860 lines
23 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Key.h"
#include <algorithm>
#include <stdint.h> // for UINT32_MAX, uintptr_t
#include "IndexedDatabaseManager.h"
#include "js/Date.h"
#include "js/Value.h"
#include "jsfriendapi.h"
#include "mozilla/Casting.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/FloatingPoint.h"
#include "mozIStorageStatement.h"
#include "mozIStorageValueArray.h"
#include "nsAlgorithm.h"
#include "nsJSUtils.h"
#include "ReportInternalError.h"
#include "unicode/ucol.h"
#include "xpcpublic.h"
namespace mozilla {
namespace dom {
namespace indexedDB {
/*
Here's how we encode keys:
Basic strategy is the following
Numbers: 0x10 n n n n n n n n ("n"s are encoded 64bit float)
Dates: 0x20 n n n n n n n n ("n"s are encoded 64bit float)
Strings: 0x30 s s s ... 0 ("s"s are encoded unicode bytes)
Binaries: 0x40 s s s ... 0 ("s"s are encoded unicode bytes)
Arrays: 0x50 i i i ... 0 ("i"s are encoded array items)
When encoding floats, 64bit IEEE 754 are almost sortable, except that
positive sort lower than negative, and negative sort descending. So we use
the following encoding:
value < 0 ?
(-to64bitInt(value)) :
(to64bitInt(value) | 0x8000000000000000)
When encoding strings, we use variable-size encoding per the following table
Chars 0 - 7E are encoded as 0xxxxxxx with 1 added
Chars 7F - (3FFF+7F) are encoded as 10xxxxxx xxxxxxxx with 7F subtracted
Chars (3FFF+80) - FFFF are encoded as 11xxxxxx xxxxxxxx xx000000
This ensures that the first byte is never encoded as 0, which means that the
string terminator (per basic-stategy table) sorts before any character.
The reason that (3FFF+80) - FFFF is encoded "shifted up" 6 bits is to maximize
the chance that the last character is 0. See below for why.
When encoding binaries, the algorithm is the same to how strings are encoded.
Since each octet in binary is in the range of [0-255], it'll take 1 to 2 encoded
unicode bytes.
When encoding Arrays, we use an additional trick. Rather than adding a byte
containing the value 0x50 to indicate type, we instead add 0x50 to the next byte.
This is usually the byte containing the type of the first item in the array.
So simple examples are
["foo"] 0x80 s s s 0 0 // 0x80 is 0x30 + 0x50
[1, 2] 0x60 n n n n n n n n 1 n n n n n n n n 0 // 0x60 is 0x10 + 0x50
Whe do this iteratively if the first item in the array is also an array
[["foo"]] 0xA0 s s s 0 0 0
However, to avoid overflow in the byte, we only do this 3 times. If the first
item in an array is an array, and that array also has an array as first item,
we simply write out the total value accumulated so far and then follow the
"normal" rules.
[[["foo"]]] 0xF0 0x30 s s s 0 0 0 0
There is another edge case that can happen though, which is that the array
doesn't have a first item to which we can add 0x50 to the type. Instead the
next byte would normally be the array terminator (per basic-strategy table)
so we simply add the 0x50 there.
[[]] 0xA0 0 // 0xA0 is 0x50 + 0x50 + 0
[] 0x50 // 0x50 is 0x50 + 0
[[], "foo"] 0xA0 0x30 s s s 0 0 // 0xA0 is 0x50 + 0x50 + 0
Note that the max-3-times rule kicks in before we get a chance to add to the
array terminator
[[[]]] 0xF0 0 0 0 // 0xF0 is 0x50 + 0x50 + 0x50
As a final optimization we do a post-encoding step which drops all 0s at the
end of the encoded buffer.
"foo" // 0x30 s s s
1 // 0x10 bf f0
["a", "b"] // 0x80 s 0 0x30 s
[1, 2] // 0x60 bf f0 0 0 0 0 0 0 0x10 c0
[[]] // 0x80
*/
nsresult
Key::ToLocaleBasedKey(Key& aTarget, const nsCString& aLocale) const
{
if (IsUnset()) {
aTarget.Unset();
return NS_OK;
}
if (IsFloat() || IsDate() || IsBinary()) {
aTarget.mBuffer = mBuffer;
return NS_OK;
}
aTarget.mBuffer.Truncate();
aTarget.mBuffer.SetCapacity(mBuffer.Length());
auto* it = reinterpret_cast<const unsigned char*>(mBuffer.BeginReading());
auto* end = reinterpret_cast<const unsigned char*>(mBuffer.EndReading());
// First we do a pass and see if there are any strings in this key. We only
// want to copy/decode when necessary.
bool canShareBuffers = true;
while (it < end) {
auto type = *it % eMaxType;
if (type == eTerminator || type == eArray) {
it++;
} else if (type == eFloat || type == eDate) {
it++;
it += std::min(sizeof(uint64_t), size_t(end - it));
} else {
// We have a string!
canShareBuffers = false;
break;
}
}
if (canShareBuffers) {
MOZ_ASSERT(it == end);
aTarget.mBuffer = mBuffer;
return NS_OK;
}
// A string was found, so we need to copy the data we've read so far
auto* start = reinterpret_cast<const unsigned char*>(mBuffer.BeginReading());
if (it > start) {
char* buffer;
if (!aTarget.mBuffer.GetMutableData(&buffer, it-start)) {
return NS_ERROR_OUT_OF_MEMORY;
}
while (start < it) {
*(buffer++) = *(start++);
}
}
// Now continue decoding
while (it < end) {
char* buffer;
uint32_t oldLen = aTarget.mBuffer.Length();
auto type = *it % eMaxType;
if (type == eTerminator || type == eArray) {
// Copy array TypeID and terminator from raw key
if (!aTarget.mBuffer.GetMutableData(&buffer, oldLen + 1)) {
return NS_ERROR_OUT_OF_MEMORY;
}
*(buffer + oldLen) = *(it++);
} else if (type == eFloat || type == eDate) {
// Copy number from raw key
if (!aTarget.mBuffer.GetMutableData(&buffer,
oldLen + 1 + sizeof(uint64_t))) {
return NS_ERROR_OUT_OF_MEMORY;
}
buffer += oldLen;
*(buffer++) = *(it++);
const size_t byteCount = std::min(sizeof(uint64_t), size_t(end - it));
for (size_t count = 0; count < byteCount; count++) {
*(buffer++) = (*it++);
}
} else {
// Decode string and reencode
uint8_t typeOffset = *it - eString;
MOZ_ASSERT((typeOffset % eArray == 0) && (typeOffset / eArray <= 2));
nsDependentString str;
DecodeString(it, end, str);
nsresult rv = aTarget.EncodeLocaleString(str, typeOffset, aLocale);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
}
aTarget.TrimBuffer();
return NS_OK;
}
nsresult
Key::EncodeJSValInternal(JSContext* aCx, JS::Handle<JS::Value> aVal,
uint8_t aTypeOffset, uint16_t aRecursionDepth)
{
static_assert(eMaxType * kMaxArrayCollapse < 256,
"Unable to encode jsvals.");
if (NS_WARN_IF(aRecursionDepth == kMaxRecursionDepth)) {
return NS_ERROR_DOM_INDEXEDDB_DATA_ERR;
}
if (aVal.isString()) {
nsAutoJSString str;
if (!str.init(aCx, aVal)) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
return EncodeString(str, aTypeOffset);
}
if (aVal.isNumber()) {
double d = aVal.toNumber();
if (mozilla::IsNaN(d)) {
return NS_ERROR_DOM_INDEXEDDB_DATA_ERR;
}
EncodeNumber(d, eFloat + aTypeOffset);
return NS_OK;
}
if (aVal.isObject()) {
JS::Rooted<JSObject*> obj(aCx, &aVal.toObject());
js::ESClass cls;
if (!js::GetBuiltinClass(aCx, obj, &cls)) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
if (cls == js::ESClass::Array) {
aTypeOffset += eMaxType;
if (aTypeOffset == eMaxType * kMaxArrayCollapse) {
mBuffer.Append(aTypeOffset);
aTypeOffset = 0;
}
NS_ASSERTION((aTypeOffset % eMaxType) == 0 &&
aTypeOffset < (eMaxType * kMaxArrayCollapse),
"Wrong typeoffset");
uint32_t length;
if (!JS_GetArrayLength(aCx, obj, &length)) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
for (uint32_t index = 0; index < length; index++) {
JS::Rooted<JS::Value> val(aCx);
if (!JS_GetElement(aCx, obj, index, &val)) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
nsresult rv = EncodeJSValInternal(aCx, val, aTypeOffset,
aRecursionDepth + 1);
if (NS_FAILED(rv)) {
return rv;
}
aTypeOffset = 0;
}
mBuffer.Append(eTerminator + aTypeOffset);
return NS_OK;
}
if (cls == js::ESClass::Date) {
bool valid;
if (!js::DateIsValid(aCx, obj, &valid)) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
if (!valid) {
return NS_ERROR_DOM_INDEXEDDB_DATA_ERR;
}
double t;
if (!js::DateGetMsecSinceEpoch(aCx, obj, &t)) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
EncodeNumber(t, eDate + aTypeOffset);
return NS_OK;
}
if (JS_IsArrayBufferObject(obj)) {
return EncodeBinary(obj, /* aIsViewObject */ false, aTypeOffset);
}
if (JS_IsArrayBufferViewObject(obj)) {
return EncodeBinary(obj, /* aIsViewObject */ true, aTypeOffset);
}
}
return NS_ERROR_DOM_INDEXEDDB_DATA_ERR;
}
// static
nsresult
Key::DecodeJSValInternal(const unsigned char*& aPos, const unsigned char* aEnd,
JSContext* aCx, uint8_t aTypeOffset, JS::MutableHandle<JS::Value> aVal,
uint16_t aRecursionDepth)
{
if (NS_WARN_IF(aRecursionDepth == kMaxRecursionDepth)) {
return NS_ERROR_DOM_INDEXEDDB_DATA_ERR;
}
if (*aPos - aTypeOffset >= eArray) {
JS::Rooted<JSObject*> array(aCx, JS_NewArrayObject(aCx, 0));
if (!array) {
NS_WARNING("Failed to make array!");
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
aTypeOffset += eMaxType;
if (aTypeOffset == eMaxType * kMaxArrayCollapse) {
++aPos;
aTypeOffset = 0;
}
uint32_t index = 0;
JS::Rooted<JS::Value> val(aCx);
while (aPos < aEnd && *aPos - aTypeOffset != eTerminator) {
nsresult rv = DecodeJSValInternal(aPos, aEnd, aCx, aTypeOffset,
&val, aRecursionDepth + 1);
NS_ENSURE_SUCCESS(rv, rv);
aTypeOffset = 0;
if (!JS_DefineElement(aCx, array, index++, val, JSPROP_ENUMERATE)) {
NS_WARNING("Failed to set array element!");
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
}
NS_ASSERTION(aPos >= aEnd || (*aPos % eMaxType) == eTerminator,
"Should have found end-of-array marker");
++aPos;
aVal.setObject(*array);
}
else if (*aPos - aTypeOffset == eString) {
nsString key;
DecodeString(aPos, aEnd, key);
if (!xpc::StringToJsval(aCx, key, aVal)) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
}
else if (*aPos - aTypeOffset == eDate) {
double msec = static_cast<double>(DecodeNumber(aPos, aEnd));
JS::ClippedTime time = JS::TimeClip(msec);
MOZ_ASSERT(msec == time.toDouble(),
"encoding from a Date object not containing an invalid date "
"means we should always have clipped values");
JSObject* date = JS::NewDateObject(aCx, time);
if (!date) {
IDB_WARNING("Failed to make date!");
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
aVal.setObject(*date);
}
else if (*aPos - aTypeOffset == eFloat) {
aVal.setDouble(DecodeNumber(aPos, aEnd));
}
else if (*aPos - aTypeOffset == eBinary) {
JSObject* binary = DecodeBinary(aPos, aEnd, aCx);
if (!binary) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
aVal.setObject(*binary);
}
else {
NS_NOTREACHED("Unknown key type!");
}
return NS_OK;
}
#define ONE_BYTE_LIMIT 0x7E
#define TWO_BYTE_LIMIT (0x3FFF+0x7F)
#define ONE_BYTE_ADJUST 1
#define TWO_BYTE_ADJUST (-0x7F)
#define THREE_BYTE_SHIFT 6
nsresult
Key::EncodeJSVal(JSContext* aCx,
JS::Handle<JS::Value> aVal,
uint8_t aTypeOffset)
{
return EncodeJSValInternal(aCx, aVal, aTypeOffset, 0);
}
nsresult
Key::EncodeString(const nsAString& aString, uint8_t aTypeOffset)
{
const char16_t* start = aString.BeginReading();
const char16_t* end = aString.EndReading();
return EncodeString(start, end, aTypeOffset);
}
template <typename T>
nsresult
Key::EncodeString(const T* aStart, const T* aEnd, uint8_t aTypeOffset)
{
return EncodeAsString(aStart, aEnd, eString + aTypeOffset);
}
template <typename T>
nsresult
Key::EncodeAsString(const T* aStart, const T* aEnd, uint8_t aType)
{
// First measure how long the encoded string will be.
if (NS_WARN_IF(aStart > aEnd || UINT32_MAX - 2 < uintptr_t(aEnd - aStart))) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
// The +2 is for initial 3 and trailing 0. We'll compensate for multi-byte
// chars below.
uint32_t checkedSize = aEnd - aStart;
CheckedUint32 size = checkedSize;
size += 2;
MOZ_ASSERT(size.isValid());
const T* start = aStart;
const T* end = aEnd;
for (const T* iter = start; iter < end; ++iter) {
if (*iter > ONE_BYTE_LIMIT) {
size += char16_t(*iter) > TWO_BYTE_LIMIT ? 2 : 1;
if (!size.isValid()) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
}
}
// Allocate memory for the new size
uint32_t oldLen = mBuffer.Length();
size += oldLen;
if (!size.isValid()) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
char* buffer;
if (!mBuffer.GetMutableData(&buffer, size.value())) {
IDB_REPORT_INTERNAL_ERR();
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
buffer += oldLen;
// Write type marker
*(buffer++) = aType;
// Encode string
for (const T* iter = start; iter < end; ++iter) {
if (*iter <= ONE_BYTE_LIMIT) {
*(buffer++) = *iter + ONE_BYTE_ADJUST;
}
else if (char16_t(*iter) <= TWO_BYTE_LIMIT) {
char16_t c = char16_t(*iter) + TWO_BYTE_ADJUST + 0x8000;
*(buffer++) = (char)(c >> 8);
*(buffer++) = (char)(c & 0xFF);
}
else {
uint32_t c = (uint32_t(*iter) << THREE_BYTE_SHIFT) | 0x00C00000;
*(buffer++) = (char)(c >> 16);
*(buffer++) = (char)(c >> 8);
*(buffer++) = (char)c;
}
}
// Write end marker
*(buffer++) = eTerminator;
NS_ASSERTION(buffer == mBuffer.EndReading(), "Wrote wrong number of bytes");
return NS_OK;
}
nsresult
Key::EncodeLocaleString(const nsDependentString& aString, uint8_t aTypeOffset,
const nsCString& aLocale)
{
const int length = aString.Length();
if (length == 0) {
return NS_OK;
}
const UChar* ustr = reinterpret_cast<const UChar*>(aString.BeginReading());
UErrorCode uerror = U_ZERO_ERROR;
UCollator* collator = ucol_open(aLocale.get(), &uerror);
if (NS_WARN_IF(U_FAILURE(uerror))) {
return NS_ERROR_FAILURE;
}
MOZ_ASSERT(collator);
AutoTArray<uint8_t, 128> keyBuffer;
int32_t sortKeyLength = ucol_getSortKey(collator, ustr, length,
keyBuffer.Elements(),
keyBuffer.Length());
if (sortKeyLength > (int32_t)keyBuffer.Length()) {
keyBuffer.SetLength(sortKeyLength);
sortKeyLength = ucol_getSortKey(collator, ustr, length,
keyBuffer.Elements(),
sortKeyLength);
}
ucol_close(collator);
if (NS_WARN_IF(sortKeyLength == 0)) {
return NS_ERROR_FAILURE;
}
return EncodeString(keyBuffer.Elements(),
keyBuffer.Elements()+sortKeyLength,
aTypeOffset);
}
// static
nsresult
Key::DecodeJSVal(const unsigned char*& aPos,
const unsigned char* aEnd,
JSContext* aCx,
JS::MutableHandle<JS::Value> aVal)
{
return DecodeJSValInternal(aPos, aEnd, aCx, 0, aVal, 0);
}
// static
void
Key::DecodeString(const unsigned char*& aPos, const unsigned char* aEnd,
nsString& aString)
{
NS_ASSERTION(*aPos % eMaxType == eString, "Don't call me!");
const unsigned char* buffer = aPos + 1;
// First measure how big the decoded string will be.
uint32_t size = 0;
const unsigned char* iter;
for (iter = buffer; iter < aEnd && *iter != eTerminator; ++iter) {
if (*iter & 0x80) {
iter += (*iter & 0x40) ? 2 : 1;
}
++size;
}
// Set end so that we don't have to check for null termination in the loop
// below
if (iter < aEnd) {
aEnd = iter;
}
char16_t* out;
if (size && !aString.GetMutableData(&out, size)) {
return;
}
for (iter = buffer; iter < aEnd;) {
if (!(*iter & 0x80)) {
*out = *(iter++) - ONE_BYTE_ADJUST;
}
else if (!(*iter & 0x40)) {
char16_t c = (char16_t(*(iter++)) << 8);
if (iter < aEnd) {
c |= *(iter++);
}
*out = c - TWO_BYTE_ADJUST - 0x8000;
}
else {
uint32_t c = uint32_t(*(iter++)) << (16 - THREE_BYTE_SHIFT);
if (iter < aEnd) {
c |= uint32_t(*(iter++)) << (8 - THREE_BYTE_SHIFT);
}
if (iter < aEnd) {
c |= *(iter++) >> THREE_BYTE_SHIFT;
}
*out = (char16_t)c;
}
++out;
}
NS_ASSERTION(!size || out == aString.EndReading(),
"Should have written the whole string");
aPos = iter + 1;
}
void
Key::EncodeNumber(double aFloat, uint8_t aType)
{
// Allocate memory for the new size
uint32_t oldLen = mBuffer.Length();
char* buffer;
if (!mBuffer.GetMutableData(&buffer, oldLen + 1 + sizeof(double))) {
return;
}
buffer += oldLen;
*(buffer++) = aType;
uint64_t bits = BitwiseCast<uint64_t>(aFloat);
// Note: The subtraction from 0 below is necessary to fix
// MSVC build warning C4146 (negating an unsigned value).
const uint64_t signbit = FloatingPoint<double>::kSignBit;
uint64_t number = bits & signbit ? (0 - bits) : (bits | signbit);
mozilla::BigEndian::writeUint64(buffer, number);
}
// static
double
Key::DecodeNumber(const unsigned char*& aPos, const unsigned char* aEnd)
{
NS_ASSERTION(*aPos % eMaxType == eFloat ||
*aPos % eMaxType == eDate, "Don't call me!");
++aPos;
uint64_t number = 0;
memcpy(&number, aPos, std::min<size_t>(sizeof(number), aEnd - aPos));
number = mozilla::NativeEndian::swapFromBigEndian(number);
aPos += sizeof(number);
// Note: The subtraction from 0 below is necessary to fix
// MSVC build warning C4146 (negating an unsigned value).
const uint64_t signbit = FloatingPoint<double>::kSignBit;
uint64_t bits = number & signbit ? (number & ~signbit) : (0 - number);
return BitwiseCast<double>(bits);
}
nsresult
Key::EncodeBinary(JSObject* aObject, bool aIsViewObject, uint8_t aTypeOffset)
{
uint8_t* bufferData;
uint32_t bufferLength;
bool unused;
if (aIsViewObject) {
js::GetArrayBufferViewLengthAndData(aObject, &bufferLength, &unused, &bufferData);
} else {
js::GetArrayBufferLengthAndData(aObject, &bufferLength, &unused, &bufferData);
}
return EncodeAsString(bufferData, bufferData + bufferLength, eBinary + aTypeOffset);
}
// static
JSObject*
Key::DecodeBinary(const unsigned char*& aPos,
const unsigned char* aEnd,
JSContext* aCx)
{
MOZ_ASSERT(*aPos % eMaxType == eBinary, "Don't call me!");
const unsigned char* buffer = ++aPos;
// First measure how big the decoded array buffer will be.
size_t size = 0;
const unsigned char* iter;
for (iter = buffer; iter < aEnd && *iter != eTerminator; ++iter) {
if (*iter & 0x80) {
iter++;
}
++size;
}
if (!size) {
return JS_NewArrayBuffer(aCx, 0);
}
uint8_t* out = static_cast<uint8_t*>(JS_malloc(aCx, size));
if (NS_WARN_IF(!out)) {
return nullptr;
}
uint8_t* pos = out;
// Set end so that we don't have to check for null termination in the loop
// below
if (iter < aEnd) {
aEnd = iter;
}
for (iter = buffer; iter < aEnd;) {
if (!(*iter & 0x80)) {
*pos = *(iter++) - ONE_BYTE_ADJUST;
}
else {
uint16_t c = (uint16_t(*(iter++)) << 8);
if (iter < aEnd) {
c |= *(iter++);
}
*pos = static_cast<uint8_t>(c - TWO_BYTE_ADJUST - 0x8000);
}
++pos;
}
aPos = iter + 1;
MOZ_ASSERT(static_cast<size_t>(pos - out) == size,
"Should have written the whole buffer");
return JS_NewArrayBufferWithContents(aCx, size, out);
}
nsresult
Key::BindToStatement(mozIStorageStatement* aStatement,
const nsACString& aParamName) const
{
nsresult rv;
if (IsUnset()) {
rv = aStatement->BindNullByName(aParamName);
} else {
rv = aStatement->BindBlobByName(aParamName,
reinterpret_cast<const uint8_t*>(mBuffer.get()), mBuffer.Length());
}
return NS_SUCCEEDED(rv) ? NS_OK : NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
nsresult
Key::SetFromStatement(mozIStorageStatement* aStatement,
uint32_t aIndex)
{
return SetFromSource(aStatement, aIndex);
}
nsresult
Key::SetFromValueArray(mozIStorageValueArray* aValues,
uint32_t aIndex)
{
return SetFromSource(aValues, aIndex);
}
nsresult
Key::SetFromJSVal(JSContext* aCx,
JS::Handle<JS::Value> aVal)
{
mBuffer.Truncate();
if (aVal.isNull() || aVal.isUndefined()) {
Unset();
return NS_OK;
}
nsresult rv = EncodeJSVal(aCx, aVal, 0);
if (NS_FAILED(rv)) {
Unset();
return rv;
}
TrimBuffer();
return NS_OK;
}
nsresult
Key::ToJSVal(JSContext* aCx,
JS::MutableHandle<JS::Value> aVal) const
{
if (IsUnset()) {
aVal.setUndefined();
return NS_OK;
}
const unsigned char* pos = BufferStart();
nsresult rv = DecodeJSVal(pos, BufferEnd(), aCx, aVal);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
MOZ_ASSERT(pos >= BufferEnd());
return NS_OK;
}
nsresult
Key::ToJSVal(JSContext* aCx,
JS::Heap<JS::Value>& aVal) const
{
JS::Rooted<JS::Value> value(aCx);
nsresult rv = ToJSVal(aCx, &value);
if (NS_SUCCEEDED(rv)) {
aVal = value;
}
return rv;
}
nsresult
Key::AppendItem(JSContext* aCx, bool aFirstOfArray, JS::Handle<JS::Value> aVal)
{
nsresult rv = EncodeJSVal(aCx, aVal, aFirstOfArray ? eMaxType : 0);
if (NS_FAILED(rv)) {
Unset();
return rv;
}
return NS_OK;
}
template <typename T>
nsresult
Key::SetFromSource(T* aSource, uint32_t aIndex)
{
const uint8_t* data;
uint32_t dataLength = 0;
nsresult rv = aSource->GetSharedBlob(aIndex, &dataLength, &data);
if (NS_WARN_IF(NS_FAILED(rv))) {
return NS_ERROR_DOM_INDEXEDDB_UNKNOWN_ERR;
}
mBuffer.Assign(reinterpret_cast<const char*>(data), dataLength);
return NS_OK;
}
#ifdef DEBUG
void
Key::Assert(bool aCondition) const
{
MOZ_ASSERT(aCondition);
}
#endif // DEBUG
} // namespace indexedDB
} // namespace dom
} // namespace mozilla