:
RefPtr<Impl> mImpl;
};
#undef MIRROR_LOG
} // namespace mozilla
#endif