mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-28 23:31:56 +00:00
5265775c94
- Implement Matrix4x4::TransformAndClipBounds - Update methods in Matrix4x4 with templates, allowing for both single and double precision. --HG-- extra : rebase_source : 6d5710a85bf5d82c441463debd98b31be4ec2ace
642 lines
19 KiB
C++
642 lines
19 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "Matrix.h"
|
|
#include "Quaternion.h"
|
|
#include "Tools.h"
|
|
#include <algorithm>
|
|
#include <ostream>
|
|
#include <math.h>
|
|
#include <float.h> // for FLT_EPSILON
|
|
|
|
#include "mozilla/FloatingPoint.h" // for UnspecifiedNaN
|
|
|
|
using namespace std;
|
|
|
|
namespace {
|
|
|
|
/* Force small values to zero. We do this to avoid having sin(360deg)
|
|
* evaluate to a tiny but nonzero value.
|
|
*/
|
|
double
|
|
FlushToZero(double aVal)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) {
|
|
return 0.0f;
|
|
} else {
|
|
return aVal;
|
|
}
|
|
}
|
|
|
|
/* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is
|
|
* undefined or very large, SafeTangent returns a manageably large value
|
|
* of the correct sign.
|
|
*/
|
|
double
|
|
SafeTangent(double aTheta)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
const double kEpsilon = 0.0001;
|
|
|
|
/* tan(theta) = sin(theta)/cos(theta); problems arise when
|
|
* cos(theta) is too close to zero. Limit cos(theta) to the
|
|
* range [-1, -epsilon] U [epsilon, 1].
|
|
*/
|
|
|
|
double sinTheta = sin(aTheta);
|
|
double cosTheta = cos(aTheta);
|
|
|
|
if (cosTheta >= 0 && cosTheta < kEpsilon) {
|
|
cosTheta = kEpsilon;
|
|
} else if (cosTheta < 0 && cosTheta >= -kEpsilon) {
|
|
cosTheta = -kEpsilon;
|
|
}
|
|
return FlushToZero(sinTheta / cosTheta);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
std::ostream&
|
|
operator<<(std::ostream& aStream, const Matrix& aMatrix)
|
|
{
|
|
return aStream << "[ " << aMatrix._11
|
|
<< " " << aMatrix._12
|
|
<< "; " << aMatrix._21
|
|
<< " " << aMatrix._22
|
|
<< "; " << aMatrix._31
|
|
<< " " << aMatrix._32
|
|
<< "; ]";
|
|
}
|
|
|
|
std::ostream&
|
|
operator<<(std::ostream& aStream, const Matrix4x4& aMatrix)
|
|
{
|
|
const Float *f = &aMatrix._11;
|
|
aStream << "[ " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4;
|
|
aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4;
|
|
aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4;
|
|
aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ]" << std::endl;
|
|
return aStream;
|
|
}
|
|
|
|
Matrix
|
|
Matrix::Rotation(Float aAngle)
|
|
{
|
|
Matrix newMatrix;
|
|
|
|
Float s = sin(aAngle);
|
|
Float c = cos(aAngle);
|
|
|
|
newMatrix._11 = c;
|
|
newMatrix._12 = s;
|
|
newMatrix._21 = -s;
|
|
newMatrix._22 = c;
|
|
|
|
return newMatrix;
|
|
}
|
|
|
|
Rect
|
|
Matrix::TransformBounds(const Rect &aRect) const
|
|
{
|
|
int i;
|
|
Point quad[4];
|
|
Float min_x, max_x;
|
|
Float min_y, max_y;
|
|
|
|
quad[0] = *this * aRect.TopLeft();
|
|
quad[1] = *this * aRect.TopRight();
|
|
quad[2] = *this * aRect.BottomLeft();
|
|
quad[3] = *this * aRect.BottomRight();
|
|
|
|
min_x = max_x = quad[0].x;
|
|
min_y = max_y = quad[0].y;
|
|
|
|
for (i = 1; i < 4; i++) {
|
|
if (quad[i].x < min_x)
|
|
min_x = quad[i].x;
|
|
if (quad[i].x > max_x)
|
|
max_x = quad[i].x;
|
|
|
|
if (quad[i].y < min_y)
|
|
min_y = quad[i].y;
|
|
if (quad[i].y > max_y)
|
|
max_y = quad[i].y;
|
|
}
|
|
|
|
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
|
|
}
|
|
|
|
Matrix&
|
|
Matrix::NudgeToIntegers()
|
|
{
|
|
NudgeToInteger(&_11);
|
|
NudgeToInteger(&_12);
|
|
NudgeToInteger(&_21);
|
|
NudgeToInteger(&_22);
|
|
NudgeToInteger(&_31);
|
|
NudgeToInteger(&_32);
|
|
return *this;
|
|
}
|
|
|
|
template<class F>
|
|
RectTyped<UnknownUnits, F>
|
|
Matrix4x4::TransformBounds(const RectTyped<UnknownUnits, F>& aRect) const
|
|
{
|
|
Point4DTyped<UnknownUnits, F> verts[4];
|
|
verts[0] = *this * Point4DTyped<UnknownUnits, F>(aRect.x, aRect.y, 0.0, 1.0);
|
|
verts[1] = *this * Point4DTyped<UnknownUnits, F>(aRect.XMost(), aRect.y, 0.0, 1.0);
|
|
verts[2] = *this * Point4DTyped<UnknownUnits, F>(aRect.XMost(), aRect.YMost(), 0.0, 1.0);
|
|
verts[3] = *this * Point4DTyped<UnknownUnits, F>(aRect.x, aRect.YMost(), 0.0, 1.0);
|
|
|
|
PointTyped<UnknownUnits, F> quad[4];
|
|
F min_x, max_x;
|
|
F min_y, max_y;
|
|
|
|
quad[0] = *this * aRect.TopLeft();
|
|
quad[1] = *this * aRect.TopRight();
|
|
quad[2] = *this * aRect.BottomLeft();
|
|
quad[3] = *this * aRect.BottomRight();
|
|
|
|
min_x = max_x = quad[0].x;
|
|
min_y = max_y = quad[0].y;
|
|
|
|
for (int i = 1; i < 4; i++) {
|
|
if (quad[i].x < min_x) {
|
|
min_x = quad[i].x;
|
|
}
|
|
if (quad[i].x > max_x) {
|
|
max_x = quad[i].x;
|
|
}
|
|
|
|
if (quad[i].y < min_y) {
|
|
min_y = quad[i].y;
|
|
}
|
|
if (quad[i].y > max_y) {
|
|
max_y = quad[i].y;
|
|
}
|
|
}
|
|
|
|
return RectTyped<UnknownUnits, F>(min_x, min_y, max_x - min_x, max_y - min_y);
|
|
}
|
|
|
|
Point4D ComputePerspectivePlaneIntercept(const Point4D& aFirst,
|
|
const Point4D& aSecond)
|
|
{
|
|
// This function will always return a point with a w value of 0.
|
|
// The X, Y, and Z components will point towards an infinite vanishing
|
|
// point.
|
|
|
|
// We want to interpolate aFirst and aSecond to find the point intersecting
|
|
// with the w=0 plane.
|
|
|
|
// Since we know what we want the w component to be, we can rearrange the
|
|
// interpolation equation and solve for t.
|
|
float t = -aFirst.w / (aSecond.w - aFirst.w);
|
|
|
|
// Use t to find the remainder of the components
|
|
return aFirst + (aSecond - aFirst) * t;
|
|
}
|
|
|
|
Rect Matrix4x4::ProjectRectBounds(const Rect& aRect, const Rect &aClip) const
|
|
{
|
|
// This function must never return std::numeric_limits<Float>::max() or any
|
|
// other arbitrary large value in place of inifinity. This often occurs when
|
|
// aRect is an inversed projection matrix or when aRect is transformed to be
|
|
// partly behind and in front of the camera (w=0 plane in homogenous
|
|
// coordinates) - See Bug 1035611
|
|
|
|
// Some call-sites will call RoundGfxRectToAppRect which clips both the
|
|
// extents and dimensions of the rect to be bounded by nscoord_MAX.
|
|
// If we return a Rect that, when converted to nscoords, has a width or height
|
|
// greater than nscoord_MAX, RoundGfxRectToAppRect will clip the overflow
|
|
// off both the min and max end of the rect after clipping the extents of the
|
|
// rect, resulting in a translation of the rect towards the infinite end.
|
|
|
|
// The bounds returned by ProjectRectBounds are expected to be clipped only on
|
|
// the edges beyond the bounds of the coordinate system; otherwise, the
|
|
// clipped bounding box would be smaller than the correct one and result
|
|
// bugs such as incorrect culling (eg. Bug 1073056)
|
|
|
|
// To address this without requiring all code to work in homogenous
|
|
// coordinates or interpret infinite values correctly, a specialized
|
|
// clipping function is integrated into ProjectRectBounds.
|
|
|
|
// Callers should pass an aClip value that represents the extents to clip
|
|
// the result to, in the same coordinate system as aRect.
|
|
Point4D points[4];
|
|
|
|
points[0] = ProjectPoint(aRect.TopLeft());
|
|
points[1] = ProjectPoint(aRect.TopRight());
|
|
points[2] = ProjectPoint(aRect.BottomRight());
|
|
points[3] = ProjectPoint(aRect.BottomLeft());
|
|
|
|
Float min_x = std::numeric_limits<Float>::max();
|
|
Float min_y = std::numeric_limits<Float>::max();
|
|
Float max_x = -std::numeric_limits<Float>::max();
|
|
Float max_y = -std::numeric_limits<Float>::max();
|
|
|
|
for (int i=0; i<4; i++) {
|
|
// Only use points that exist above the w=0 plane
|
|
if (points[i].HasPositiveWCoord()) {
|
|
Point point2d = aClip.ClampPoint(points[i].As2DPoint());
|
|
min_x = std::min<Float>(point2d.x, min_x);
|
|
max_x = std::max<Float>(point2d.x, max_x);
|
|
min_y = std::min<Float>(point2d.y, min_y);
|
|
max_y = std::max<Float>(point2d.y, max_y);
|
|
}
|
|
|
|
int next = (i == 3) ? 0 : i + 1;
|
|
if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
|
|
// If the line between two points crosses the w=0 plane, then interpolate
|
|
// to find the point of intersection with the w=0 plane and use that
|
|
// instead.
|
|
Point4D intercept = ComputePerspectivePlaneIntercept(points[i], points[next]);
|
|
// Since intercept.w will always be 0 here, we interpret x,y,z as a
|
|
// direction towards an infinite vanishing point.
|
|
if (intercept.x < 0.0f) {
|
|
min_x = aClip.x;
|
|
} else if (intercept.x > 0.0f) {
|
|
max_x = aClip.XMost();
|
|
}
|
|
if (intercept.y < 0.0f) {
|
|
min_y = aClip.y;
|
|
} else if (intercept.y > 0.0f) {
|
|
max_y = aClip.YMost();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (max_x < min_x || max_y < min_y) {
|
|
return Rect(0, 0, 0, 0);
|
|
}
|
|
|
|
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
|
|
}
|
|
|
|
template<class F>
|
|
size_t
|
|
Matrix4x4::TransformAndClipRect(const RectTyped<UnknownUnits, F>& aRect,
|
|
const RectTyped<UnknownUnits, F>& aClip,
|
|
PointTyped<UnknownUnits, F>* aVerts) const
|
|
{
|
|
// Initialize a double-buffered array of points in homogenous space with
|
|
// the input rectangle, aRect.
|
|
Point4DTyped<UnknownUnits, F> points[2][kTransformAndClipRectMaxVerts];
|
|
Point4DTyped<UnknownUnits, F>* dstPoint = points[0];
|
|
*dstPoint++ = *this * Point4DTyped<UnknownUnits, F>(aRect.x, aRect.y, 0, 1);
|
|
*dstPoint++ = *this * Point4DTyped<UnknownUnits, F>(aRect.XMost(), aRect.y, 0, 1);
|
|
*dstPoint++ = *this * Point4DTyped<UnknownUnits, F>(aRect.XMost(), aRect.YMost(), 0, 1);
|
|
*dstPoint++ = *this * Point4DTyped<UnknownUnits, F>(aRect.x, aRect.YMost(), 0, 1);
|
|
|
|
// View frustum clipping planes are described as normals originating from
|
|
// the 0,0,0,0 origin.
|
|
Point4DTyped<UnknownUnits, F> planeNormals[4];
|
|
planeNormals[0] = Point4DTyped<UnknownUnits, F>(1.0, 0.0, 0.0, -aClip.x);
|
|
planeNormals[1] = Point4DTyped<UnknownUnits, F>(-1.0, 0.0, 0.0, aClip.XMost());
|
|
planeNormals[2] = Point4DTyped<UnknownUnits, F>(0.0, 1.0, 0.0, -aClip.y);
|
|
planeNormals[3] = Point4DTyped<UnknownUnits, F>(0.0, -1.0, 0.0, aClip.YMost());
|
|
|
|
// Iterate through each clipping plane and clip the polygon.
|
|
// In each pass, we double buffer, alternating between points[0] and
|
|
// points[1].
|
|
for (int plane=0; plane < 4; plane++) {
|
|
planeNormals[plane].Normalize();
|
|
|
|
Point4DTyped<UnknownUnits, F>* srcPoint = points[plane & 1];
|
|
Point4DTyped<UnknownUnits, F>* srcPointEnd = dstPoint;
|
|
dstPoint = points[~plane & 1];
|
|
|
|
Point4DTyped<UnknownUnits, F>* prevPoint = srcPointEnd - 1;
|
|
F prevDot = planeNormals[plane].DotProduct(*prevPoint);
|
|
while (srcPoint < srcPointEnd) {
|
|
F nextDot = planeNormals[plane].DotProduct(*srcPoint);
|
|
|
|
if ((nextDot >= 0.0) != (prevDot >= 0.0)) {
|
|
// An intersection with the clipping plane has been detected.
|
|
// Interpolate to find the intersecting point and emit it.
|
|
F t = -prevDot / (nextDot - prevDot);
|
|
*dstPoint++ = *srcPoint * t + *prevPoint * (1.0 - t);
|
|
}
|
|
|
|
if (nextDot >= 0.0) {
|
|
// Emit any source points that are on the positive side of the
|
|
// clipping plane.
|
|
*dstPoint++ = *srcPoint;
|
|
}
|
|
|
|
prevPoint = srcPoint++;
|
|
prevDot = nextDot;
|
|
}
|
|
}
|
|
|
|
size_t dstPointCount = 0;
|
|
size_t srcPointCount = dstPoint - points[0];
|
|
for (Point4DTyped<UnknownUnits, F>* srcPoint = points[0]; srcPoint < points[0] + srcPointCount; srcPoint++) {
|
|
|
|
PointTyped<UnknownUnits, F> p;
|
|
if (srcPoint->w == 0.0) {
|
|
// If a point lies on the intersection of the clipping planes at
|
|
// (0,0,0,0), we must avoid a division by zero w component.
|
|
p = PointTyped<UnknownUnits, F>(0.0, 0.0);
|
|
} else {
|
|
p = srcPoint->As2DPoint();
|
|
}
|
|
// Emit only unique points
|
|
if (dstPointCount == 0 || p != aVerts[dstPointCount - 1]) {
|
|
aVerts[dstPointCount++] = p;
|
|
}
|
|
}
|
|
|
|
return dstPointCount;
|
|
}
|
|
|
|
bool
|
|
Matrix4x4::Invert()
|
|
{
|
|
Float det = Determinant();
|
|
if (!det) {
|
|
return false;
|
|
}
|
|
|
|
Matrix4x4 result;
|
|
result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 - _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44;
|
|
result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 + _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44;
|
|
result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 - _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44;
|
|
result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 + _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34;
|
|
result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 + _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44;
|
|
result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 - _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44;
|
|
result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 + _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44;
|
|
result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 - _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34;
|
|
result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 - _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44;
|
|
result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 + _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44;
|
|
result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
|
|
result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 + _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34;
|
|
result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 + _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43;
|
|
result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 - _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43;
|
|
result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 + _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43;
|
|
result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 - _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33;
|
|
|
|
result._11 /= det;
|
|
result._12 /= det;
|
|
result._13 /= det;
|
|
result._14 /= det;
|
|
result._21 /= det;
|
|
result._22 /= det;
|
|
result._23 /= det;
|
|
result._24 /= det;
|
|
result._31 /= det;
|
|
result._32 /= det;
|
|
result._33 /= det;
|
|
result._34 /= det;
|
|
result._41 /= det;
|
|
result._42 /= det;
|
|
result._43 /= det;
|
|
result._44 /= det;
|
|
*this = result;
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
Matrix4x4::SetNAN()
|
|
{
|
|
_11 = UnspecifiedNaN<Float>();
|
|
_21 = UnspecifiedNaN<Float>();
|
|
_31 = UnspecifiedNaN<Float>();
|
|
_41 = UnspecifiedNaN<Float>();
|
|
_12 = UnspecifiedNaN<Float>();
|
|
_22 = UnspecifiedNaN<Float>();
|
|
_32 = UnspecifiedNaN<Float>();
|
|
_42 = UnspecifiedNaN<Float>();
|
|
_13 = UnspecifiedNaN<Float>();
|
|
_23 = UnspecifiedNaN<Float>();
|
|
_33 = UnspecifiedNaN<Float>();
|
|
_43 = UnspecifiedNaN<Float>();
|
|
_14 = UnspecifiedNaN<Float>();
|
|
_24 = UnspecifiedNaN<Float>();
|
|
_34 = UnspecifiedNaN<Float>();
|
|
_44 = UnspecifiedNaN<Float>();
|
|
}
|
|
|
|
void
|
|
Matrix4x4::SetRotationFromQuaternion(const Quaternion& q)
|
|
{
|
|
const Float x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z;
|
|
const Float xx = q.x * x2, xy = q.x * y2, xz = q.x * z2;
|
|
const Float yy = q.y * y2, yz = q.y * z2, zz = q.z * z2;
|
|
const Float wx = q.w * x2, wy = q.w * y2, wz = q.w * z2;
|
|
|
|
_11 = 1.0f - (yy + zz);
|
|
_21 = xy + wz;
|
|
_31 = xz - wy;
|
|
_41 = 0.0f;
|
|
|
|
_12 = xy - wz;
|
|
_22 = 1.0f - (xx + zz);
|
|
_32 = yz + wx;
|
|
_42 = 0.0f;
|
|
|
|
_13 = xz + wy;
|
|
_23 = yz - wx;
|
|
_33 = 1.0f - (xx + yy);
|
|
_43 = 0.0f;
|
|
|
|
_14 = _42 = _43 = 0.0f;
|
|
_44 = 1.0f;
|
|
}
|
|
|
|
void
|
|
Matrix4x4::SkewXY(double aXSkew, double aYSkew)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
float tanX = SafeTangent(aXSkew);
|
|
float tanY = SafeTangent(aYSkew);
|
|
float temp;
|
|
|
|
temp = _11;
|
|
_11 += tanY * _21;
|
|
_21 += tanX * temp;
|
|
|
|
temp = _12;
|
|
_12 += tanY * _22;
|
|
_22 += tanX * temp;
|
|
|
|
temp = _13;
|
|
_13 += tanY * _23;
|
|
_23 += tanX * temp;
|
|
|
|
temp = _14;
|
|
_14 += tanY * _24;
|
|
_24 += tanX * temp;
|
|
}
|
|
|
|
void
|
|
Matrix4x4::RotateX(double aTheta)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
double cosTheta = FlushToZero(cos(aTheta));
|
|
double sinTheta = FlushToZero(sin(aTheta));
|
|
|
|
float temp;
|
|
|
|
temp = _21;
|
|
_21 = cosTheta * _21 + sinTheta * _31;
|
|
_31 = -sinTheta * temp + cosTheta * _31;
|
|
|
|
temp = _22;
|
|
_22 = cosTheta * _22 + sinTheta * _32;
|
|
_32 = -sinTheta * temp + cosTheta * _32;
|
|
|
|
temp = _23;
|
|
_23 = cosTheta * _23 + sinTheta * _33;
|
|
_33 = -sinTheta * temp + cosTheta * _33;
|
|
|
|
temp = _24;
|
|
_24 = cosTheta * _24 + sinTheta * _34;
|
|
_34 = -sinTheta * temp + cosTheta * _34;
|
|
}
|
|
|
|
void
|
|
Matrix4x4::RotateY(double aTheta)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
double cosTheta = FlushToZero(cos(aTheta));
|
|
double sinTheta = FlushToZero(sin(aTheta));
|
|
|
|
float temp;
|
|
|
|
temp = _11;
|
|
_11 = cosTheta * _11 + -sinTheta * _31;
|
|
_31 = sinTheta * temp + cosTheta * _31;
|
|
|
|
temp = _12;
|
|
_12 = cosTheta * _12 + -sinTheta * _32;
|
|
_32 = sinTheta * temp + cosTheta * _32;
|
|
|
|
temp = _13;
|
|
_13 = cosTheta * _13 + -sinTheta * _33;
|
|
_33 = sinTheta * temp + cosTheta * _33;
|
|
|
|
temp = _14;
|
|
_14 = cosTheta * _14 + -sinTheta * _34;
|
|
_34 = sinTheta * temp + cosTheta * _34;
|
|
}
|
|
|
|
void
|
|
Matrix4x4::RotateZ(double aTheta)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
double cosTheta = FlushToZero(cos(aTheta));
|
|
double sinTheta = FlushToZero(sin(aTheta));
|
|
|
|
float temp;
|
|
|
|
temp = _11;
|
|
_11 = cosTheta * _11 + sinTheta * _21;
|
|
_21 = -sinTheta * temp + cosTheta * _21;
|
|
|
|
temp = _12;
|
|
_12 = cosTheta * _12 + sinTheta * _22;
|
|
_22 = -sinTheta * temp + cosTheta * _22;
|
|
|
|
temp = _13;
|
|
_13 = cosTheta * _13 + sinTheta * _23;
|
|
_23 = -sinTheta * temp + cosTheta * _23;
|
|
|
|
temp = _14;
|
|
_14 = cosTheta * _14 + sinTheta * _24;
|
|
_24 = -sinTheta * temp + cosTheta * _24;
|
|
}
|
|
|
|
void
|
|
Matrix4x4::Perspective(float aDepth)
|
|
{
|
|
MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!");
|
|
_31 += -1.0/aDepth * _41;
|
|
_32 += -1.0/aDepth * _42;
|
|
_33 += -1.0/aDepth * _43;
|
|
_34 += -1.0/aDepth * _44;
|
|
}
|
|
|
|
Point3D
|
|
Matrix4x4::GetNormalVector() const
|
|
{
|
|
// Define a plane in transformed space as the transformations
|
|
// of 3 points on the z=0 screen plane.
|
|
Point3D a = *this * Point3D(0, 0, 0);
|
|
Point3D b = *this * Point3D(0, 1, 0);
|
|
Point3D c = *this * Point3D(1, 0, 0);
|
|
|
|
// Convert to two vectors on the surface of the plane.
|
|
Point3D ab = b - a;
|
|
Point3D ac = c - a;
|
|
|
|
return ac.CrossProduct(ab);
|
|
}
|
|
|
|
template<class F>
|
|
RectTyped<UnknownUnits, F>
|
|
Matrix4x4::TransformAndClipBounds(const RectTyped<UnknownUnits, F>& aRect,
|
|
const RectTyped<UnknownUnits, F>& aClip) const
|
|
{
|
|
PointTyped<UnknownUnits, F> verts[kTransformAndClipRectMaxVerts];
|
|
size_t vertCount = TransformAndClipRect(aRect, aClip, verts);
|
|
|
|
F min_x = std::numeric_limits<F>::max();
|
|
F min_y = std::numeric_limits<F>::max();
|
|
F max_x = -std::numeric_limits<F>::max();
|
|
F max_y = -std::numeric_limits<F>::max();
|
|
for (size_t i=0; i < vertCount; i++) {
|
|
min_x = std::min(min_x, verts[i].x);
|
|
max_x = std::max(max_x, verts[i].x);
|
|
min_y = std::min(min_y, verts[i].y);
|
|
max_y = std::max(max_y, verts[i].y);
|
|
}
|
|
|
|
if (max_x < min_x || max_y < min_y) {
|
|
return RectTyped<UnknownUnits, F>(0, 0, 0, 0);
|
|
}
|
|
|
|
return RectTyped<UnknownUnits, F>(min_x, min_y, max_x - min_x, max_y - min_y);
|
|
|
|
}
|
|
|
|
// Explicit template instantiation for float and double precision
|
|
template
|
|
size_t
|
|
Matrix4x4::TransformAndClipRect(const Rect& aRect, const Rect& aClip,
|
|
Point* aVerts) const;
|
|
|
|
template
|
|
size_t
|
|
Matrix4x4::TransformAndClipRect(const RectDouble& aRect,
|
|
const RectDouble& aClip,
|
|
PointDouble* aVerts) const;
|
|
|
|
template
|
|
Rect
|
|
Matrix4x4::TransformAndClipBounds(const Rect& aRect,
|
|
const Rect& aClip) const;
|
|
|
|
template
|
|
RectDouble
|
|
Matrix4x4::TransformAndClipBounds(const RectDouble& aRect,
|
|
const RectDouble& aClip) const;
|
|
|
|
template
|
|
Rect
|
|
Matrix4x4::TransformBounds(const Rect& aRect) const;
|
|
|
|
template
|
|
RectDouble
|
|
Matrix4x4::TransformBounds(const RectDouble& aRect) const;
|
|
|
|
} // namespace gfx
|
|
} // namespace mozilla
|