gecko-dev/xpcom/ds/PLDHashTable.cpp
Nathan Froyd 790af83dcc Bug 1460674 - part 3 - make PLDHashTable iteration faster; r=njn
The core loop of Iterator::Next() requires multiple branches, one to
check for entry liveness and one to check for wraparound.  We can
rewrite this to use masking instead, as well as iterating only over the
hashes, and reconstructing the entry pointer when we know we've reached
a live entry.  This change cuts the time taken on the collections
benchmark by the iteration portion in half.
2018-11-26 16:24:50 -05:00

874 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <new>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "PLDHashTable.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/OperatorNewExtensions.h"
#include "nsAlgorithm.h"
#include "nsPointerHashKeys.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Maybe.h"
#include "mozilla/ChaosMode.h"
using namespace mozilla;
#ifdef DEBUG
class AutoReadOp
{
Checker& mChk;
public:
explicit AutoReadOp(Checker& aChk) : mChk(aChk) { mChk.StartReadOp(); }
~AutoReadOp() { mChk.EndReadOp(); }
};
class AutoWriteOp
{
Checker& mChk;
public:
explicit AutoWriteOp(Checker& aChk) : mChk(aChk) { mChk.StartWriteOp(); }
~AutoWriteOp() { mChk.EndWriteOp(); }
};
class AutoIteratorRemovalOp
{
Checker& mChk;
public:
explicit AutoIteratorRemovalOp(Checker& aChk)
: mChk(aChk)
{
mChk.StartIteratorRemovalOp();
}
~AutoIteratorRemovalOp() { mChk.EndIteratorRemovalOp(); }
};
class AutoDestructorOp
{
Checker& mChk;
public:
explicit AutoDestructorOp(Checker& aChk)
: mChk(aChk)
{
mChk.StartDestructorOp();
}
~AutoDestructorOp() { mChk.EndDestructorOp(); }
};
#endif
/* static */ PLDHashNumber
PLDHashTable::HashStringKey(const void* aKey)
{
return HashString(static_cast<const char*>(aKey));
}
/* static */ PLDHashNumber
PLDHashTable::HashVoidPtrKeyStub(const void* aKey)
{
return nsPtrHashKey<void>::HashKey(aKey);
}
/* static */ bool
PLDHashTable::MatchEntryStub(const PLDHashEntryHdr* aEntry, const void* aKey)
{
const PLDHashEntryStub* stub = (const PLDHashEntryStub*)aEntry;
return stub->key == aKey;
}
/* static */ bool
PLDHashTable::MatchStringKey(const PLDHashEntryHdr* aEntry, const void* aKey)
{
const PLDHashEntryStub* stub = (const PLDHashEntryStub*)aEntry;
// XXX tolerate null keys on account of sloppy Mozilla callers.
return stub->key == aKey ||
(stub->key && aKey &&
strcmp((const char*)stub->key, (const char*)aKey) == 0);
}
/* static */ void
PLDHashTable::MoveEntryStub(PLDHashTable* aTable,
const PLDHashEntryHdr* aFrom,
PLDHashEntryHdr* aTo)
{
memcpy(aTo, aFrom, aTable->mEntrySize);
}
/* static */ void
PLDHashTable::ClearEntryStub(PLDHashTable* aTable, PLDHashEntryHdr* aEntry)
{
memset(aEntry, 0, aTable->mEntrySize);
}
static const PLDHashTableOps gStubOps = {
PLDHashTable::HashVoidPtrKeyStub,
PLDHashTable::MatchEntryStub,
PLDHashTable::MoveEntryStub,
PLDHashTable::ClearEntryStub,
nullptr
};
/* static */ const PLDHashTableOps*
PLDHashTable::StubOps()
{
return &gStubOps;
}
static bool
SizeOfEntryStore(uint32_t aCapacity, uint32_t aEntrySize, uint32_t* aNbytes)
{
uint32_t slotSize = aEntrySize + sizeof(PLDHashNumber);
uint64_t nbytes64 = uint64_t(aCapacity) * uint64_t(slotSize);
*aNbytes = aCapacity * slotSize;
return uint64_t(*aNbytes) == nbytes64; // returns false on overflow
}
// Compute max and min load numbers (entry counts). We have a secondary max
// that allows us to overload a table reasonably if it cannot be grown further
// (i.e. if ChangeTable() fails). The table slows down drastically if the
// secondary max is too close to 1, but 0.96875 gives only a slight slowdown
// while allowing 1.3x more elements.
static inline uint32_t
MaxLoad(uint32_t aCapacity)
{
return aCapacity - (aCapacity >> 2); // == aCapacity * 0.75
}
static inline uint32_t
MaxLoadOnGrowthFailure(uint32_t aCapacity)
{
return aCapacity - (aCapacity >> 5); // == aCapacity * 0.96875
}
static inline uint32_t
MinLoad(uint32_t aCapacity)
{
return aCapacity >> 2; // == aCapacity * 0.25
}
// Compute the minimum capacity (and the Log2 of that capacity) for a table
// containing |aLength| elements while respecting the following contraints:
// - table must be at most 75% full;
// - capacity must be a power of two;
// - capacity cannot be too small.
static inline void
BestCapacity(uint32_t aLength, uint32_t* aCapacityOut,
uint32_t* aLog2CapacityOut)
{
// Compute the smallest capacity allowing |aLength| elements to be inserted
// without rehashing.
uint32_t capacity = (aLength * 4 + (3 - 1)) / 3; // == ceil(aLength * 4 / 3)
if (capacity < PLDHashTable::kMinCapacity) {
capacity = PLDHashTable::kMinCapacity;
}
// Round up capacity to next power-of-two.
uint32_t log2 = CeilingLog2(capacity);
capacity = 1u << log2;
MOZ_ASSERT(capacity <= PLDHashTable::kMaxCapacity);
*aCapacityOut = capacity;
*aLog2CapacityOut = log2;
}
/* static */ MOZ_ALWAYS_INLINE uint32_t
PLDHashTable::HashShift(uint32_t aEntrySize, uint32_t aLength)
{
if (aLength > kMaxInitialLength) {
MOZ_CRASH("Initial length is too large");
}
uint32_t capacity, log2;
BestCapacity(aLength, &capacity, &log2);
uint32_t nbytes;
if (!SizeOfEntryStore(capacity, aEntrySize, &nbytes)) {
MOZ_CRASH("Initial entry store size is too large");
}
// Compute the hashShift value.
return kPLDHashNumberBits - log2;
}
PLDHashTable::PLDHashTable(const PLDHashTableOps* aOps, uint32_t aEntrySize,
uint32_t aLength)
: mOps(recordreplay::GeneratePLDHashTableCallbacks(aOps))
, mEntryStore()
, mGeneration(0)
, mHashShift(HashShift(aEntrySize, aLength))
, mEntrySize(aEntrySize)
, mEntryCount(0)
, mRemovedCount(0)
#ifdef DEBUG
, mChecker()
#endif
{
// An entry size greater than 0xff is unlikely, but let's check anyway. If
// you hit this, your hashtable would waste lots of space for unused entries
// and you should change your hash table's entries to pointers.
if (aEntrySize != uint32_t(mEntrySize)) {
MOZ_CRASH("Entry size is too large");
}
}
PLDHashTable&
PLDHashTable::operator=(PLDHashTable&& aOther)
{
if (this == &aOther) {
return *this;
}
// |mOps| and |mEntrySize| are required to stay the same, they're
// conceptually part of the type -- indeed, if PLDHashTable was a templated
// type like nsTHashtable, they *would* be part of the type -- so it only
// makes sense to assign in cases where they match. An exception is when we
// are recording or replaying the execution, in which case custom ops are
// generated for each table.
MOZ_RELEASE_ASSERT(mOps == aOther.mOps || !mOps || recordreplay::IsRecordingOrReplaying());
MOZ_RELEASE_ASSERT(mEntrySize == aOther.mEntrySize || !mEntrySize);
// Reconstruct |this|.
const PLDHashTableOps* ops = recordreplay::UnwrapPLDHashTableCallbacks(aOther.mOps);
this->~PLDHashTable();
new (KnownNotNull, this) PLDHashTable(ops, aOther.mEntrySize, 0);
// Move non-const pieces over.
mHashShift = std::move(aOther.mHashShift);
mEntryCount = std::move(aOther.mEntryCount);
mRemovedCount = std::move(aOther.mRemovedCount);
mEntryStore.Set(aOther.mEntryStore.Get(), &mGeneration);
#ifdef DEBUG
mChecker = std::move(aOther.mChecker);
#endif
recordreplay::MovePLDHashTableContents(aOther.mOps, mOps);
// Clear up |aOther| so its destruction will be a no-op and it reports being
// empty.
{
#ifdef DEBUG
AutoDestructorOp op(mChecker);
#endif
aOther.mEntryCount = 0;
aOther.mEntryStore.Set(nullptr, &aOther.mGeneration);
}
return *this;
}
PLDHashNumber
PLDHashTable::Hash1(PLDHashNumber aHash0) const
{
return aHash0 >> mHashShift;
}
void
PLDHashTable::Hash2(PLDHashNumber aHash0,
uint32_t& aHash2Out, uint32_t& aSizeMaskOut) const
{
uint32_t sizeLog2 = kPLDHashNumberBits - mHashShift;
uint32_t sizeMask = (PLDHashNumber(1) << sizeLog2) - 1;
aSizeMaskOut = sizeMask;
// The incoming aHash0 always has the low bit unset (since we leave it
// free for the collision flag), and should have reasonably random
// data in the other 31 bits. We used the high bits of aHash0 for
// Hash1, so we use the low bits here. If the table size is large,
// the bits we use may overlap, but that's still more random than
// filling with 0s.
//
// Double hashing needs the second hash code to be relatively prime to table
// size, so we simply make hash2 odd.
//
// This also conveniently covers up the fact that we have the low bit
// unset since aHash0 has the low bit unset.
aHash2Out = (aHash0 & sizeMask) | 1;
}
// Reserve mKeyHash 0 for free entries and 1 for removed-entry sentinels. Note
// that a removed-entry sentinel need be stored only if the removed entry had
// a colliding entry added after it. Therefore we can use 1 as the collision
// flag in addition to the removed-entry sentinel value. Multiplicative hash
// uses the high order bits of mKeyHash, so this least-significant reservation
// should not hurt the hash function's effectiveness much.
// Match an entry's mKeyHash against an unstored one computed from a key.
/* static */ bool
PLDHashTable::MatchSlotKeyhash(Slot& aSlot, const PLDHashNumber aKeyHash)
{
return (aSlot.KeyHash() & ~kCollisionFlag) == aKeyHash;
}
// Compute the address of the indexed entry in table.
auto
PLDHashTable::SlotForIndex(uint32_t aIndex) const -> Slot
{
return mEntryStore.SlotForIndex(aIndex, mEntrySize, CapacityFromHashShift());
}
PLDHashTable::~PLDHashTable()
{
#ifdef DEBUG
AutoDestructorOp op(mChecker);
#endif
if (!mEntryStore.Get()) {
recordreplay::DestroyPLDHashTableCallbacks(mOps);
return;
}
// Clear any remaining live entries.
mEntryStore.ForEachSlot(Capacity(), mEntrySize, [&](const Slot& aSlot) {
if (aSlot.IsLive()) {
mOps->clearEntry(this, aSlot.ToEntry());
}
});
recordreplay::DestroyPLDHashTableCallbacks(mOps);
// Entry storage is freed last, by ~EntryStore().
}
void
PLDHashTable::ClearAndPrepareForLength(uint32_t aLength)
{
// Get these values before the destructor clobbers them.
const PLDHashTableOps* ops = recordreplay::UnwrapPLDHashTableCallbacks(mOps);
uint32_t entrySize = mEntrySize;
this->~PLDHashTable();
new (KnownNotNull, this) PLDHashTable(ops, entrySize, aLength);
}
void
PLDHashTable::Clear()
{
ClearAndPrepareForLength(kDefaultInitialLength);
}
// If |Reason| is |ForAdd|, the return value is always non-null and it may be
// a previously-removed entry. If |Reason| is |ForSearchOrRemove|, the return
// value is null on a miss, and will never be a previously-removed entry on a
// hit. This distinction is a bit grotty but this function is hot enough that
// these differences are worthwhile. (It's also hot enough that
// MOZ_ALWAYS_INLINE makes a significant difference.)
template <PLDHashTable::SearchReason Reason, typename Success, typename Failure>
MOZ_ALWAYS_INLINE
auto
PLDHashTable::SearchTable(const void* aKey, PLDHashNumber aKeyHash,
Success&& aSuccess, Failure&& aFailure) const
{
MOZ_ASSERT(mEntryStore.Get());
NS_ASSERTION(!(aKeyHash & kCollisionFlag),
"!(aKeyHash & kCollisionFlag)");
// Compute the primary hash address.
PLDHashNumber hash1 = Hash1(aKeyHash);
Slot slot = SlotForIndex(hash1);
// Miss: return space for a new entry.
if (slot.IsFree()) {
return (Reason == ForAdd) ? aSuccess(slot) : aFailure();
}
// Hit: return entry.
PLDHashMatchEntry matchEntry = mOps->matchEntry;
if (MatchSlotKeyhash(slot, aKeyHash)) {
PLDHashEntryHdr* e = slot.ToEntry();
if (matchEntry(e, aKey)) {
return aSuccess(slot);
}
}
// Collision: double hash.
PLDHashNumber hash2;
uint32_t sizeMask;
Hash2(aKeyHash, hash2, sizeMask);
// Save the first removed entry slot so Add() can recycle it. (Only used
// if Reason==ForAdd.)
Maybe<Slot> firstRemoved;
for (;;) {
if (Reason == ForAdd && !firstRemoved) {
if (MOZ_UNLIKELY(slot.IsRemoved())) {
firstRemoved.emplace(slot);
} else {
slot.MarkColliding();
}
}
hash1 -= hash2;
hash1 &= sizeMask;
slot = SlotForIndex(hash1);
if (slot.IsFree()) {
if (Reason != ForAdd) {
return aFailure();
}
return aSuccess(firstRemoved.refOr(slot));
}
if (MatchSlotKeyhash(slot, aKeyHash)) {
PLDHashEntryHdr* e = slot.ToEntry();
if (matchEntry(e, aKey)) {
return aSuccess(slot);
}
}
}
// NOTREACHED
return aFailure();
}
// This is a copy of SearchTable(), used by ChangeTable(), hardcoded to
// 1. assume |Reason| is |ForAdd|,
// 2. assume that |aKey| will never match an existing entry, and
// 3. assume that no entries have been removed from the current table
// structure.
// Avoiding the need for |aKey| means we can avoid needing a way to map entries
// to keys, which means callers can use complex key types more easily.
MOZ_ALWAYS_INLINE auto
PLDHashTable::FindFreeSlot(PLDHashNumber aKeyHash) const -> Slot
{
MOZ_ASSERT(mEntryStore.Get());
NS_ASSERTION(!(aKeyHash & kCollisionFlag),
"!(aKeyHash & kCollisionFlag)");
// Compute the primary hash address.
PLDHashNumber hash1 = Hash1(aKeyHash);
Slot slot = SlotForIndex(hash1);
// Miss: return space for a new entry.
if (slot.IsFree()) {
return slot;
}
// Collision: double hash.
PLDHashNumber hash2;
uint32_t sizeMask;
Hash2(aKeyHash, hash2, sizeMask);
for (;;) {
MOZ_ASSERT(!slot.IsRemoved());
slot.MarkColliding();
hash1 -= hash2;
hash1 &= sizeMask;
slot = SlotForIndex(hash1);
if (slot.IsFree()) {
return slot;
}
}
// NOTREACHED
}
bool
PLDHashTable::ChangeTable(int32_t aDeltaLog2)
{
MOZ_ASSERT(mEntryStore.Get());
// Look, but don't touch, until we succeed in getting new entry store.
int32_t oldLog2 = kPLDHashNumberBits - mHashShift;
int32_t newLog2 = oldLog2 + aDeltaLog2;
uint32_t newCapacity = 1u << newLog2;
if (newCapacity > kMaxCapacity) {
return false;
}
uint32_t nbytes;
if (!SizeOfEntryStore(newCapacity, mEntrySize, &nbytes)) {
return false; // overflowed
}
char* newEntryStore = (char*)calloc(1, nbytes);
if (!newEntryStore) {
return false;
}
// We can't fail from here on, so update table parameters.
mHashShift = kPLDHashNumberBits - newLog2;
mRemovedCount = 0;
// Assign the new entry store to table.
char* oldEntryStore = mEntryStore.Get();
mEntryStore.Set(newEntryStore, &mGeneration);
PLDHashMoveEntry moveEntry = mOps->moveEntry;
// Copy only live entries, leaving removed ones behind.
uint32_t oldCapacity = 1u << oldLog2;
EntryStore::ForEachSlot(oldEntryStore, oldCapacity, mEntrySize, [&](const Slot& slot) {
if (slot.IsLive()) {
const PLDHashNumber key = slot.KeyHash() & ~kCollisionFlag;
Slot newSlot = FindFreeSlot(key);
MOZ_ASSERT(newSlot.IsFree());
moveEntry(this, slot.ToEntry(), newSlot.ToEntry());
newSlot.SetKeyHash(key);
}
});
free(oldEntryStore);
return true;
}
MOZ_ALWAYS_INLINE PLDHashNumber
PLDHashTable::ComputeKeyHash(const void* aKey) const
{
MOZ_ASSERT(mEntryStore.Get());
PLDHashNumber keyHash = mozilla::ScrambleHashCode(mOps->hashKey(aKey));
// Avoid 0 and 1 hash codes, they indicate free and removed entries.
if (keyHash < 2) {
keyHash -= 2;
}
keyHash &= ~kCollisionFlag;
return keyHash;
}
PLDHashEntryHdr*
PLDHashTable::Search(const void* aKey) const
{
#ifdef DEBUG
AutoReadOp op(mChecker);
#endif
if (!mEntryStore.Get()) {
return nullptr;
}
return SearchTable<ForSearchOrRemove>(aKey,
ComputeKeyHash(aKey),
[&](Slot& slot) -> PLDHashEntryHdr* {
return slot.ToEntry();
},
[&]() -> PLDHashEntryHdr* {
return nullptr;
});
}
PLDHashEntryHdr*
PLDHashTable::Add(const void* aKey, const mozilla::fallible_t&)
{
#ifdef DEBUG
AutoWriteOp op(mChecker);
#endif
// Allocate the entry storage if it hasn't already been allocated.
if (!mEntryStore.Get()) {
uint32_t nbytes;
// We already checked this in the constructor, so it must still be true.
MOZ_RELEASE_ASSERT(SizeOfEntryStore(CapacityFromHashShift(), mEntrySize,
&nbytes));
mEntryStore.Set((char*)calloc(1, nbytes), &mGeneration);
if (!mEntryStore.Get()) {
return nullptr;
}
}
// If alpha is >= .75, grow or compress the table. If aKey is already in the
// table, we may grow once more than necessary, but only if we are on the
// edge of being overloaded.
uint32_t capacity = Capacity();
if (mEntryCount + mRemovedCount >= MaxLoad(capacity)) {
// Compress if a quarter or more of all entries are removed.
int deltaLog2;
if (mRemovedCount >= capacity >> 2) {
deltaLog2 = 0;
} else {
deltaLog2 = 1;
}
// Grow or compress the table. If ChangeTable() fails, allow overloading up
// to the secondary max. Once we hit the secondary max, return null.
if (!ChangeTable(deltaLog2) &&
mEntryCount + mRemovedCount >= MaxLoadOnGrowthFailure(capacity)) {
return nullptr;
}
}
// Look for entry after possibly growing, so we don't have to add it,
// then skip it while growing the table and re-add it after.
PLDHashNumber keyHash = ComputeKeyHash(aKey);
Slot slot = SearchTable<ForAdd>(aKey, keyHash,
[&](Slot& found) -> Slot { return found; },
[&]() -> Slot {
MOZ_CRASH("Nope");
return Slot(nullptr, nullptr);
});
if (!slot.IsLive()) {
// Initialize the slot, indicating that it's no longer free.
if (slot.IsRemoved()) {
mRemovedCount--;
keyHash |= kCollisionFlag;
}
if (mOps->initEntry) {
mOps->initEntry(slot.ToEntry(), aKey);
}
slot.SetKeyHash(keyHash);
mEntryCount++;
}
return slot.ToEntry();
}
PLDHashEntryHdr*
PLDHashTable::Add(const void* aKey)
{
PLDHashEntryHdr* entry = Add(aKey, fallible);
if (!entry) {
if (!mEntryStore.Get()) {
// We OOM'd while allocating the initial entry storage.
uint32_t nbytes;
(void) SizeOfEntryStore(CapacityFromHashShift(), mEntrySize, &nbytes);
NS_ABORT_OOM(nbytes);
} else {
// We failed to resize the existing entry storage, either due to OOM or
// because we exceeded the maximum table capacity or size; report it as
// an OOM. The multiplication by 2 gets us the size we tried to allocate,
// which is double the current size.
NS_ABORT_OOM(2 * EntrySize() * EntryCount());
}
}
return entry;
}
void
PLDHashTable::Remove(const void* aKey)
{
#ifdef DEBUG
AutoWriteOp op(mChecker);
#endif
if (!mEntryStore.Get()) {
return;
}
PLDHashNumber keyHash = ComputeKeyHash(aKey);
SearchTable<ForSearchOrRemove>(aKey, keyHash,
[&](Slot& slot) {
RawRemove(slot);
ShrinkIfAppropriate();
},
[&]() {
// Do nothing.
});
}
void
PLDHashTable::RemoveEntry(PLDHashEntryHdr* aEntry)
{
#ifdef DEBUG
AutoWriteOp op(mChecker);
#endif
RawRemove(aEntry);
ShrinkIfAppropriate();
}
void
PLDHashTable::RawRemove(PLDHashEntryHdr* aEntry)
{
Slot slot(mEntryStore.SlotForPLDHashEntry(aEntry, Capacity(), mEntrySize));
RawRemove(slot);
}
void
PLDHashTable::RawRemove(Slot& aSlot)
{
// Unfortunately, we can only do weak checking here. That's because
// RawRemove() can be called legitimately while an Enumerate() call is
// active, which doesn't fit well into how Checker's mState variable works.
MOZ_ASSERT(mChecker.IsWritable());
MOZ_ASSERT(mEntryStore.Get());
MOZ_ASSERT(aSlot.IsLive());
// Load keyHash first in case clearEntry() goofs it.
PLDHashEntryHdr* entry = aSlot.ToEntry();
PLDHashNumber keyHash = aSlot.KeyHash();
mOps->clearEntry(this, entry);
if (keyHash & kCollisionFlag) {
aSlot.MarkRemoved();
mRemovedCount++;
} else {
aSlot.MarkFree();
}
mEntryCount--;
}
// Shrink or compress if a quarter or more of all entries are removed, or if the
// table is underloaded according to the minimum alpha, and is not minimal-size
// already.
void
PLDHashTable::ShrinkIfAppropriate()
{
uint32_t capacity = Capacity();
if (mRemovedCount >= capacity >> 2 ||
(capacity > kMinCapacity && mEntryCount <= MinLoad(capacity))) {
uint32_t log2;
BestCapacity(mEntryCount, &capacity, &log2);
int32_t deltaLog2 = log2 - (kPLDHashNumberBits - mHashShift);
MOZ_ASSERT(deltaLog2 <= 0);
(void) ChangeTable(deltaLog2);
}
}
size_t
PLDHashTable::ShallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
#ifdef DEBUG
AutoReadOp op(mChecker);
#endif
return aMallocSizeOf(mEntryStore.Get());
}
size_t
PLDHashTable::ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
}
PLDHashTable::Iterator::Iterator(Iterator&& aOther)
: mTable(aOther.mTable)
, mCurrent(aOther.mCurrent)
, mNexts(aOther.mNexts)
, mNextsLimit(aOther.mNextsLimit)
, mHaveRemoved(aOther.mHaveRemoved)
, mEntrySize(aOther.mEntrySize)
{
// No need to change |mChecker| here.
aOther.mTable = nullptr;
// We don't really have the concept of a null slot, so leave mCurrent.
aOther.mNexts = 0;
aOther.mNextsLimit = 0;
aOther.mHaveRemoved = false;
aOther.mEntrySize = 0;
}
PLDHashTable::Iterator::Iterator(PLDHashTable* aTable)
: mTable(aTable)
, mCurrent(mTable->mEntryStore.SlotForIndex(0, mTable->mEntrySize,
mTable->Capacity()))
, mNexts(0)
, mNextsLimit(mTable->EntryCount())
, mHaveRemoved(false)
, mEntrySize(aTable->mEntrySize)
{
#ifdef DEBUG
mTable->mChecker.StartReadOp();
#endif
if (ChaosMode::isActive(ChaosFeature::HashTableIteration) &&
mTable->Capacity() > 0) {
// Start iterating at a random entry. It would be even more chaotic to
// iterate in fully random order, but that's harder.
uint32_t capacity = mTable->CapacityFromHashShift();
uint32_t i = ChaosMode::randomUint32LessThan(capacity);
mCurrent = mTable->mEntryStore.SlotForIndex(i, mTable->mEntrySize, capacity);
}
// Advance to the first live entry, if there is one.
if (!Done() && IsOnNonLiveEntry()) {
MoveToNextLiveEntry();
}
}
PLDHashTable::Iterator::~Iterator()
{
if (mTable) {
if (mHaveRemoved) {
mTable->ShrinkIfAppropriate();
}
#ifdef DEBUG
mTable->mChecker.EndReadOp();
#endif
}
}
MOZ_ALWAYS_INLINE bool
PLDHashTable::Iterator::IsOnNonLiveEntry() const
{
MOZ_ASSERT(!Done());
return !mCurrent.IsLive();
}
void
PLDHashTable::Iterator::Next()
{
MOZ_ASSERT(!Done());
mNexts++;
// Advance to the next live entry, if there is one.
if (!Done()) {
MoveToNextLiveEntry();
}
}
MOZ_ALWAYS_INLINE void
PLDHashTable::Iterator::MoveToNextLiveEntry()
{
// Chaos mode requires wraparound to cover all possible entries, so we can't
// simply move to the next live entry and stop when we hit the end of the
// entry store. But we don't want to introduce extra branches into our inner
// loop. So we are going to exploit the structure of the entry store in this
// method to implement an efficient inner loop.
//
// The idea is that since we are really only iterating through the stored
// hashes and because we know that there are a power-of-two number of
// hashes, we can use masking to implement the wraparound for us. This
// method does have the downside of needing to recalculate where the
// associated entry is once we've found it, but that seems OK.
// Our current slot and its associated hash.
Slot slot = mCurrent;
PLDHashNumber* p = slot.HashPtr();
const uint32_t capacity = mTable->CapacityFromHashShift();
const uint32_t mask = capacity - 1;
auto hashes = reinterpret_cast<PLDHashNumber*>(mTable->mEntryStore.Get());
uint32_t slotIndex = p - hashes;
do {
slotIndex = (slotIndex + 1) & mask;
} while (!Slot::IsLiveHash(hashes[slotIndex]));
// slotIndex now indicates where a live slot is. Rematerialize the entry
// and the slot.
auto entries = reinterpret_cast<char*>(&hashes[capacity]);
char* entryPtr = entries + slotIndex * mEntrySize;
auto entry = reinterpret_cast<PLDHashEntryHdr*>(entryPtr);
mCurrent = Slot(entry, &hashes[slotIndex]);
}
void
PLDHashTable::Iterator::Remove()
{
mTable->RawRemove(mCurrent);
mHaveRemoved = true;
}
#ifdef DEBUG
void
PLDHashTable::MarkImmutable()
{
mChecker.SetNonWritable();
}
#endif