mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-07 20:17:37 +00:00
a3f1ea6990
Backed out changeset bbca63772c83 (bug 902525) Backed out changeset edb386989dbd (bug 902525) Backed out changeset 3137dadb4fcd (bug 902525) Backed out changeset e562afcb3c89 (bug 902525) Backed out changeset 8ef3a516bd68 (bug 902525) Backed out changeset 520fcd422150 (bug 902525) Backed out changeset 4e553e8da44e (bug 902525)
1936 lines
66 KiB
C++
1936 lines
66 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef GFX_LAYERS_H
|
|
#define GFX_LAYERS_H
|
|
|
|
#include <stdint.h> // for uint32_t, uint64_t, uint8_t
|
|
#include <stdio.h> // for FILE
|
|
#include <sys/types.h> // for int32_t, int64_t
|
|
#include "FrameMetrics.h" // for FrameMetrics
|
|
#include "Units.h" // for LayerMargin, LayerPoint
|
|
#include "gfx3DMatrix.h" // for gfx3DMatrix
|
|
#include "gfxASurface.h" // for gfxASurface, etc
|
|
#include "gfxColor.h" // for gfxRGBA
|
|
#include "gfxMatrix.h" // for gfxMatrix
|
|
#include "gfxPattern.h" // for gfxPattern, etc
|
|
#include "gfxPoint.h" // for gfxPoint, gfxIntSize
|
|
#include "gfxRect.h" // for gfxRect
|
|
#include "mozilla/Assertions.h" // for MOZ_ASSERT_HELPER2, etc
|
|
#include "mozilla/DebugOnly.h" // for DebugOnly
|
|
#include "mozilla/RefPtr.h" // for TemporaryRef
|
|
#include "mozilla/TimeStamp.h" // for TimeStamp, TimeDuration
|
|
#include "mozilla/gfx/BaseMargin.h" // for BaseMargin
|
|
#include "mozilla/gfx/BasePoint.h" // for BasePoint
|
|
#include "mozilla/gfx/Point.h" // for IntSize
|
|
#include "mozilla/gfx/Types.h" // for SurfaceFormat
|
|
#include "mozilla/gfx/UserData.h" // for UserData, etc
|
|
#include "mozilla/layers/LayersTypes.h"
|
|
#include "mozilla/mozalloc.h" // for operator delete, etc
|
|
#include "nsAutoPtr.h" // for nsAutoPtr, nsRefPtr, etc
|
|
#include "nsCOMPtr.h" // for already_AddRefed
|
|
#include "nsCSSProperty.h" // for nsCSSProperty
|
|
#include "nsDebug.h" // for NS_ASSERTION
|
|
#include "nsISupportsImpl.h" // for Layer::Release, etc
|
|
#include "nsRect.h" // for nsIntRect
|
|
#include "nsRegion.h" // for nsIntRegion
|
|
#include "nsSize.h" // for nsIntSize
|
|
#include "nsString.h" // for nsCString
|
|
#include "nsStyleAnimation.h" // for nsStyleAnimation::Value, etc
|
|
#include "nsTArray.h" // for nsTArray
|
|
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
|
|
#include "nscore.h" // for nsACString, nsAString
|
|
#include "prlog.h" // for PRLogModuleInfo
|
|
|
|
|
|
class gfxContext;
|
|
class nsPaintEvent;
|
|
|
|
extern uint8_t gLayerManagerLayerBuilder;
|
|
|
|
namespace mozilla {
|
|
|
|
class FrameLayerBuilder;
|
|
class WebGLContext;
|
|
|
|
namespace gl {
|
|
class GLContext;
|
|
}
|
|
|
|
namespace gfx {
|
|
class DrawTarget;
|
|
}
|
|
|
|
namespace css {
|
|
class ComputedTimingFunction;
|
|
}
|
|
|
|
namespace layers {
|
|
|
|
class Animation;
|
|
class AnimationData;
|
|
class AsyncPanZoomController;
|
|
class CommonLayerAttributes;
|
|
class Layer;
|
|
class ThebesLayer;
|
|
class ContainerLayer;
|
|
class ImageLayer;
|
|
class ColorLayer;
|
|
class ImageContainer;
|
|
class CanvasLayer;
|
|
class ReadbackLayer;
|
|
class ReadbackProcessor;
|
|
class RefLayer;
|
|
class LayerComposite;
|
|
class ShadowableLayer;
|
|
class ShadowLayerForwarder;
|
|
class LayerManagerComposite;
|
|
class SpecificLayerAttributes;
|
|
class SurfaceDescriptor;
|
|
class Compositor;
|
|
struct TextureFactoryIdentifier;
|
|
struct EffectMask;
|
|
|
|
#define MOZ_LAYER_DECL_NAME(n, e) \
|
|
virtual const char* Name() const { return n; } \
|
|
virtual LayerType GetType() const { return e; }
|
|
|
|
/**
|
|
* Base class for userdata objects attached to layers and layer managers.
|
|
*/
|
|
class LayerUserData {
|
|
public:
|
|
virtual ~LayerUserData() {}
|
|
};
|
|
|
|
/*
|
|
* Motivation: For truly smooth animation and video playback, we need to
|
|
* be able to compose frames and render them on a dedicated thread (i.e.
|
|
* off the main thread where DOM manipulation, script execution and layout
|
|
* induce difficult-to-bound latency). This requires Gecko to construct
|
|
* some kind of persistent scene structure (graph or tree) that can be
|
|
* safely transmitted across threads. We have other scenarios (e.g. mobile
|
|
* browsing) where retaining some rendered data between paints is desired
|
|
* for performance, so again we need a retained scene structure.
|
|
*
|
|
* Our retained scene structure is a layer tree. Each layer represents
|
|
* content which can be composited onto a destination surface; the root
|
|
* layer is usually composited into a window, and non-root layers are
|
|
* composited into their parent layers. Layers have attributes (e.g.
|
|
* opacity and clipping) that influence their compositing.
|
|
*
|
|
* We want to support a variety of layer implementations, including
|
|
* a simple "immediate mode" implementation that doesn't retain any
|
|
* rendered data between paints (i.e. uses cairo in just the way that
|
|
* Gecko used it before layers were introduced). But we also don't want
|
|
* to have bifurcated "layers"/"non-layers" rendering paths in Gecko.
|
|
* Therefore the layers API is carefully designed to permit maximally
|
|
* efficient implementation in an "immediate mode" style. See the
|
|
* BasicLayerManager for such an implementation.
|
|
*/
|
|
|
|
static void LayerManagerUserDataDestroy(void *data)
|
|
{
|
|
delete static_cast<LayerUserData*>(data);
|
|
}
|
|
|
|
/**
|
|
* A LayerManager controls a tree of layers. All layers in the tree
|
|
* must use the same LayerManager.
|
|
*
|
|
* All modifications to a layer tree must happen inside a transaction.
|
|
* Only the state of the layer tree at the end of a transaction is
|
|
* rendered. Transactions cannot be nested
|
|
*
|
|
* Each transaction has two phases:
|
|
* 1) Construction: layers are created, inserted, removed and have
|
|
* properties set on them in this phase.
|
|
* BeginTransaction and BeginTransactionWithTarget start a transaction in
|
|
* the Construction phase. When the client has finished constructing the layer
|
|
* tree, it should call EndConstruction() to enter the drawing phase.
|
|
* 2) Drawing: ThebesLayers are rendered into in this phase, in tree
|
|
* order. When the client has finished drawing into the ThebesLayers, it should
|
|
* call EndTransaction to complete the transaction.
|
|
*
|
|
* All layer API calls happen on the main thread.
|
|
*
|
|
* Layers are refcounted. The layer manager holds a reference to the
|
|
* root layer, and each container layer holds a reference to its children.
|
|
*/
|
|
class LayerManager {
|
|
NS_INLINE_DECL_REFCOUNTING(LayerManager)
|
|
|
|
public:
|
|
LayerManager()
|
|
: mDestroyed(false)
|
|
, mSnapEffectiveTransforms(true)
|
|
, mId(0)
|
|
, mInTransaction(false)
|
|
{
|
|
InitLog();
|
|
}
|
|
virtual ~LayerManager() {}
|
|
|
|
/**
|
|
* Release layers and resources held by this layer manager, and mark
|
|
* it as destroyed. Should do any cleanup necessary in preparation
|
|
* for its widget going away. After this call, only user data calls
|
|
* are valid on the layer manager.
|
|
*/
|
|
virtual void Destroy()
|
|
{
|
|
mDestroyed = true;
|
|
mUserData.Destroy();
|
|
mRoot = nullptr;
|
|
}
|
|
bool IsDestroyed() { return mDestroyed; }
|
|
|
|
virtual ShadowLayerForwarder* AsShadowForwarder()
|
|
{ return nullptr; }
|
|
|
|
virtual LayerManagerComposite* AsLayerManagerComposite()
|
|
{ return nullptr; }
|
|
|
|
/**
|
|
* Returns true if this LayerManager is owned by an nsIWidget,
|
|
* and is used for drawing into the widget.
|
|
*/
|
|
virtual bool IsWidgetLayerManager() { return true; }
|
|
|
|
/**
|
|
* Start a new transaction. Nested transactions are not allowed so
|
|
* there must be no transaction currently in progress.
|
|
* This transaction will update the state of the window from which
|
|
* this LayerManager was obtained.
|
|
*/
|
|
virtual void BeginTransaction() = 0;
|
|
/**
|
|
* Start a new transaction. Nested transactions are not allowed so
|
|
* there must be no transaction currently in progress.
|
|
* This transaction will render the contents of the layer tree to
|
|
* the given target context. The rendering will be complete when
|
|
* EndTransaction returns.
|
|
*/
|
|
virtual void BeginTransactionWithTarget(gfxContext* aTarget) = 0;
|
|
|
|
enum EndTransactionFlags {
|
|
END_DEFAULT = 0,
|
|
END_NO_IMMEDIATE_REDRAW = 1 << 0, // Do not perform the drawing phase
|
|
END_NO_COMPOSITE = 1 << 1 // Do not composite after drawing thebes layer contents.
|
|
};
|
|
|
|
FrameLayerBuilder* GetLayerBuilder() {
|
|
return reinterpret_cast<FrameLayerBuilder*>(GetUserData(&gLayerManagerLayerBuilder));
|
|
}
|
|
|
|
/**
|
|
* Attempts to end an "empty transaction". There must have been no
|
|
* changes to the layer tree since the BeginTransaction().
|
|
* It's possible for this to fail; ThebesLayers may need to be updated
|
|
* due to VRAM data being lost, for example. In such cases this method
|
|
* returns false, and the caller must proceed with a normal layer tree
|
|
* update and EndTransaction.
|
|
*/
|
|
virtual bool EndEmptyTransaction(EndTransactionFlags aFlags = END_DEFAULT) = 0;
|
|
|
|
/**
|
|
* Function called to draw the contents of each ThebesLayer.
|
|
* aRegionToDraw contains the region that needs to be drawn.
|
|
* This would normally be a subregion of the visible region.
|
|
* The callee must draw all of aRegionToDraw. Drawing outside
|
|
* aRegionToDraw will be clipped out or ignored.
|
|
* The callee must draw all of aRegionToDraw.
|
|
* This region is relative to 0,0 in the ThebesLayer.
|
|
*
|
|
* aRegionToInvalidate contains a region whose contents have been
|
|
* changed by the layer manager and which must therefore be invalidated.
|
|
* For example, this could be non-empty if a retained layer internally
|
|
* switches from RGBA to RGB or back ... we might want to repaint it to
|
|
* consistently use subpixel-AA or not.
|
|
* This region is relative to 0,0 in the ThebesLayer.
|
|
* aRegionToInvalidate may contain areas that are outside
|
|
* aRegionToDraw; the callee must ensure that these areas are repainted
|
|
* in the current layer manager transaction or in a later layer
|
|
* manager transaction.
|
|
*
|
|
* aContext must not be used after the call has returned.
|
|
* We guarantee that buffered contents in the visible
|
|
* region are valid once drawing is complete.
|
|
*
|
|
* The origin of aContext is 0,0 in the ThebesLayer.
|
|
*/
|
|
typedef void (* DrawThebesLayerCallback)(ThebesLayer* aLayer,
|
|
gfxContext* aContext,
|
|
const nsIntRegion& aRegionToDraw,
|
|
const nsIntRegion& aRegionToInvalidate,
|
|
void* aCallbackData);
|
|
|
|
/**
|
|
* Finish the construction phase of the transaction, perform the
|
|
* drawing phase, and end the transaction.
|
|
* During the drawing phase, all ThebesLayers in the tree are
|
|
* drawn in tree order, exactly once each, except for those layers
|
|
* where it is known that the visible region is empty.
|
|
*/
|
|
virtual void EndTransaction(DrawThebesLayerCallback aCallback,
|
|
void* aCallbackData,
|
|
EndTransactionFlags aFlags = END_DEFAULT) = 0;
|
|
|
|
virtual bool HasShadowManagerInternal() const { return false; }
|
|
bool HasShadowManager() const { return HasShadowManagerInternal(); }
|
|
|
|
bool IsSnappingEffectiveTransforms() { return mSnapEffectiveTransforms; }
|
|
|
|
/**
|
|
* Returns true if this LayerManager can properly support layers with
|
|
* SURFACE_COMPONENT_ALPHA. This can include disabling component
|
|
* alpha if required.
|
|
*/
|
|
virtual bool AreComponentAlphaLayersEnabled() { return true; }
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set the root layer. The root layer is initially null. If there is
|
|
* no root layer, EndTransaction won't draw anything.
|
|
*/
|
|
virtual void SetRoot(Layer* aLayer) = 0;
|
|
/**
|
|
* Can be called anytime
|
|
*/
|
|
Layer* GetRoot() { return mRoot; }
|
|
|
|
/**
|
|
* Does a breadth-first search from the root layer to find the first
|
|
* scrollable layer.
|
|
* Can be called any time.
|
|
*/
|
|
Layer* GetPrimaryScrollableLayer();
|
|
|
|
/**
|
|
* Returns a list of all descendant layers for which
|
|
* GetFrameMetrics().IsScrollable() is true.
|
|
*/
|
|
void GetScrollableLayers(nsTArray<Layer*>& aArray);
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Called when a managee has mutated.
|
|
* Subclasses overriding this method must first call their
|
|
* superclass's impl
|
|
*/
|
|
#ifdef DEBUG
|
|
// In debug builds, we check some properties of |aLayer|.
|
|
virtual void Mutated(Layer* aLayer);
|
|
#else
|
|
virtual void Mutated(Layer* aLayer) { }
|
|
#endif
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Create a ThebesLayer for this manager's layer tree.
|
|
*/
|
|
virtual already_AddRefed<ThebesLayer> CreateThebesLayer() = 0;
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Create a ContainerLayer for this manager's layer tree.
|
|
*/
|
|
virtual already_AddRefed<ContainerLayer> CreateContainerLayer() = 0;
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Create an ImageLayer for this manager's layer tree.
|
|
*/
|
|
virtual already_AddRefed<ImageLayer> CreateImageLayer() = 0;
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Create a ColorLayer for this manager's layer tree.
|
|
*/
|
|
virtual already_AddRefed<ColorLayer> CreateColorLayer() = 0;
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Create a CanvasLayer for this manager's layer tree.
|
|
*/
|
|
virtual already_AddRefed<CanvasLayer> CreateCanvasLayer() = 0;
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Create a ReadbackLayer for this manager's layer tree.
|
|
*/
|
|
virtual already_AddRefed<ReadbackLayer> CreateReadbackLayer() { return nullptr; }
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Create a RefLayer for this manager's layer tree.
|
|
*/
|
|
virtual already_AddRefed<RefLayer> CreateRefLayer() { return nullptr; }
|
|
|
|
|
|
/**
|
|
* Can be called anytime, from any thread.
|
|
*
|
|
* Creates an Image container which forwards its images to the compositor within
|
|
* layer transactions on the main thread.
|
|
*/
|
|
static already_AddRefed<ImageContainer> CreateImageContainer();
|
|
|
|
/**
|
|
* Can be called anytime, from any thread.
|
|
*
|
|
* Tries to create an Image container which forwards its images to the compositor
|
|
* asynchronously using the ImageBridge IPDL protocol. If the protocol is not
|
|
* available, the returned ImageContainer will forward images within layer
|
|
* transactions, just like if it was created with CreateImageContainer().
|
|
*/
|
|
static already_AddRefed<ImageContainer> CreateAsynchronousImageContainer();
|
|
|
|
/**
|
|
* Type of layer manager his is. This is to be used sparsely in order to
|
|
* avoid a lot of Layers backend specific code. It should be used only when
|
|
* Layers backend specific functionality is necessary.
|
|
*/
|
|
virtual LayersBackend GetBackendType() = 0;
|
|
|
|
/**
|
|
* Creates a surface which is optimized for inter-operating with this layer
|
|
* manager.
|
|
*/
|
|
virtual already_AddRefed<gfxASurface>
|
|
CreateOptimalSurface(const gfxIntSize &aSize,
|
|
gfxASurface::gfxImageFormat imageFormat);
|
|
|
|
/**
|
|
* Creates a surface for alpha masks which is optimized for inter-operating
|
|
* with this layer manager. In contrast to CreateOptimalSurface, this surface
|
|
* is optimised for drawing alpha only and we assume that drawing the mask
|
|
* is fairly simple.
|
|
*/
|
|
virtual already_AddRefed<gfxASurface>
|
|
CreateOptimalMaskSurface(const gfxIntSize &aSize);
|
|
|
|
/**
|
|
* Creates a DrawTarget for use with canvas which is optimized for
|
|
* inter-operating with this layermanager.
|
|
*/
|
|
virtual TemporaryRef<mozilla::gfx::DrawTarget>
|
|
CreateDrawTarget(const mozilla::gfx::IntSize &aSize,
|
|
mozilla::gfx::SurfaceFormat aFormat);
|
|
|
|
virtual bool CanUseCanvasLayerForSize(const gfxIntSize &aSize) { return true; }
|
|
|
|
/**
|
|
* Returns a TextureFactoryIdentifier which describes properties of the backend
|
|
* used to decide what kind of texture and buffer clients to create
|
|
*/
|
|
virtual TextureFactoryIdentifier GetTextureFactoryIdentifier();
|
|
|
|
/**
|
|
* returns the maximum texture size on this layer backend, or INT32_MAX
|
|
* if there is no maximum
|
|
*/
|
|
virtual int32_t GetMaxTextureSize() const = 0;
|
|
|
|
/**
|
|
* Return the name of the layer manager's backend.
|
|
*/
|
|
virtual void GetBackendName(nsAString& aName) = 0;
|
|
|
|
/**
|
|
* This setter can be used anytime. The user data for all keys is
|
|
* initially null. Ownership pases to the layer manager.
|
|
*/
|
|
void SetUserData(void* aKey, LayerUserData* aData)
|
|
{
|
|
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
|
|
}
|
|
/**
|
|
* This can be used anytime. Ownership passes to the caller!
|
|
*/
|
|
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
|
|
{
|
|
nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
|
|
return d;
|
|
}
|
|
/**
|
|
* This getter can be used anytime.
|
|
*/
|
|
bool HasUserData(void* aKey)
|
|
{
|
|
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
|
|
}
|
|
/**
|
|
* This getter can be used anytime. Ownership is retained by the layer
|
|
* manager.
|
|
*/
|
|
LayerUserData* GetUserData(void* aKey) const
|
|
{
|
|
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
|
|
}
|
|
|
|
/**
|
|
* Must be called outside of a layers transaction.
|
|
*
|
|
* For the subtree rooted at |aSubtree|, this attempts to free up
|
|
* any free-able resources like retained buffers, but may do nothing
|
|
* at all. After this call, the layer tree is left in an undefined
|
|
* state; the layers in |aSubtree|'s subtree may no longer have
|
|
* buffers with valid content and may no longer be able to draw
|
|
* their visible and valid regions.
|
|
*
|
|
* In general, a painting or forwarding transaction on |this| must
|
|
* complete on the tree before it returns to a valid state.
|
|
*
|
|
* Resource freeing begins from |aSubtree| or |mRoot| if |aSubtree|
|
|
* is null. |aSubtree|'s manager must be this.
|
|
*/
|
|
virtual void ClearCachedResources(Layer* aSubtree = nullptr) {}
|
|
|
|
/**
|
|
* Flag the next paint as the first for a document.
|
|
*/
|
|
virtual void SetIsFirstPaint() {}
|
|
|
|
/**
|
|
* Make sure that the previous transaction has been entirely
|
|
* completed.
|
|
*
|
|
* Note: This may sychronously wait on a remote compositor
|
|
* to complete rendering.
|
|
*/
|
|
virtual void FlushRendering() { }
|
|
|
|
/**
|
|
* Checks if we need to invalidate the OS widget to trigger
|
|
* painting when updating this layer manager.
|
|
*/
|
|
virtual bool NeedsWidgetInvalidation() { return true; }
|
|
|
|
// We always declare the following logging symbols, because it's
|
|
// extremely tricky to conditionally declare them. However, for
|
|
// ifndef MOZ_LAYERS_HAVE_LOG builds, they only have trivial
|
|
// definitions in Layers.cpp.
|
|
virtual const char* Name() const { return "???"; }
|
|
|
|
/**
|
|
* Dump information about this layer manager and its managed tree to
|
|
* aFile, which defaults to stderr.
|
|
*/
|
|
void Dump(FILE* aFile=nullptr, const char* aPrefix="", bool aDumpHtml=false);
|
|
/**
|
|
* Dump information about just this layer manager itself to aFile,
|
|
* which defaults to stderr.
|
|
*/
|
|
void DumpSelf(FILE* aFile=nullptr, const char* aPrefix="");
|
|
|
|
/**
|
|
* Log information about this layer manager and its managed tree to
|
|
* the NSPR log (if enabled for "Layers").
|
|
*/
|
|
void Log(const char* aPrefix="");
|
|
/**
|
|
* Log information about just this layer manager itself to the NSPR
|
|
* log (if enabled for "Layers").
|
|
*/
|
|
void LogSelf(const char* aPrefix="");
|
|
|
|
/**
|
|
* Record (and return) frame-intervals and paint-times for frames which were presented
|
|
* between calling StartFrameTimeRecording and StopFrameTimeRecording.
|
|
*
|
|
* - Uses a cyclic buffer and serves concurrent consumers, so if Stop is called too late
|
|
* (elements were overwritten since Start), result is considered invalid and hence empty.
|
|
* - Buffer is capable of holding 10 seconds @ 60fps (or more if frames were less frequent).
|
|
* Can be changed (up to 1 hour) via pref: toolkit.framesRecording.bufferSize.
|
|
* - Note: the first frame-interval may be longer than expected because last frame
|
|
* might have been presented some time before calling StartFrameTimeRecording.
|
|
*/
|
|
|
|
/**
|
|
* Returns a handle which represents current recording start position.
|
|
*/
|
|
uint32_t StartFrameTimeRecording();
|
|
|
|
/**
|
|
* Clears, then populates 2 arraye with the recorded frames timing data.
|
|
* The arrays will be empty if data was overwritten since aStartIndex was obtained.
|
|
*/
|
|
void StopFrameTimeRecording(uint32_t aStartIndex,
|
|
nsTArray<float>& aFrameIntervals,
|
|
nsTArray<float>& aPaintTimes);
|
|
|
|
void SetPaintStartTime(TimeStamp& aTime);
|
|
|
|
void PostPresent();
|
|
|
|
void BeginTabSwitch();
|
|
|
|
static bool IsLogEnabled();
|
|
static PRLogModuleInfo* GetLog() { return sLog; }
|
|
|
|
bool IsCompositingCheap(LayersBackend aBackend)
|
|
{
|
|
// LAYERS_NONE is an error state, but in that case we should try to
|
|
// avoid loading the compositor!
|
|
return LAYERS_BASIC != aBackend && LAYERS_NONE != aBackend;
|
|
}
|
|
|
|
virtual bool IsCompositingCheap() { return true; }
|
|
|
|
bool IsInTransaction() const { return mInTransaction; }
|
|
|
|
protected:
|
|
nsRefPtr<Layer> mRoot;
|
|
gfx::UserData mUserData;
|
|
bool mDestroyed;
|
|
bool mSnapEffectiveTransforms;
|
|
|
|
// Print interesting information about this into aTo. Internally
|
|
// used to implement Dump*() and Log*().
|
|
virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
|
|
|
|
static void InitLog();
|
|
static PRLogModuleInfo* sLog;
|
|
uint64_t mId;
|
|
bool mInTransaction;
|
|
private:
|
|
struct FramesTimingRecording
|
|
{
|
|
// Stores state and data for frame intervals and paint times recording.
|
|
// see LayerManager::StartFrameTimeRecording() at Layers.cpp for more details.
|
|
FramesTimingRecording()
|
|
: mIsPaused(true)
|
|
, mNextIndex(0)
|
|
{}
|
|
bool mIsPaused;
|
|
uint32_t mNextIndex;
|
|
TimeStamp mLastFrameTime;
|
|
TimeStamp mPaintStartTime;
|
|
nsTArray<float> mIntervals;
|
|
nsTArray<float> mPaints;
|
|
uint32_t mLatestStartIndex;
|
|
uint32_t mCurrentRunStartIndex;
|
|
};
|
|
FramesTimingRecording mRecording;
|
|
|
|
TimeStamp mTabSwitchStart;
|
|
};
|
|
|
|
typedef InfallibleTArray<Animation> AnimationArray;
|
|
|
|
struct AnimData {
|
|
InfallibleTArray<nsStyleAnimation::Value> mStartValues;
|
|
InfallibleTArray<nsStyleAnimation::Value> mEndValues;
|
|
InfallibleTArray<nsAutoPtr<mozilla::css::ComputedTimingFunction> > mFunctions;
|
|
};
|
|
|
|
/**
|
|
* A Layer represents anything that can be rendered onto a destination
|
|
* surface.
|
|
*/
|
|
class Layer {
|
|
NS_INLINE_DECL_REFCOUNTING(Layer)
|
|
|
|
public:
|
|
// Keep these in alphabetical order
|
|
enum LayerType {
|
|
TYPE_CANVAS,
|
|
TYPE_COLOR,
|
|
TYPE_CONTAINER,
|
|
TYPE_IMAGE,
|
|
TYPE_READBACK,
|
|
TYPE_REF,
|
|
TYPE_SHADOW,
|
|
TYPE_THEBES
|
|
};
|
|
|
|
virtual ~Layer();
|
|
|
|
/**
|
|
* Returns the LayerManager this Layer belongs to. Note that the layer
|
|
* manager might be in a destroyed state, at which point it's only
|
|
* valid to set/get user data from it.
|
|
*/
|
|
LayerManager* Manager() { return mManager; }
|
|
|
|
enum {
|
|
/**
|
|
* If this is set, the caller is promising that by the end of this
|
|
* transaction the entire visible region (as specified by
|
|
* SetVisibleRegion) will be filled with opaque content.
|
|
*/
|
|
CONTENT_OPAQUE = 0x01,
|
|
/**
|
|
* If this is set, the caller is notifying that the contents of this layer
|
|
* require per-component alpha for optimal fidelity. However, there is no
|
|
* guarantee that component alpha will be supported for this layer at
|
|
* paint time.
|
|
* This should never be set at the same time as CONTENT_OPAQUE.
|
|
*/
|
|
CONTENT_COMPONENT_ALPHA = 0x02,
|
|
|
|
/**
|
|
* If this is set then this layer is part of a preserve-3d group, and should
|
|
* be sorted with sibling layers that are also part of the same group.
|
|
*/
|
|
CONTENT_PRESERVE_3D = 0x04,
|
|
/**
|
|
* This indicates that the transform may be changed on during an empty
|
|
* transaction where there is no possibility of redrawing the content, so the
|
|
* implementation should be ready for that.
|
|
*/
|
|
CONTENT_MAY_CHANGE_TRANSFORM = 0x08
|
|
};
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* This lets layout make some promises about what will be drawn into the
|
|
* visible region of the ThebesLayer. This enables internal quality
|
|
* and performance optimizations.
|
|
*/
|
|
void SetContentFlags(uint32_t aFlags)
|
|
{
|
|
NS_ASSERTION((aFlags & (CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA)) !=
|
|
(CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA),
|
|
"Can't be opaque and require component alpha");
|
|
if (mContentFlags != aFlags) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ContentFlags", this));
|
|
mContentFlags = aFlags;
|
|
Mutated();
|
|
}
|
|
}
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Tell this layer which region will be visible. The visible region
|
|
* is a region which contains all the contents of the layer that can
|
|
* actually affect the rendering of the window. It can exclude areas
|
|
* that are covered by opaque contents of other layers, and it can
|
|
* exclude areas where this layer simply contains no content at all.
|
|
* (This can be an overapproximation to the "true" visible region.)
|
|
*
|
|
* There is no general guarantee that drawing outside the bounds of the
|
|
* visible region will be ignored. So if a layer draws outside the bounds
|
|
* of its visible region, it needs to ensure that what it draws is valid.
|
|
*/
|
|
virtual void SetVisibleRegion(const nsIntRegion& aRegion)
|
|
{
|
|
if (!mVisibleRegion.IsEqual(aRegion)) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) VisibleRegion was %s is %s", this,
|
|
mVisibleRegion.ToString().get(), aRegion.ToString().get()));
|
|
mVisibleRegion = aRegion;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set the opacity which will be applied to this layer as it
|
|
* is composited to the destination.
|
|
*/
|
|
void SetOpacity(float aOpacity)
|
|
{
|
|
if (mOpacity != aOpacity) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Opacity", this));
|
|
mOpacity = aOpacity;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set a clip rect which will be applied to this layer as it is
|
|
* composited to the destination. The coordinates are relative to
|
|
* the parent layer (i.e. the contents of this layer
|
|
* are transformed before this clip rect is applied).
|
|
* For the root layer, the coordinates are relative to the widget,
|
|
* in device pixels.
|
|
* If aRect is null no clipping will be performed.
|
|
*/
|
|
void SetClipRect(const nsIntRect* aRect)
|
|
{
|
|
if (mUseClipRect) {
|
|
if (!aRect) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is <none>", this,
|
|
mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height));
|
|
mUseClipRect = false;
|
|
Mutated();
|
|
} else {
|
|
if (!aRect->IsEqualEdges(mClipRect)) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is %d,%d,%d,%d", this,
|
|
mClipRect.x, mClipRect.y, mClipRect.width, mClipRect.height,
|
|
aRect->x, aRect->y, aRect->width, aRect->height));
|
|
mClipRect = *aRect;
|
|
Mutated();
|
|
}
|
|
}
|
|
} else {
|
|
if (aRect) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was <none> is %d,%d,%d,%d", this,
|
|
aRect->x, aRect->y, aRect->width, aRect->height));
|
|
mUseClipRect = true;
|
|
mClipRect = *aRect;
|
|
Mutated();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set a layer to mask this layer.
|
|
*
|
|
* The mask layer should be applied using its effective transform (after it
|
|
* is calculated by ComputeEffectiveTransformForMaskLayer), this should use
|
|
* this layer's parent's transform and the mask layer's transform, but not
|
|
* this layer's. That is, the mask layer is specified relative to this layer's
|
|
* position in it's parent layer's coord space.
|
|
* Currently, only 2D translations are supported for the mask layer transform.
|
|
*
|
|
* Ownership of aMaskLayer passes to this.
|
|
* Typical use would be an ImageLayer with an alpha image used for masking.
|
|
* See also ContainerState::BuildMaskLayer in FrameLayerBuilder.cpp.
|
|
*/
|
|
void SetMaskLayer(Layer* aMaskLayer)
|
|
{
|
|
#ifdef DEBUG
|
|
if (aMaskLayer) {
|
|
gfxMatrix maskTransform;
|
|
bool maskIs2D = aMaskLayer->GetTransform().CanDraw2D(&maskTransform);
|
|
NS_ASSERTION(maskIs2D, "Mask layer has invalid transform.");
|
|
}
|
|
#endif
|
|
|
|
if (mMaskLayer != aMaskLayer) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MaskLayer", this));
|
|
mMaskLayer = aMaskLayer;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Tell this layer what its transform should be. The transformation
|
|
* is applied when compositing the layer into its parent container.
|
|
* XXX Currently only transformations corresponding to 2D affine transforms
|
|
* are supported.
|
|
*/
|
|
void SetBaseTransform(const gfx3DMatrix& aMatrix)
|
|
{
|
|
NS_ASSERTION(!aMatrix.IsSingular(),
|
|
"Shouldn't be trying to draw with a singular matrix!");
|
|
mPendingTransform = nullptr;
|
|
if (mTransform == aMatrix) {
|
|
return;
|
|
}
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) BaseTransform", this));
|
|
mTransform = aMatrix;
|
|
Mutated();
|
|
}
|
|
|
|
/**
|
|
* Can be called at any time.
|
|
*
|
|
* Like SetBaseTransform(), but can be called before the next
|
|
* transform (i.e. outside an open transaction). Semantically, this
|
|
* method enqueues a new transform value to be set immediately after
|
|
* the next transaction is opened.
|
|
*/
|
|
void SetBaseTransformForNextTransaction(const gfx3DMatrix& aMatrix)
|
|
{
|
|
mPendingTransform = new gfx3DMatrix(aMatrix);
|
|
}
|
|
|
|
void SetPostScale(float aXScale, float aYScale)
|
|
{
|
|
if (mPostXScale == aXScale && mPostYScale == aYScale) {
|
|
return;
|
|
}
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PostScale", this));
|
|
mPostXScale = aXScale;
|
|
mPostYScale = aYScale;
|
|
Mutated();
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* A layer is "fixed position" when it draws content from a content
|
|
* (not chrome) document, the topmost content document has a root scrollframe
|
|
* with a displayport, but the layer does not move when that displayport scrolls.
|
|
*/
|
|
void SetIsFixedPosition(bool aFixedPosition)
|
|
{
|
|
if (mIsFixedPosition != aFixedPosition) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) IsFixedPosition", this));
|
|
mIsFixedPosition = aFixedPosition;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
// Call AddAnimation to add a new animation to this layer from layout code.
|
|
// Caller must add segments to the returned animation.
|
|
// aStart represents the time at the *end* of the delay.
|
|
Animation* AddAnimation(mozilla::TimeStamp aStart, mozilla::TimeDuration aDuration,
|
|
float aIterations, int aDirection,
|
|
nsCSSProperty aProperty, const AnimationData& aData);
|
|
// ClearAnimations clears animations on this layer.
|
|
void ClearAnimations();
|
|
// This is only called when the layer tree is updated. Do not call this from
|
|
// layout code. To add an animation to this layer, use AddAnimation.
|
|
void SetAnimations(const AnimationArray& aAnimations);
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* If a layer is "fixed position", this determines which point on the layer
|
|
* is considered the "anchor" point, that is, the point which remains in the
|
|
* same position when compositing the layer tree with a transformation
|
|
* (such as when asynchronously scrolling and zooming).
|
|
*/
|
|
void SetFixedPositionAnchor(const LayerPoint& aAnchor)
|
|
{
|
|
if (mAnchor != aAnchor) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionAnchor", this));
|
|
mAnchor = aAnchor;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* If a layer represents a fixed position element or elements that are on
|
|
* a document that has had fixed position element margins set on it, these
|
|
* will be mirrored here. This allows for asynchronous animation of the
|
|
* margins by reconciling the difference between this value and a value that
|
|
* is updated more frequently.
|
|
* If the left or top margins are negative, it means that the elements this
|
|
* layer represents are auto-positioned, and so fixed position margins should
|
|
* not have an effect on the corresponding axis.
|
|
*/
|
|
void SetFixedPositionMargins(const LayerMargin& aMargins)
|
|
{
|
|
if (mMargins != aMargins) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionMargins", this));
|
|
mMargins = aMargins;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* If a layer is "sticky position", |aScrollId| holds the scroll identifier
|
|
* of the scrollable content that contains it. The difference between the two
|
|
* rectangles |aOuter| and |aInner| is treated as two intervals in each
|
|
* dimension, with the current scroll position at the origin. For each
|
|
* dimension, while that component of the scroll position lies within either
|
|
* interval, the layer should not move relative to its scrolling container.
|
|
*/
|
|
void SetStickyPositionData(FrameMetrics::ViewID aScrollId, LayerRect aOuter,
|
|
LayerRect aInner)
|
|
{
|
|
if (!mStickyPositionData ||
|
|
!mStickyPositionData->mOuter.IsEqualEdges(aOuter) ||
|
|
!mStickyPositionData->mInner.IsEqualEdges(aInner)) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) StickyPositionData", this));
|
|
if (!mStickyPositionData) {
|
|
mStickyPositionData = new StickyPositionData;
|
|
}
|
|
mStickyPositionData->mScrollId = aScrollId;
|
|
mStickyPositionData->mOuter = aOuter;
|
|
mStickyPositionData->mInner = aInner;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
// These getters can be used anytime.
|
|
float GetOpacity() { return mOpacity; }
|
|
const nsIntRect* GetClipRect() { return mUseClipRect ? &mClipRect : nullptr; }
|
|
uint32_t GetContentFlags() { return mContentFlags; }
|
|
const nsIntRegion& GetVisibleRegion() { return mVisibleRegion; }
|
|
ContainerLayer* GetParent() { return mParent; }
|
|
Layer* GetNextSibling() { return mNextSibling; }
|
|
const Layer* GetNextSibling() const { return mNextSibling; }
|
|
Layer* GetPrevSibling() { return mPrevSibling; }
|
|
const Layer* GetPrevSibling() const { return mPrevSibling; }
|
|
virtual Layer* GetFirstChild() const { return nullptr; }
|
|
virtual Layer* GetLastChild() const { return nullptr; }
|
|
const gfx3DMatrix GetTransform() const;
|
|
const gfx3DMatrix& GetBaseTransform() const { return mTransform; }
|
|
float GetPostXScale() const { return mPostXScale; }
|
|
float GetPostYScale() const { return mPostYScale; }
|
|
bool GetIsFixedPosition() { return mIsFixedPosition; }
|
|
bool GetIsStickyPosition() { return mStickyPositionData; }
|
|
LayerPoint GetFixedPositionAnchor() { return mAnchor; }
|
|
const LayerMargin& GetFixedPositionMargins() { return mMargins; }
|
|
FrameMetrics::ViewID GetStickyScrollContainerId() { return mStickyPositionData->mScrollId; }
|
|
const LayerRect& GetStickyScrollRangeOuter() { return mStickyPositionData->mOuter; }
|
|
const LayerRect& GetStickyScrollRangeInner() { return mStickyPositionData->mInner; }
|
|
Layer* GetMaskLayer() const { return mMaskLayer; }
|
|
|
|
// Note that all lengths in animation data are either in CSS pixels or app
|
|
// units and must be converted to device pixels by the compositor.
|
|
AnimationArray& GetAnimations() { return mAnimations; }
|
|
InfallibleTArray<AnimData>& GetAnimationData() { return mAnimationData; }
|
|
|
|
uint64_t GetAnimationGeneration() { return mAnimationGeneration; }
|
|
void SetAnimationGeneration(uint64_t aCount) { mAnimationGeneration = aCount; }
|
|
|
|
/**
|
|
* Returns the local transform for this layer: either mTransform or,
|
|
* for shadow layers, GetShadowTransform()
|
|
*/
|
|
const gfx3DMatrix GetLocalTransform();
|
|
|
|
/**
|
|
* Returns the local opacity for this layer: either mOpacity or,
|
|
* for shadow layers, GetShadowOpacity()
|
|
*/
|
|
const float GetLocalOpacity();
|
|
|
|
/**
|
|
* DRAWING PHASE ONLY
|
|
*
|
|
* Apply pending changes to layers before drawing them, if those
|
|
* pending changes haven't been overridden by later changes.
|
|
*/
|
|
void ApplyPendingUpdatesToSubtree();
|
|
|
|
/**
|
|
* DRAWING PHASE ONLY
|
|
*
|
|
* Write layer-subtype-specific attributes into aAttrs. Used to
|
|
* synchronize layer attributes to their shadows'.
|
|
*/
|
|
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { }
|
|
|
|
// Returns true if it's OK to save the contents of aLayer in an
|
|
// opaque surface (a surface without an alpha channel).
|
|
// If we can use a surface without an alpha channel, we should, because
|
|
// it will often make painting of antialiased text faster and higher
|
|
// quality.
|
|
bool CanUseOpaqueSurface();
|
|
|
|
enum SurfaceMode {
|
|
SURFACE_OPAQUE,
|
|
SURFACE_SINGLE_CHANNEL_ALPHA,
|
|
SURFACE_COMPONENT_ALPHA
|
|
};
|
|
SurfaceMode GetSurfaceMode()
|
|
{
|
|
if (CanUseOpaqueSurface())
|
|
return SURFACE_OPAQUE;
|
|
if (mContentFlags & CONTENT_COMPONENT_ALPHA)
|
|
return SURFACE_COMPONENT_ALPHA;
|
|
return SURFACE_SINGLE_CHANNEL_ALPHA;
|
|
}
|
|
|
|
/**
|
|
* This setter can be used anytime. The user data for all keys is
|
|
* initially null. Ownership pases to the layer manager.
|
|
*/
|
|
void SetUserData(void* aKey, LayerUserData* aData)
|
|
{
|
|
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManagerUserDataDestroy);
|
|
}
|
|
/**
|
|
* This can be used anytime. Ownership passes to the caller!
|
|
*/
|
|
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey)
|
|
{
|
|
nsAutoPtr<LayerUserData> d(static_cast<LayerUserData*>(mUserData.Remove(static_cast<gfx::UserDataKey*>(aKey))));
|
|
return d;
|
|
}
|
|
/**
|
|
* This getter can be used anytime.
|
|
*/
|
|
bool HasUserData(void* aKey)
|
|
{
|
|
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
|
|
}
|
|
/**
|
|
* This getter can be used anytime. Ownership is retained by the layer
|
|
* manager.
|
|
*/
|
|
LayerUserData* GetUserData(void* aKey) const
|
|
{
|
|
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
|
|
}
|
|
|
|
/**
|
|
* |Disconnect()| is used by layers hooked up over IPC. It may be
|
|
* called at any time, and may not be called at all. Using an
|
|
* IPC-enabled layer after Destroy() (drawing etc.) results in a
|
|
* safe no-op; no crashy or uaf etc.
|
|
*
|
|
* XXX: this interface is essentially LayerManager::Destroy, but at
|
|
* Layer granularity. It might be beneficial to unify them.
|
|
*/
|
|
virtual void Disconnect() {}
|
|
|
|
/**
|
|
* Dynamic downcast to a Thebes layer. Returns null if this is not
|
|
* a ThebesLayer.
|
|
*/
|
|
virtual ThebesLayer* AsThebesLayer() { return nullptr; }
|
|
|
|
/**
|
|
* Dynamic cast to a ContainerLayer. Returns null if this is not
|
|
* a ContainerLayer.
|
|
*/
|
|
virtual ContainerLayer* AsContainerLayer() { return nullptr; }
|
|
virtual const ContainerLayer* AsContainerLayer() const { return nullptr; }
|
|
|
|
/**
|
|
* Dynamic cast to a RefLayer. Returns null if this is not a
|
|
* RefLayer.
|
|
*/
|
|
virtual RefLayer* AsRefLayer() { return nullptr; }
|
|
|
|
/**
|
|
* Dynamic cast to a Color. Returns null if this is not a
|
|
* ColorLayer.
|
|
*/
|
|
virtual ColorLayer* AsColorLayer() { return nullptr; }
|
|
|
|
/**
|
|
* Dynamic cast to a LayerComposite. Return null if this is not a
|
|
* LayerComposite. Can be used anytime.
|
|
*/
|
|
virtual LayerComposite* AsLayerComposite() { return nullptr; }
|
|
|
|
/**
|
|
* Dynamic cast to a ShadowableLayer. Return null if this is not a
|
|
* ShadowableLayer. Can be used anytime.
|
|
*/
|
|
virtual ShadowableLayer* AsShadowableLayer() { return nullptr; }
|
|
|
|
// These getters can be used anytime. They return the effective
|
|
// values that should be used when drawing this layer to screen,
|
|
// accounting for this layer possibly being a shadow.
|
|
const nsIntRect* GetEffectiveClipRect();
|
|
const nsIntRegion& GetEffectiveVisibleRegion();
|
|
/**
|
|
* Returns the product of the opacities of this layer and all ancestors up
|
|
* to and excluding the nearest ancestor that has UseIntermediateSurface() set.
|
|
*/
|
|
float GetEffectiveOpacity();
|
|
/**
|
|
* This returns the effective transform computed by
|
|
* ComputeEffectiveTransforms. Typically this is a transform that transforms
|
|
* this layer all the way to some intermediate surface or destination
|
|
* surface. For non-BasicLayers this will be a transform to the nearest
|
|
* ancestor with UseIntermediateSurface() (or to the root, if there is no
|
|
* such ancestor), but for BasicLayers it's different.
|
|
*/
|
|
const gfx3DMatrix& GetEffectiveTransform() const { return mEffectiveTransform; }
|
|
|
|
/**
|
|
* @param aTransformToSurface the composition of the transforms
|
|
* from the parent layer (if any) to the destination pixel grid.
|
|
*
|
|
* Computes mEffectiveTransform for this layer and all its descendants.
|
|
* mEffectiveTransform transforms this layer up to the destination
|
|
* pixel grid (whatever aTransformToSurface is relative to).
|
|
*
|
|
* We promise that when this is called on a layer, all ancestor layers
|
|
* have already had ComputeEffectiveTransforms called.
|
|
*/
|
|
virtual void ComputeEffectiveTransforms(const gfx3DMatrix& aTransformToSurface) = 0;
|
|
|
|
/**
|
|
* computes the effective transform for a mask layer, if this layer has one
|
|
*/
|
|
void ComputeEffectiveTransformForMaskLayer(const gfx3DMatrix& aTransformToSurface);
|
|
|
|
/**
|
|
* Calculate the scissor rect required when rendering this layer.
|
|
* Returns a rectangle relative to the intermediate surface belonging to the
|
|
* nearest ancestor that has an intermediate surface, or relative to the root
|
|
* viewport if no ancestor has an intermediate surface, corresponding to the
|
|
* clip rect for this layer intersected with aCurrentScissorRect.
|
|
* If no ancestor has an intermediate surface, the clip rect is transformed
|
|
* by aWorldTransform before being combined with aCurrentScissorRect, if
|
|
* aWorldTransform is non-null.
|
|
*/
|
|
nsIntRect CalculateScissorRect(const nsIntRect& aCurrentScissorRect,
|
|
const gfxMatrix* aWorldTransform);
|
|
|
|
virtual const char* Name() const =0;
|
|
virtual LayerType GetType() const =0;
|
|
|
|
/**
|
|
* Only the implementation should call this. This is per-implementation
|
|
* private data. Normally, all layers with a given layer manager
|
|
* use the same type of ImplData.
|
|
*/
|
|
void* ImplData() { return mImplData; }
|
|
|
|
/**
|
|
* Only the implementation should use these methods.
|
|
*/
|
|
void SetParent(ContainerLayer* aParent) { mParent = aParent; }
|
|
void SetNextSibling(Layer* aSibling) { mNextSibling = aSibling; }
|
|
void SetPrevSibling(Layer* aSibling) { mPrevSibling = aSibling; }
|
|
|
|
/**
|
|
* Dump information about this layer manager and its managed tree to
|
|
* aFile, which defaults to stderr.
|
|
*/
|
|
void Dump(FILE* aFile=nullptr, const char* aPrefix="", bool aDumpHtml=false);
|
|
/**
|
|
* Dump information about just this layer manager itself to aFile,
|
|
* which defaults to stderr.
|
|
*/
|
|
void DumpSelf(FILE* aFile=nullptr, const char* aPrefix="");
|
|
|
|
/**
|
|
* Log information about this layer manager and its managed tree to
|
|
* the NSPR log (if enabled for "Layers").
|
|
*/
|
|
void Log(const char* aPrefix="");
|
|
/**
|
|
* Log information about just this layer manager itself to the NSPR
|
|
* log (if enabled for "Layers").
|
|
*/
|
|
void LogSelf(const char* aPrefix="");
|
|
|
|
static bool IsLogEnabled() { return LayerManager::IsLogEnabled(); }
|
|
|
|
/**
|
|
* Returns the current area of the layer (in layer-space coordinates)
|
|
* marked as needed to be recomposited.
|
|
*/
|
|
const nsIntRegion& GetInvalidRegion() { return mInvalidRegion; }
|
|
|
|
/**
|
|
* Mark the entirety of the layer's visible region as being invalid.
|
|
*/
|
|
void SetInvalidRectToVisibleRegion() { mInvalidRegion = GetVisibleRegion(); }
|
|
|
|
/**
|
|
* Adds to the current invalid rect.
|
|
*/
|
|
void AddInvalidRect(const nsIntRect& aRect) { mInvalidRegion.Or(mInvalidRegion, aRect); }
|
|
|
|
/**
|
|
* Clear the invalid rect, marking the layer as being identical to what is currently
|
|
* composited.
|
|
*/
|
|
void ClearInvalidRect() { mInvalidRegion.SetEmpty(); }
|
|
|
|
void ApplyPendingUpdatesForThisTransaction();
|
|
|
|
#ifdef DEBUG
|
|
void SetDebugColorIndex(uint32_t aIndex) { mDebugColorIndex = aIndex; }
|
|
uint32_t GetDebugColorIndex() { return mDebugColorIndex; }
|
|
#endif
|
|
|
|
virtual LayerRenderState GetRenderState() { return LayerRenderState(); }
|
|
|
|
protected:
|
|
Layer(LayerManager* aManager, void* aImplData);
|
|
|
|
void Mutated()
|
|
{
|
|
mManager->Mutated(this);
|
|
}
|
|
|
|
// Print interesting information about this into aTo. Internally
|
|
// used to implement Dump*() and Log*(). If subclasses have
|
|
// additional interesting properties, they should override this with
|
|
// an implementation that first calls the base implementation then
|
|
// appends additional info to aTo.
|
|
virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
|
|
|
|
/**
|
|
* We can snap layer transforms for two reasons:
|
|
* 1) To avoid unnecessary resampling when a transform is a translation
|
|
* by a non-integer number of pixels.
|
|
* Snapping the translation to an integer number of pixels avoids
|
|
* blurring the layer and can be faster to composite.
|
|
* 2) When a layer is used to render a rectangular object, we need to
|
|
* emulate the rendering of rectangular inactive content and snap the
|
|
* edges of the rectangle to pixel boundaries. This is both to ensure
|
|
* layer rendering is consistent with inactive content rendering, and to
|
|
* avoid seams.
|
|
* This function implements type 1 snapping. If aTransform is a 2D
|
|
* translation, and this layer's layer manager has enabled snapping
|
|
* (which is the default), return aTransform with the translation snapped
|
|
* to nearest pixels. Otherwise just return aTransform. Call this when the
|
|
* layer does not correspond to a single rectangular content object.
|
|
* This function does not try to snap if aTransform has a scale, because in
|
|
* that case resampling is inevitable and there's no point in trying to
|
|
* avoid it. In fact snapping can cause problems because pixel edges in the
|
|
* layer's content can be rendered unpredictably (jiggling) as the scale
|
|
* interacts with the snapping of the translation, especially with animated
|
|
* transforms.
|
|
* @param aResidualTransform a transform to apply before the result transform
|
|
* in order to get the results to completely match aTransform.
|
|
*/
|
|
gfx3DMatrix SnapTransformTranslation(const gfx3DMatrix& aTransform,
|
|
gfxMatrix* aResidualTransform);
|
|
/**
|
|
* See comment for SnapTransformTranslation.
|
|
* This function implements type 2 snapping. If aTransform is a translation
|
|
* and/or scale, transform aSnapRect by aTransform, snap to pixel boundaries,
|
|
* and return the transform that maps aSnapRect to that rect. Otherwise
|
|
* just return aTransform.
|
|
* @param aSnapRect a rectangle whose edges should be snapped to pixel
|
|
* boundaries in the destination surface.
|
|
* @param aResidualTransform a transform to apply before the result transform
|
|
* in order to get the results to completely match aTransform.
|
|
*/
|
|
gfx3DMatrix SnapTransform(const gfx3DMatrix& aTransform,
|
|
const gfxRect& aSnapRect,
|
|
gfxMatrix* aResidualTransform);
|
|
|
|
/**
|
|
* Returns true if this layer's effective transform is not just
|
|
* a translation by integers, or if this layer or some ancestor layer
|
|
* is marked as having a transform that may change without a full layer
|
|
* transaction.
|
|
*/
|
|
bool MayResample();
|
|
|
|
LayerManager* mManager;
|
|
ContainerLayer* mParent;
|
|
Layer* mNextSibling;
|
|
Layer* mPrevSibling;
|
|
void* mImplData;
|
|
nsRefPtr<Layer> mMaskLayer;
|
|
gfx::UserData mUserData;
|
|
nsIntRegion mVisibleRegion;
|
|
gfx3DMatrix mTransform;
|
|
// A mutation of |mTransform| that we've queued to be applied at the
|
|
// end of the next transaction (if nothing else overrides it in the
|
|
// meantime).
|
|
nsAutoPtr<gfx3DMatrix> mPendingTransform;
|
|
float mPostXScale;
|
|
float mPostYScale;
|
|
gfx3DMatrix mEffectiveTransform;
|
|
AnimationArray mAnimations;
|
|
InfallibleTArray<AnimData> mAnimationData;
|
|
float mOpacity;
|
|
nsIntRect mClipRect;
|
|
nsIntRect mTileSourceRect;
|
|
nsIntRegion mInvalidRegion;
|
|
uint32_t mContentFlags;
|
|
bool mUseClipRect;
|
|
bool mUseTileSourceRect;
|
|
bool mIsFixedPosition;
|
|
LayerPoint mAnchor;
|
|
LayerMargin mMargins;
|
|
struct StickyPositionData {
|
|
FrameMetrics::ViewID mScrollId;
|
|
LayerRect mOuter;
|
|
LayerRect mInner;
|
|
};
|
|
nsAutoPtr<StickyPositionData> mStickyPositionData;
|
|
DebugOnly<uint32_t> mDebugColorIndex;
|
|
// If this layer is used for OMTA, then this counter is used to ensure we
|
|
// stay in sync with the animation manager
|
|
uint64_t mAnimationGeneration;
|
|
};
|
|
|
|
/**
|
|
* A Layer which we can draw into using Thebes. It is a conceptually
|
|
* infinite surface, but each ThebesLayer has an associated "valid region"
|
|
* of contents that it is currently storing, which is finite. ThebesLayer
|
|
* implementations can store content between paints.
|
|
*
|
|
* ThebesLayers are rendered into during the drawing phase of a transaction.
|
|
*
|
|
* Currently the contents of a ThebesLayer are in the device output color
|
|
* space.
|
|
*/
|
|
class ThebesLayer : public Layer {
|
|
public:
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Tell this layer that the content in some region has changed and
|
|
* will need to be repainted. This area is removed from the valid
|
|
* region.
|
|
*/
|
|
virtual void InvalidateRegion(const nsIntRegion& aRegion) = 0;
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set whether ComputeEffectiveTransforms should compute the
|
|
* "residual translation" --- the translation that should be applied *before*
|
|
* mEffectiveTransform to get the ideal transform for this ThebesLayer.
|
|
* When this is true, ComputeEffectiveTransforms will compute the residual
|
|
* and ensure that the layer is invalidated whenever the residual changes.
|
|
* When it's false, a change in the residual will not trigger invalidation
|
|
* and GetResidualTranslation will return 0,0.
|
|
* So when the residual is to be ignored, set this to false for better
|
|
* performance.
|
|
*/
|
|
void SetAllowResidualTranslation(bool aAllow) { mAllowResidualTranslation = aAllow; }
|
|
|
|
/**
|
|
* Can be used anytime
|
|
*/
|
|
const nsIntRegion& GetValidRegion() const { return mValidRegion; }
|
|
|
|
virtual ThebesLayer* AsThebesLayer() { return this; }
|
|
|
|
MOZ_LAYER_DECL_NAME("ThebesLayer", TYPE_THEBES)
|
|
|
|
virtual void ComputeEffectiveTransforms(const gfx3DMatrix& aTransformToSurface)
|
|
{
|
|
gfx3DMatrix idealTransform = GetLocalTransform()*aTransformToSurface;
|
|
gfxMatrix residual;
|
|
mEffectiveTransform = SnapTransformTranslation(idealTransform,
|
|
mAllowResidualTranslation ? &residual : nullptr);
|
|
// The residual can only be a translation because SnapTransformTranslation
|
|
// only changes the transform if it's a translation
|
|
NS_ASSERTION(!residual.HasNonTranslation(),
|
|
"Residual transform can only be a translation");
|
|
if (!residual.GetTranslation().WithinEpsilonOf(mResidualTranslation, 1e-3f)) {
|
|
mResidualTranslation = residual.GetTranslation();
|
|
NS_ASSERTION(-0.5 <= mResidualTranslation.x && mResidualTranslation.x < 0.5 &&
|
|
-0.5 <= mResidualTranslation.y && mResidualTranslation.y < 0.5,
|
|
"Residual translation out of range");
|
|
mValidRegion.SetEmpty();
|
|
}
|
|
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
|
|
}
|
|
|
|
bool UsedForReadback() { return mUsedForReadback; }
|
|
void SetUsedForReadback(bool aUsed) { mUsedForReadback = aUsed; }
|
|
/**
|
|
* Returns the residual translation. Apply this translation when drawing
|
|
* into the ThebesLayer so that when mEffectiveTransform is applied afterwards
|
|
* by layer compositing, the results exactly match the "ideal transform"
|
|
* (the product of the transform of this layer and its ancestors).
|
|
* Returns 0,0 unless SetAllowResidualTranslation(true) has been called.
|
|
* The residual translation components are always in the range [-0.5, 0.5).
|
|
*/
|
|
gfxPoint GetResidualTranslation() const { return mResidualTranslation; }
|
|
|
|
protected:
|
|
ThebesLayer(LayerManager* aManager, void* aImplData)
|
|
: Layer(aManager, aImplData)
|
|
, mValidRegion()
|
|
, mUsedForReadback(false)
|
|
, mAllowResidualTranslation(false)
|
|
{
|
|
mContentFlags = 0; // Clear NO_TEXT, NO_TEXT_OVER_TRANSPARENT
|
|
}
|
|
|
|
virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
|
|
|
|
/**
|
|
* ComputeEffectiveTransforms snaps the ideal transform to get mEffectiveTransform.
|
|
* mResidualTranslation is the translation that should be applied *before*
|
|
* mEffectiveTransform to get the ideal transform.
|
|
*/
|
|
gfxPoint mResidualTranslation;
|
|
nsIntRegion mValidRegion;
|
|
/**
|
|
* Set when this ThebesLayer is participating in readback, i.e. some
|
|
* ReadbackLayer (may) be getting its background from this layer.
|
|
*/
|
|
bool mUsedForReadback;
|
|
/**
|
|
* True when
|
|
*/
|
|
bool mAllowResidualTranslation;
|
|
};
|
|
|
|
/**
|
|
* A Layer which other layers render into. It holds references to its
|
|
* children.
|
|
*/
|
|
class ContainerLayer : public Layer {
|
|
public:
|
|
|
|
~ContainerLayer();
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Insert aChild into the child list of this container. aChild must
|
|
* not be currently in any child list or the root for the layer manager.
|
|
* If aAfter is non-null, it must be a child of this container and
|
|
* we insert after that layer. If it's null we insert at the start.
|
|
*/
|
|
virtual void InsertAfter(Layer* aChild, Layer* aAfter);
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Remove aChild from the child list of this container. aChild must
|
|
* be a child of this container.
|
|
*/
|
|
virtual void RemoveChild(Layer* aChild);
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Reposition aChild from the child list of this container. aChild must
|
|
* be a child of this container.
|
|
* If aAfter is non-null, it must be a child of this container and we
|
|
* reposition after that layer. If it's null, we reposition at the start.
|
|
*/
|
|
virtual void RepositionChild(Layer* aChild, Layer* aAfter);
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set the (sub)document metrics used to render the Layer subtree
|
|
* rooted at this.
|
|
*/
|
|
void SetFrameMetrics(const FrameMetrics& aFrameMetrics)
|
|
{
|
|
if (mFrameMetrics != aFrameMetrics) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FrameMetrics", this));
|
|
mFrameMetrics = aFrameMetrics;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
// These functions allow attaching an AsyncPanZoomController to this layer,
|
|
// and can be used anytime.
|
|
// A container layer has an APZC only-if GetFrameMetrics().IsScrollable()
|
|
void SetAsyncPanZoomController(AsyncPanZoomController *controller);
|
|
AsyncPanZoomController* GetAsyncPanZoomController() const;
|
|
|
|
void SetPreScale(float aXScale, float aYScale)
|
|
{
|
|
if (mPreXScale == aXScale && mPreYScale == aYScale) {
|
|
return;
|
|
}
|
|
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PreScale", this));
|
|
mPreXScale = aXScale;
|
|
mPreYScale = aYScale;
|
|
Mutated();
|
|
}
|
|
|
|
void SetInheritedScale(float aXScale, float aYScale)
|
|
{
|
|
if (mInheritedXScale == aXScale && mInheritedYScale == aYScale) {
|
|
return;
|
|
}
|
|
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) InheritedScale", this));
|
|
mInheritedXScale = aXScale;
|
|
mInheritedYScale = aYScale;
|
|
Mutated();
|
|
}
|
|
|
|
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs);
|
|
|
|
void SortChildrenBy3DZOrder(nsTArray<Layer*>& aArray);
|
|
|
|
// These getters can be used anytime.
|
|
|
|
virtual ContainerLayer* AsContainerLayer() { return this; }
|
|
virtual const ContainerLayer* AsContainerLayer() const { return this; }
|
|
|
|
virtual Layer* GetFirstChild() const { return mFirstChild; }
|
|
virtual Layer* GetLastChild() const { return mLastChild; }
|
|
const FrameMetrics& GetFrameMetrics() const { return mFrameMetrics; }
|
|
float GetPreXScale() const { return mPreXScale; }
|
|
float GetPreYScale() const { return mPreYScale; }
|
|
float GetInheritedXScale() const { return mInheritedXScale; }
|
|
float GetInheritedYScale() const { return mInheritedYScale; }
|
|
|
|
MOZ_LAYER_DECL_NAME("ContainerLayer", TYPE_CONTAINER)
|
|
|
|
/**
|
|
* ContainerLayer backends need to override ComputeEffectiveTransforms
|
|
* since the decision about whether to use a temporary surface for the
|
|
* container is backend-specific. ComputeEffectiveTransforms must also set
|
|
* mUseIntermediateSurface.
|
|
*/
|
|
virtual void ComputeEffectiveTransforms(const gfx3DMatrix& aTransformToSurface) = 0;
|
|
|
|
/**
|
|
* Call this only after ComputeEffectiveTransforms has been invoked
|
|
* on this layer.
|
|
* Returns true if this will use an intermediate surface. This is largely
|
|
* backend-dependent, but it affects the operation of GetEffectiveOpacity().
|
|
*/
|
|
bool UseIntermediateSurface() { return mUseIntermediateSurface; }
|
|
|
|
/**
|
|
* Returns the rectangle covered by the intermediate surface,
|
|
* in this layer's coordinate system
|
|
*/
|
|
nsIntRect GetIntermediateSurfaceRect()
|
|
{
|
|
NS_ASSERTION(mUseIntermediateSurface, "Must have intermediate surface");
|
|
return mVisibleRegion.GetBounds();
|
|
}
|
|
|
|
/**
|
|
* Returns true if this container has more than one non-empty child
|
|
*/
|
|
bool HasMultipleChildren();
|
|
|
|
/**
|
|
* Returns true if this container supports children with component alpha.
|
|
* Should only be called while painting a child of this layer.
|
|
*/
|
|
bool SupportsComponentAlphaChildren() { return mSupportsComponentAlphaChildren; }
|
|
|
|
protected:
|
|
friend class ReadbackProcessor;
|
|
|
|
static bool HasOpaqueAncestorLayer(Layer* aLayer);
|
|
|
|
void DidInsertChild(Layer* aLayer);
|
|
void DidRemoveChild(Layer* aLayer);
|
|
|
|
ContainerLayer(LayerManager* aManager, void* aImplData);
|
|
|
|
/**
|
|
* A default implementation of ComputeEffectiveTransforms for use by OpenGL
|
|
* and D3D.
|
|
*/
|
|
void DefaultComputeEffectiveTransforms(const gfx3DMatrix& aTransformToSurface);
|
|
|
|
/**
|
|
* Loops over the children calling ComputeEffectiveTransforms on them.
|
|
*/
|
|
void ComputeEffectiveTransformsForChildren(const gfx3DMatrix& aTransformToSurface);
|
|
|
|
virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
|
|
|
|
Layer* mFirstChild;
|
|
Layer* mLastChild;
|
|
FrameMetrics mFrameMetrics;
|
|
nsRefPtr<AsyncPanZoomController> mAPZC;
|
|
float mPreXScale;
|
|
float mPreYScale;
|
|
// The resolution scale inherited from the parent layer. This will already
|
|
// be part of mTransform.
|
|
float mInheritedXScale;
|
|
float mInheritedYScale;
|
|
bool mUseIntermediateSurface;
|
|
bool mSupportsComponentAlphaChildren;
|
|
bool mMayHaveReadbackChild;
|
|
};
|
|
|
|
/**
|
|
* A Layer which just renders a solid color in its visible region. It actually
|
|
* can fill any area that contains the visible region, so if you need to
|
|
* restrict the area filled, set a clip region on this layer.
|
|
*/
|
|
class ColorLayer : public Layer {
|
|
public:
|
|
virtual ColorLayer* AsColorLayer() { return this; }
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set the color of the layer.
|
|
*/
|
|
virtual void SetColor(const gfxRGBA& aColor)
|
|
{
|
|
if (mColor != aColor) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Color", this));
|
|
mColor = aColor;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
void SetBounds(const nsIntRect& aBounds)
|
|
{
|
|
if (!mBounds.IsEqualEdges(aBounds)) {
|
|
mBounds = aBounds;
|
|
Mutated();
|
|
}
|
|
}
|
|
|
|
const nsIntRect& GetBounds()
|
|
{
|
|
return mBounds;
|
|
}
|
|
|
|
// This getter can be used anytime.
|
|
virtual const gfxRGBA& GetColor() { return mColor; }
|
|
|
|
MOZ_LAYER_DECL_NAME("ColorLayer", TYPE_COLOR)
|
|
|
|
virtual void ComputeEffectiveTransforms(const gfx3DMatrix& aTransformToSurface)
|
|
{
|
|
gfx3DMatrix idealTransform = GetLocalTransform()*aTransformToSurface;
|
|
mEffectiveTransform = SnapTransformTranslation(idealTransform, nullptr);
|
|
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
|
|
}
|
|
|
|
protected:
|
|
ColorLayer(LayerManager* aManager, void* aImplData)
|
|
: Layer(aManager, aImplData),
|
|
mColor(0.0, 0.0, 0.0, 0.0)
|
|
{}
|
|
|
|
virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
|
|
|
|
nsIntRect mBounds;
|
|
gfxRGBA mColor;
|
|
};
|
|
|
|
/**
|
|
* A Layer for HTML Canvas elements. It's backed by either a
|
|
* gfxASurface or a GLContext (for WebGL layers), and has some control
|
|
* for intelligent updating from the source if necessary (for example,
|
|
* if hardware compositing is not available, for reading from the GL
|
|
* buffer into an image surface that we can layer composite.)
|
|
*
|
|
* After Initialize is called, the underlying canvas Surface/GLContext
|
|
* must not be modified during a layer transaction.
|
|
*/
|
|
class CanvasLayer : public Layer {
|
|
public:
|
|
struct Data {
|
|
Data()
|
|
: mSurface(nullptr)
|
|
, mDrawTarget(nullptr)
|
|
, mGLContext(nullptr)
|
|
, mSize(0,0)
|
|
, mIsGLAlphaPremult(false)
|
|
{ }
|
|
|
|
// One of these two must be specified for Canvas2D, but never both
|
|
gfxASurface* mSurface; // a gfx Surface for the canvas contents
|
|
mozilla::gfx::DrawTarget *mDrawTarget; // a DrawTarget for the canvas contents
|
|
|
|
// Or this, for GL.
|
|
mozilla::gl::GLContext* mGLContext;
|
|
|
|
// The size of the canvas content
|
|
nsIntSize mSize;
|
|
|
|
// Whether mGLContext contains data that is alpha-premultiplied.
|
|
bool mIsGLAlphaPremult;
|
|
};
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Initialize this CanvasLayer with the given data. The data must
|
|
* have either mSurface or mGLContext initialized (but not both), as
|
|
* well as mSize.
|
|
*
|
|
* This must only be called once.
|
|
*/
|
|
virtual void Initialize(const Data& aData) = 0;
|
|
|
|
/**
|
|
* Notify this CanvasLayer that the canvas surface contents have
|
|
* changed (or will change) before the next transaction.
|
|
*/
|
|
void Updated() { mDirty = true; SetInvalidRectToVisibleRegion(); }
|
|
|
|
/**
|
|
* Notify this CanvasLayer that the canvas surface contents have
|
|
* been painted since the last change.
|
|
*/
|
|
void Painted() { mDirty = false; }
|
|
|
|
/**
|
|
* Returns true if the canvas surface contents have changed since the
|
|
* last paint.
|
|
*/
|
|
bool IsDirty()
|
|
{
|
|
// We can only tell if we are dirty if we're part of the
|
|
// widget's retained layer tree.
|
|
if (!mManager || !mManager->IsWidgetLayerManager()) {
|
|
return true;
|
|
}
|
|
return mDirty;
|
|
}
|
|
|
|
/**
|
|
* Register a callback to be called at the start of each transaction.
|
|
*/
|
|
typedef void PreTransactionCallback(void* closureData);
|
|
void SetPreTransactionCallback(PreTransactionCallback* callback, void* closureData)
|
|
{
|
|
mPreTransCallback = callback;
|
|
mPreTransCallbackData = closureData;
|
|
}
|
|
|
|
protected:
|
|
void FirePreTransactionCallback()
|
|
{
|
|
if (mPreTransCallback) {
|
|
mPreTransCallback(mPreTransCallbackData);
|
|
}
|
|
}
|
|
|
|
public:
|
|
/**
|
|
* Register a callback to be called at the end of each transaction.
|
|
*/
|
|
typedef void (* DidTransactionCallback)(void* aClosureData);
|
|
void SetDidTransactionCallback(DidTransactionCallback aCallback, void* aClosureData)
|
|
{
|
|
mPostTransCallback = aCallback;
|
|
mPostTransCallbackData = aClosureData;
|
|
}
|
|
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set the filter used to resample this image (if necessary).
|
|
*/
|
|
void SetFilter(gfxPattern::GraphicsFilter aFilter)
|
|
{
|
|
if (mFilter != aFilter) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Filter", this));
|
|
mFilter = aFilter;
|
|
Mutated();
|
|
}
|
|
}
|
|
gfxPattern::GraphicsFilter GetFilter() const { return mFilter; }
|
|
|
|
MOZ_LAYER_DECL_NAME("CanvasLayer", TYPE_CANVAS)
|
|
|
|
virtual void ComputeEffectiveTransforms(const gfx3DMatrix& aTransformToSurface)
|
|
{
|
|
// Snap our local transform first, and snap the inherited transform as well.
|
|
// This makes our snapping equivalent to what would happen if our content
|
|
// was drawn into a ThebesLayer (gfxContext would snap using the local
|
|
// transform, then we'd snap again when compositing the ThebesLayer).
|
|
mEffectiveTransform =
|
|
SnapTransform(GetLocalTransform(), gfxRect(0, 0, mBounds.width, mBounds.height),
|
|
nullptr)*
|
|
SnapTransformTranslation(aTransformToSurface, nullptr);
|
|
ComputeEffectiveTransformForMaskLayer(aTransformToSurface);
|
|
}
|
|
|
|
protected:
|
|
CanvasLayer(LayerManager* aManager, void* aImplData)
|
|
: Layer(aManager, aImplData)
|
|
, mPreTransCallback(nullptr)
|
|
, mPreTransCallbackData(nullptr)
|
|
, mPostTransCallback(nullptr)
|
|
, mPostTransCallbackData(nullptr)
|
|
, mFilter(gfxPattern::FILTER_GOOD)
|
|
, mDirty(false)
|
|
{}
|
|
|
|
virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
|
|
|
|
void FireDidTransactionCallback()
|
|
{
|
|
if (mPostTransCallback) {
|
|
mPostTransCallback(mPostTransCallbackData);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* 0, 0, canvaswidth, canvasheight
|
|
*/
|
|
nsIntRect mBounds;
|
|
PreTransactionCallback* mPreTransCallback;
|
|
void* mPreTransCallbackData;
|
|
DidTransactionCallback mPostTransCallback;
|
|
void* mPostTransCallbackData;
|
|
gfxPattern::GraphicsFilter mFilter;
|
|
|
|
private:
|
|
/**
|
|
* Set to true in Updated(), cleared during a transaction.
|
|
*/
|
|
bool mDirty;
|
|
};
|
|
|
|
/**
|
|
* ContainerLayer that refers to a "foreign" layer tree, through an
|
|
* ID. Usage of RefLayer looks like
|
|
*
|
|
* Construction phase:
|
|
* allocate ID for layer subtree
|
|
* create RefLayer, SetReferentId(ID)
|
|
*
|
|
* Composition:
|
|
* look up subtree for GetReferentId()
|
|
* ConnectReferentLayer(subtree)
|
|
* compose
|
|
* ClearReferentLayer()
|
|
*
|
|
* Clients will usually want to Connect/Clear() on each transaction to
|
|
* avoid difficulties managing memory across multiple layer subtrees.
|
|
*/
|
|
class RefLayer : public ContainerLayer {
|
|
friend class LayerManager;
|
|
|
|
private:
|
|
virtual void InsertAfter(Layer* aChild, Layer* aAfter)
|
|
{ MOZ_CRASH(); }
|
|
|
|
virtual void RemoveChild(Layer* aChild)
|
|
{ MOZ_CRASH(); }
|
|
|
|
virtual void RepositionChild(Layer* aChild, Layer* aAfter)
|
|
{ MOZ_CRASH(); }
|
|
|
|
using ContainerLayer::SetFrameMetrics;
|
|
|
|
public:
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Set the ID of the layer's referent.
|
|
*/
|
|
void SetReferentId(uint64_t aId)
|
|
{
|
|
MOZ_ASSERT(aId != 0);
|
|
if (mId != aId) {
|
|
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ReferentId", this));
|
|
mId = aId;
|
|
Mutated();
|
|
}
|
|
}
|
|
/**
|
|
* CONSTRUCTION PHASE ONLY
|
|
* Connect this ref layer to its referent, temporarily.
|
|
* ClearReferentLayer() must be called after composition.
|
|
*/
|
|
void ConnectReferentLayer(Layer* aLayer)
|
|
{
|
|
MOZ_ASSERT(!mFirstChild && !mLastChild);
|
|
MOZ_ASSERT(!aLayer->GetParent());
|
|
MOZ_ASSERT(aLayer->Manager() == Manager());
|
|
|
|
mFirstChild = mLastChild = aLayer;
|
|
aLayer->SetParent(this);
|
|
}
|
|
|
|
/**
|
|
* DRAWING PHASE ONLY
|
|
* |aLayer| is the same as the argument to ConnectReferentLayer().
|
|
*/
|
|
void DetachReferentLayer(Layer* aLayer)
|
|
{
|
|
MOZ_ASSERT(aLayer == mFirstChild && mFirstChild == mLastChild);
|
|
MOZ_ASSERT(aLayer->GetParent() == this);
|
|
|
|
mFirstChild = mLastChild = nullptr;
|
|
aLayer->SetParent(nullptr);
|
|
}
|
|
|
|
// These getters can be used anytime.
|
|
virtual RefLayer* AsRefLayer() { return this; }
|
|
|
|
virtual int64_t GetReferentId() { return mId; }
|
|
|
|
/**
|
|
* DRAWING PHASE ONLY
|
|
*/
|
|
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs);
|
|
|
|
MOZ_LAYER_DECL_NAME("RefLayer", TYPE_REF)
|
|
|
|
protected:
|
|
RefLayer(LayerManager* aManager, void* aImplData)
|
|
: ContainerLayer(aManager, aImplData) , mId(0)
|
|
{}
|
|
|
|
virtual nsACString& PrintInfo(nsACString& aTo, const char* aPrefix);
|
|
|
|
Layer* mTempReferent;
|
|
// 0 is a special value that means "no ID".
|
|
uint64_t mId;
|
|
};
|
|
|
|
#ifdef MOZ_DUMP_PAINTING
|
|
void WriteSnapshotToDumpFile(Layer* aLayer, gfxASurface* aSurf);
|
|
void WriteSnapshotToDumpFile(LayerManager* aManager, gfxASurface* aSurf);
|
|
void WriteSnapshotToDumpFile(Compositor* aCompositor, gfxASurface* aSurf);
|
|
#endif
|
|
|
|
}
|
|
}
|
|
|
|
#endif /* GFX_LAYERS_H */
|