gecko-dev/gfx/layers/Layers.h
Botond Ballo b22e5adb20 Bug 1236750 - Add typed getters for layer transform matrices. r=kats
--HG--
extra : source : bf19963d10d6cc021092662176845192764f9cf0
2016-01-06 18:56:58 -05:00

2586 lines
91 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_LAYERS_H
#define GFX_LAYERS_H
#include <stdint.h> // for uint32_t, uint64_t, uint8_t
#include <stdio.h> // for FILE
#include <sys/types.h> // for int32_t, int64_t
#include "FrameMetrics.h" // for FrameMetrics
#include "Units.h" // for LayerMargin, LayerPoint, ParentLayerIntRect
#include "gfxContext.h"
#include "gfxTypes.h"
#include "gfxPoint.h" // for gfxPoint
#include "gfxRect.h" // for gfxRect
#include "gfx2DGlue.h"
#include "mozilla/Assertions.h" // for MOZ_ASSERT_HELPER2, etc
#include "mozilla/DebugOnly.h" // for DebugOnly
#include "mozilla/EventForwards.h" // for nsPaintEvent
#include "mozilla/Maybe.h" // for Maybe
#include "mozilla/RefPtr.h" // for already_AddRefed
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "mozilla/TimeStamp.h" // for TimeStamp, TimeDuration
#include "mozilla/UniquePtr.h" // for UniquePtr
#include "mozilla/gfx/BaseMargin.h" // for BaseMargin
#include "mozilla/gfx/BasePoint.h" // for BasePoint
#include "mozilla/gfx/Point.h" // for IntSize
#include "mozilla/gfx/Types.h" // for SurfaceFormat
#include "mozilla/gfx/UserData.h" // for UserData, etc
#include "mozilla/layers/LayersTypes.h"
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "nsAutoPtr.h" // for nsAutoPtr, nsRefPtr, etc
#include "nsCOMPtr.h" // for already_AddRefed
#include "nsCSSProperty.h" // for nsCSSProperty
#include "nsDebug.h" // for NS_ASSERTION
#include "nsISupportsImpl.h" // for Layer::Release, etc
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsString.h" // for nsCString
#include "nsTArray.h" // for nsTArray
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "nscore.h" // for nsACString, nsAString
#include "mozilla/Logging.h" // for PRLogModuleInfo
#include "nsIWidget.h" // For plugin window configuration information structs
#include "gfxVR.h"
#include "ImageContainer.h"
class gfxContext;
extern uint8_t gLayerManagerLayerBuilder;
namespace mozilla {
class ComputedTimingFunction;
class FrameLayerBuilder;
class StyleAnimationValue;
namespace gl {
class GLContext;
} // namespace gl
namespace gfx {
class DrawTarget;
} // namespace gfx
namespace dom {
class OverfillCallback;
} // namespace dom
namespace layers {
class Animation;
class AnimationData;
class AsyncCanvasRenderer;
class AsyncPanZoomController;
class ClientLayerManager;
class Layer;
class LayerMetricsWrapper;
class PaintedLayer;
class ContainerLayer;
class ImageLayer;
class ColorLayer;
class CanvasLayer;
class ReadbackLayer;
class ReadbackProcessor;
class RefLayer;
class LayerComposite;
class ShadowableLayer;
class ShadowLayerForwarder;
class LayerManagerComposite;
class SpecificLayerAttributes;
class Compositor;
class FrameUniformityData;
class PersistentBufferProvider;
namespace layerscope {
class LayersPacket;
} // namespace layerscope
#define MOZ_LAYER_DECL_NAME(n, e) \
virtual const char* Name() const override { return n; } \
virtual LayerType GetType() const override { return e; }
// Defined in LayerUserData.h; please include that file instead.
class LayerUserData;
/*
* Motivation: For truly smooth animation and video playback, we need to
* be able to compose frames and render them on a dedicated thread (i.e.
* off the main thread where DOM manipulation, script execution and layout
* induce difficult-to-bound latency). This requires Gecko to construct
* some kind of persistent scene structure (graph or tree) that can be
* safely transmitted across threads. We have other scenarios (e.g. mobile
* browsing) where retaining some rendered data between paints is desired
* for performance, so again we need a retained scene structure.
*
* Our retained scene structure is a layer tree. Each layer represents
* content which can be composited onto a destination surface; the root
* layer is usually composited into a window, and non-root layers are
* composited into their parent layers. Layers have attributes (e.g.
* opacity and clipping) that influence their compositing.
*
* We want to support a variety of layer implementations, including
* a simple "immediate mode" implementation that doesn't retain any
* rendered data between paints (i.e. uses cairo in just the way that
* Gecko used it before layers were introduced). But we also don't want
* to have bifurcated "layers"/"non-layers" rendering paths in Gecko.
* Therefore the layers API is carefully designed to permit maximally
* efficient implementation in an "immediate mode" style. See the
* BasicLayerManager for such an implementation.
*/
/**
* A LayerManager controls a tree of layers. All layers in the tree
* must use the same LayerManager.
*
* All modifications to a layer tree must happen inside a transaction.
* Only the state of the layer tree at the end of a transaction is
* rendered. Transactions cannot be nested
*
* Each transaction has two phases:
* 1) Construction: layers are created, inserted, removed and have
* properties set on them in this phase.
* BeginTransaction and BeginTransactionWithTarget start a transaction in
* the Construction phase.
* 2) Drawing: PaintedLayers are rendered into in this phase, in tree
* order. When the client has finished drawing into the PaintedLayers, it should
* call EndTransaction to complete the transaction.
*
* All layer API calls happen on the main thread.
*
* Layers are refcounted. The layer manager holds a reference to the
* root layer, and each container layer holds a reference to its children.
*/
class LayerManager {
NS_INLINE_DECL_REFCOUNTING(LayerManager)
protected:
typedef mozilla::gfx::DrawTarget DrawTarget;
typedef mozilla::gfx::IntSize IntSize;
typedef mozilla::gfx::SurfaceFormat SurfaceFormat;
public:
LayerManager()
: mDestroyed(false)
, mSnapEffectiveTransforms(true)
, mId(0)
, mInTransaction(false)
{}
/**
* Release layers and resources held by this layer manager, and mark
* it as destroyed. Should do any cleanup necessary in preparation
* for its widget going away. After this call, only user data calls
* are valid on the layer manager.
*/
virtual void Destroy()
{
mDestroyed = true;
mUserData.Destroy();
mRoot = nullptr;
}
bool IsDestroyed() { return mDestroyed; }
virtual ShadowLayerForwarder* AsShadowForwarder()
{ return nullptr; }
virtual LayerManagerComposite* AsLayerManagerComposite()
{ return nullptr; }
virtual ClientLayerManager* AsClientLayerManager()
{ return nullptr; }
/**
* Returns true if this LayerManager is owned by an nsIWidget,
* and is used for drawing into the widget.
*/
virtual bool IsWidgetLayerManager() { return true; }
virtual bool IsInactiveLayerManager() { return false; }
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will update the state of the window from which
* this LayerManager was obtained.
*/
virtual void BeginTransaction() = 0;
/**
* Start a new transaction. Nested transactions are not allowed so
* there must be no transaction currently in progress.
* This transaction will render the contents of the layer tree to
* the given target context. The rendering will be complete when
* EndTransaction returns.
*/
virtual void BeginTransactionWithTarget(gfxContext* aTarget) = 0;
enum EndTransactionFlags {
END_DEFAULT = 0,
END_NO_IMMEDIATE_REDRAW = 1 << 0, // Do not perform the drawing phase
END_NO_COMPOSITE = 1 << 1, // Do not composite after drawing painted layer contents.
END_NO_REMOTE_COMPOSITE = 1 << 2 // Do not schedule a composition with a remote Compositor, if one exists.
};
FrameLayerBuilder* GetLayerBuilder() {
return reinterpret_cast<FrameLayerBuilder*>(GetUserData(&gLayerManagerLayerBuilder));
}
/**
* Attempts to end an "empty transaction". There must have been no
* changes to the layer tree since the BeginTransaction().
* It's possible for this to fail; PaintedLayers may need to be updated
* due to VRAM data being lost, for example. In such cases this method
* returns false, and the caller must proceed with a normal layer tree
* update and EndTransaction.
*/
virtual bool EndEmptyTransaction(EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Function called to draw the contents of each PaintedLayer.
* aRegionToDraw contains the region that needs to be drawn.
* This would normally be a subregion of the visible region.
* The callee must draw all of aRegionToDraw. Drawing outside
* aRegionToDraw will be clipped out or ignored.
* The callee must draw all of aRegionToDraw.
* This region is relative to 0,0 in the PaintedLayer.
*
* aDirtyRegion should contain the total region that is be due to be painted
* during the transaction, even though only aRegionToDraw should be drawn
* during this call. aRegionToDraw must be entirely contained within
* aDirtyRegion. If the total dirty region is unknown it is okay to pass a
* subregion of the total dirty region, e.g. just aRegionToDraw, though it
* may not be as efficient.
*
* aRegionToInvalidate contains a region whose contents have been
* changed by the layer manager and which must therefore be invalidated.
* For example, this could be non-empty if a retained layer internally
* switches from RGBA to RGB or back ... we might want to repaint it to
* consistently use subpixel-AA or not.
* This region is relative to 0,0 in the PaintedLayer.
* aRegionToInvalidate may contain areas that are outside
* aRegionToDraw; the callee must ensure that these areas are repainted
* in the current layer manager transaction or in a later layer
* manager transaction.
*
* aContext must not be used after the call has returned.
* We guarantee that buffered contents in the visible
* region are valid once drawing is complete.
*
* The origin of aContext is 0,0 in the PaintedLayer.
*/
typedef void (* DrawPaintedLayerCallback)(PaintedLayer* aLayer,
gfxContext* aContext,
const nsIntRegion& aRegionToDraw,
const nsIntRegion& aDirtyRegion,
DrawRegionClip aClip,
const nsIntRegion& aRegionToInvalidate,
void* aCallbackData);
/**
* Finish the construction phase of the transaction, perform the
* drawing phase, and end the transaction.
* During the drawing phase, all PaintedLayers in the tree are
* drawn in tree order, exactly once each, except for those layers
* where it is known that the visible region is empty.
*/
virtual void EndTransaction(DrawPaintedLayerCallback aCallback,
void* aCallbackData,
EndTransactionFlags aFlags = END_DEFAULT) = 0;
/**
* Schedule a composition with the remote Compositor, if one exists
* for this LayerManager. Useful in conjunction with the END_NO_REMOTE_COMPOSITE
* flag to EndTransaction.
*/
virtual void Composite() {}
virtual bool HasShadowManagerInternal() const { return false; }
bool HasShadowManager() const { return HasShadowManagerInternal(); }
virtual void StorePluginWidgetConfigurations(const nsTArray<nsIWidget::Configuration>& aConfigurations) {}
bool IsSnappingEffectiveTransforms() { return mSnapEffectiveTransforms; }
/**
* Returns true if the layer manager can't render component alpha
* layers, and layer building should do it's best to avoid
* creating them.
*/
virtual bool ShouldAvoidComponentAlphaLayers() { return false; }
/**
* Returns true if this LayerManager can properly support layers with
* SurfaceMode::SURFACE_COMPONENT_ALPHA. LayerManagers that can't will use
* transparent surfaces (and lose subpixel-AA for text).
*/
virtual bool AreComponentAlphaLayersEnabled();
/**
* CONSTRUCTION PHASE ONLY
* Set the root layer. The root layer is initially null. If there is
* no root layer, EndTransaction won't draw anything.
*/
virtual void SetRoot(Layer* aLayer) = 0;
/**
* Can be called anytime
*/
Layer* GetRoot() { return mRoot; }
/**
* Does a breadth-first search from the root layer to find the first
* scrollable layer, and returns its ViewID. Note that there may be
* other layers in the tree which share the same ViewID.
* Can be called any time.
*/
FrameMetrics::ViewID GetRootScrollableLayerId();
/**
* Does a breadth-first search from the root layer to find the first
* scrollable layer, and returns all the layers that have that ViewID
* as the first scrollable metrics in their ancestor chain. If no
* scrollable layers are found it just returns the root of the tree if
* there is one.
*/
void GetRootScrollableLayers(nsTArray<Layer*>& aArray);
/**
* Returns a list of all descendant layers for which
* GetFrameMetrics().IsScrollable() is true and that
* do not already have an ancestor in the return list.
*/
void GetScrollableLayers(nsTArray<Layer*>& aArray);
/**
* CONSTRUCTION PHASE ONLY
* Called when a managee has mutated.
* Subclasses overriding this method must first call their
* superclass's impl
*/
#ifdef DEBUG
// In debug builds, we check some properties of |aLayer|.
virtual void Mutated(Layer* aLayer);
#else
virtual void Mutated(Layer* aLayer) { }
#endif
/**
* Hints that can be used during PaintedLayer creation to influence the type
* or properties of the layer created.
*
* NONE: No hint.
* SCROLLABLE: This layer may represent scrollable content.
*/
enum PaintedLayerCreationHint {
NONE, SCROLLABLE
};
/**
* CONSTRUCTION PHASE ONLY
* Create a PaintedLayer for this manager's layer tree.
*/
virtual already_AddRefed<PaintedLayer> CreatePaintedLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a PaintedLayer for this manager's layer tree, with a creation hint
* parameter to help optimise the type of layer created.
*/
virtual already_AddRefed<PaintedLayer> CreatePaintedLayerWithHint(PaintedLayerCreationHint) {
return CreatePaintedLayer();
}
/**
* CONSTRUCTION PHASE ONLY
* Create a ContainerLayer for this manager's layer tree.
*/
virtual already_AddRefed<ContainerLayer> CreateContainerLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create an ImageLayer for this manager's layer tree.
*/
virtual already_AddRefed<ImageLayer> CreateImageLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ColorLayer for this manager's layer tree.
*/
virtual already_AddRefed<ColorLayer> CreateColorLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a CanvasLayer for this manager's layer tree.
*/
virtual already_AddRefed<CanvasLayer> CreateCanvasLayer() = 0;
/**
* CONSTRUCTION PHASE ONLY
* Create a ReadbackLayer for this manager's layer tree.
*/
virtual already_AddRefed<ReadbackLayer> CreateReadbackLayer() { return nullptr; }
/**
* CONSTRUCTION PHASE ONLY
* Create a RefLayer for this manager's layer tree.
*/
virtual already_AddRefed<RefLayer> CreateRefLayer() { return nullptr; }
/**
* Can be called anytime, from any thread.
*
* Creates an Image container which forwards its images to the compositor within
* layer transactions on the main thread or asynchronously using the ImageBridge IPDL protocol.
* In the case of asynchronous, If the protocol is not available, the returned ImageContainer
* will forward images within layer transactions.
*/
static already_AddRefed<ImageContainer> CreateImageContainer(ImageContainer::Mode flag
= ImageContainer::SYNCHRONOUS);
/**
* Type of layer manager his is. This is to be used sparsely in order to
* avoid a lot of Layers backend specific code. It should be used only when
* Layers backend specific functionality is necessary.
*/
virtual LayersBackend GetBackendType() = 0;
/**
* Type of layers backend that will be used to composite this layer tree.
* When compositing is done remotely, then this returns the layers type
* of the compositor.
*/
virtual LayersBackend GetCompositorBackendType() { return GetBackendType(); }
/**
* Creates a DrawTarget which is optimized for inter-operating with this
* layer manager.
*/
virtual already_AddRefed<DrawTarget>
CreateOptimalDrawTarget(const IntSize &aSize,
SurfaceFormat imageFormat);
/**
* Creates a DrawTarget for alpha masks which is optimized for inter-
* operating with this layer manager. In contrast to CreateOptimalDrawTarget,
* this surface is optimised for drawing alpha only and we assume that
* drawing the mask is fairly simple.
*/
virtual already_AddRefed<DrawTarget>
CreateOptimalMaskDrawTarget(const IntSize &aSize);
/**
* Creates a DrawTarget for use with canvas which is optimized for
* inter-operating with this layermanager.
*/
virtual already_AddRefed<mozilla::gfx::DrawTarget>
CreateDrawTarget(const mozilla::gfx::IntSize &aSize,
mozilla::gfx::SurfaceFormat aFormat);
/**
* Creates a PersistentBufferProvider for use with canvas which is optimized for
* inter-operating with this layermanager.
*/
virtual already_AddRefed<PersistentBufferProvider>
CreatePersistentBufferProvider(const mozilla::gfx::IntSize &aSize,
mozilla::gfx::SurfaceFormat aFormat);
virtual bool CanUseCanvasLayerForSize(const gfx::IntSize &aSize) { return true; }
/**
* returns the maximum texture size on this layer backend, or INT32_MAX
* if there is no maximum
*/
virtual int32_t GetMaxTextureSize() const = 0;
/**
* Return the name of the layer manager's backend.
*/
virtual void GetBackendName(nsAString& aName) = 0;
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(void* aKey, LayerUserData* aData)
{
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerUserDataDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey);
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey)
{
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const
{
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* Must be called outside of a layers transaction.
*
* For the subtree rooted at |aSubtree|, this attempts to free up
* any free-able resources like retained buffers, but may do nothing
* at all. After this call, the layer tree is left in an undefined
* state; the layers in |aSubtree|'s subtree may no longer have
* buffers with valid content and may no longer be able to draw
* their visible and valid regions.
*
* In general, a painting or forwarding transaction on |this| must
* complete on the tree before it returns to a valid state.
*
* Resource freeing begins from |aSubtree| or |mRoot| if |aSubtree|
* is null. |aSubtree|'s manager must be this.
*/
virtual void ClearCachedResources(Layer* aSubtree = nullptr) {}
/**
* Flag the next paint as the first for a document.
*/
virtual void SetIsFirstPaint() {}
/**
* Make sure that the previous transaction has been entirely
* completed.
*
* Note: This may sychronously wait on a remote compositor
* to complete rendering.
*/
virtual void FlushRendering() { }
/**
* Checks if we need to invalidate the OS widget to trigger
* painting when updating this layer manager.
*/
virtual bool NeedsWidgetInvalidation() { return true; }
virtual const char* Name() const { return "???"; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix="", bool aDumpHtml=false);
/**
* Dump information about just this layer manager itself to aStream
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix="");
void Dump();
/**
* Dump information about this layer manager and its managed tree to
* layerscope packet.
*/
void Dump(layerscope::LayersPacket* aPacket);
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix="");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix="");
/**
* Record (and return) frame-intervals and paint-times for frames which were presented
* between calling StartFrameTimeRecording and StopFrameTimeRecording.
*
* - Uses a cyclic buffer and serves concurrent consumers, so if Stop is called too late
* (elements were overwritten since Start), result is considered invalid and hence empty.
* - Buffer is capable of holding 10 seconds @ 60fps (or more if frames were less frequent).
* Can be changed (up to 1 hour) via pref: toolkit.framesRecording.bufferSize.
* - Note: the first frame-interval may be longer than expected because last frame
* might have been presented some time before calling StartFrameTimeRecording.
*/
/**
* Returns a handle which represents current recording start position.
*/
virtual uint32_t StartFrameTimeRecording(int32_t aBufferSize);
/**
* Clears, then populates aFrameIntervals with the recorded frame timing
* data. The array will be empty if data was overwritten since
* aStartIndex was obtained.
*/
virtual void StopFrameTimeRecording(uint32_t aStartIndex,
nsTArray<float>& aFrameIntervals);
void RecordFrame();
void PostPresent();
void BeginTabSwitch();
static bool IsLogEnabled();
static mozilla::LogModule* GetLog();
bool IsCompositingCheap(LayersBackend aBackend)
{
// LayersBackend::LAYERS_NONE is an error state, but in that case we should try to
// avoid loading the compositor!
return LayersBackend::LAYERS_BASIC != aBackend && LayersBackend::LAYERS_NONE != aBackend;
}
virtual bool IsCompositingCheap() { return true; }
bool IsInTransaction() const { return mInTransaction; }
virtual void GetFrameUniformity(FrameUniformityData* aOutData) { }
virtual bool RequestOverfill(mozilla::dom::OverfillCallback* aCallback) { return true; }
virtual void RunOverfillCallback(const uint32_t aOverfill) { }
virtual void SetRegionToClear(const nsIntRegion& aRegion)
{
mRegionToClear = aRegion;
}
virtual bool SupportsMixBlendModes(EnumSet<gfx::CompositionOp>& aMixBlendModes)
{
return false;
}
bool SupportsMixBlendMode(gfx::CompositionOp aMixBlendMode)
{
EnumSet<gfx::CompositionOp> modes(aMixBlendMode);
return SupportsMixBlendModes(modes);
}
virtual float RequestProperty(const nsAString& property) { return -1; }
const TimeStamp& GetAnimationReadyTime() const {
return mAnimationReadyTime;
}
virtual bool AsyncPanZoomEnabled() const {
return false;
}
static void LayerUserDataDestroy(void* data);
protected:
RefPtr<Layer> mRoot;
gfx::UserData mUserData;
bool mDestroyed;
bool mSnapEffectiveTransforms;
nsIntRegion mRegionToClear;
// Protected destructor, to discourage deletion outside of Release():
virtual ~LayerManager() {}
// Print interesting information about this into aStreamo. Internally
// used to implement Dump*() and Log*().
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
// Print interesting information about this into layerscope packet.
// Internally used to implement Dump().
virtual void DumpPacket(layerscope::LayersPacket* aPacket);
uint64_t mId;
bool mInTransaction;
// The time when painting most recently finished. This is recorded so that
// we can time any play-pending animations from this point.
TimeStamp mAnimationReadyTime;
private:
struct FramesTimingRecording
{
// Stores state and data for frame intervals and paint times recording.
// see LayerManager::StartFrameTimeRecording() at Layers.cpp for more details.
FramesTimingRecording()
: mIsPaused(true)
, mNextIndex(0)
{}
bool mIsPaused;
uint32_t mNextIndex;
TimeStamp mLastFrameTime;
nsTArray<float> mIntervals;
uint32_t mLatestStartIndex;
uint32_t mCurrentRunStartIndex;
};
FramesTimingRecording mRecording;
TimeStamp mTabSwitchStart;
};
typedef InfallibleTArray<Animation> AnimationArray;
struct AnimData {
InfallibleTArray<mozilla::StyleAnimationValue> mStartValues;
InfallibleTArray<mozilla::StyleAnimationValue> mEndValues;
InfallibleTArray<nsAutoPtr<mozilla::ComputedTimingFunction> > mFunctions;
};
/**
* A Layer represents anything that can be rendered onto a destination
* surface.
*/
class Layer {
NS_INLINE_DECL_REFCOUNTING(Layer)
public:
// Keep these in alphabetical order
enum LayerType {
TYPE_CANVAS,
TYPE_COLOR,
TYPE_CONTAINER,
TYPE_IMAGE,
TYPE_READBACK,
TYPE_REF,
TYPE_SHADOW,
TYPE_PAINTED
};
/**
* Returns the LayerManager this Layer belongs to. Note that the layer
* manager might be in a destroyed state, at which point it's only
* valid to set/get user data from it.
*/
LayerManager* Manager() { return mManager; }
enum {
/**
* If this is set, the caller is promising that by the end of this
* transaction the entire visible region (as specified by
* SetVisibleRegion) will be filled with opaque content.
*/
CONTENT_OPAQUE = 0x01,
/**
* If this is set, the caller is notifying that the contents of this layer
* require per-component alpha for optimal fidelity. However, there is no
* guarantee that component alpha will be supported for this layer at
* paint time.
* This should never be set at the same time as CONTENT_OPAQUE.
*/
CONTENT_COMPONENT_ALPHA = 0x02,
/**
* If this is set then one of the descendant layers of this one has
* CONTENT_COMPONENT_ALPHA set.
*/
CONTENT_COMPONENT_ALPHA_DESCENDANT = 0x04,
/**
* If this is set then this layer is part of a preserve-3d group, and should
* be sorted with sibling layers that are also part of the same group.
*/
CONTENT_EXTEND_3D_CONTEXT = 0x08,
/**
* This indicates that the transform may be changed on during an empty
* transaction where there is no possibility of redrawing the content, so the
* implementation should be ready for that.
*/
CONTENT_MAY_CHANGE_TRANSFORM = 0x10,
/**
* Disable subpixel AA for this layer. This is used if the display isn't suited
* for subpixel AA like hidpi or rotated content.
*/
CONTENT_DISABLE_SUBPIXEL_AA = 0x20,
/**
* If this is set then the layer contains content that may look objectionable
* if not handled as an active layer (such as text with an animated transform).
* This is for internal layout/FrameLayerBuilder usage only until flattening
* code is obsoleted. See bug 633097
*/
CONTENT_DISABLE_FLATTENING = 0x40,
/**
* This layer is hidden if the backface of the layer is visible
* to user.
*/
CONTENT_BACKFACE_HIDDEN = 0x80
};
/**
* CONSTRUCTION PHASE ONLY
* This lets layout make some promises about what will be drawn into the
* visible region of the PaintedLayer. This enables internal quality
* and performance optimizations.
*/
void SetContentFlags(uint32_t aFlags)
{
NS_ASSERTION((aFlags & (CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA)) !=
(CONTENT_OPAQUE | CONTENT_COMPONENT_ALPHA),
"Can't be opaque and require component alpha");
if (mContentFlags != aFlags) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ContentFlags", this));
mContentFlags = aFlags;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* The union of the bounds of all the display item that got flattened
* into this layer. This is intended to be an approximation to the
* size of the layer if the nearest scrollable ancestor had an infinitely
* large displayport. Computing this more exactly is too expensive,
* but this approximation is sufficient for what we need to use it for.
*/
virtual void SetLayerBounds(const gfx::IntRect& aLayerBounds)
{
if (!mLayerBounds.IsEqualEdges(aLayerBounds)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) LayerBounds", this));
mLayerBounds = aLayerBounds;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer which region will be visible. The visible region
* is a region which contains all the contents of the layer that can
* actually affect the rendering of the window. It can exclude areas
* that are covered by opaque contents of other layers, and it can
* exclude areas where this layer simply contains no content at all.
* (This can be an overapproximation to the "true" visible region.)
*
* There is no general guarantee that drawing outside the bounds of the
* visible region will be ignored. So if a layer draws outside the bounds
* of its visible region, it needs to ensure that what it draws is valid.
*/
virtual void SetVisibleRegion(const LayerIntRegion& aRegion)
{
if (!mVisibleRegion.IsEqual(aRegion)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) VisibleRegion was %s is %s", this,
mVisibleRegion.ToString().get(), aRegion.ToString().get()));
mVisibleRegion = aRegion;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the (sub)document metrics used to render the Layer subtree
* rooted at this. Note that a layer may have multiple FrameMetrics
* objects; calling this function will remove all of them and replace
* them with the provided FrameMetrics. See the documentation for
* SetFrameMetrics(const nsTArray<FrameMetrics>&) for more details.
*/
void SetFrameMetrics(const FrameMetrics& aFrameMetrics)
{
if (mFrameMetrics.Length() != 1 || mFrameMetrics[0] != aFrameMetrics) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FrameMetrics", this));
mFrameMetrics.ReplaceElementsAt(0, mFrameMetrics.Length(), aFrameMetrics);
FrameMetricsChanged();
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the (sub)document metrics used to render the Layer subtree
* rooted at this. There might be multiple metrics on this layer
* because the layer may, for example, be contained inside multiple
* nested scrolling subdocuments. In general a Layer having multiple
* FrameMetrics objects is conceptually equivalent to having a stack
* of ContainerLayers that have been flattened into this Layer.
* See the documentation in LayerMetricsWrapper.h for a more detailed
* explanation of this conceptual equivalence.
*
* Note also that there is actually a many-to-many relationship between
* Layers and FrameMetrics, because multiple Layers may have identical
* FrameMetrics objects. This happens when those layers belong to the
* same scrolling subdocument and therefore end up with the same async
* transform when they are scrolled by the APZ code.
*/
void SetFrameMetrics(const nsTArray<FrameMetrics>& aMetricsArray)
{
if (mFrameMetrics != aMetricsArray) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FrameMetrics", this));
mFrameMetrics = aMetricsArray;
FrameMetricsChanged();
Mutated();
}
}
/*
* Compositor event handling
* =========================
* When a touch-start event (or similar) is sent to the AsyncPanZoomController,
* it needs to decide whether the event should be sent to the main thread.
* Each layer has a list of event handling regions. When the compositor needs
* to determine how to handle a touch event, it scans the layer tree from top
* to bottom in z-order (traversing children before their parents). Points
* outside the clip region for a layer cause that layer (and its subtree)
* to be ignored. If a layer has a mask layer, and that mask layer's alpha
* value is zero at the event point, then the layer and its subtree should
* be ignored.
* For each layer, if the point is outside its hit region, we ignore the layer
* and move onto the next. If the point is inside its hit region but
* outside the dispatch-to-content region, we can initiate a gesture without
* consulting the content thread. Otherwise we must dispatch the event to
* content.
* Note that if a layer or any ancestor layer has a ForceEmptyHitRegion
* override in GetEventRegionsOverride() then the hit-region must be treated
* as empty. Similarly, if there is a ForceDispatchToContent override then
* the dispatch-to-content region must be treated as encompassing the entire
* hit region, and therefore we must consult the content thread before
* initiating a gesture. (If both flags are set, ForceEmptyHitRegion takes
* priority.)
*/
/**
* CONSTRUCTION PHASE ONLY
* Set the event handling region.
*/
void SetEventRegions(const EventRegions& aRegions)
{
if (mEventRegions != aRegions) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) eventregions were %s, now %s", this,
mEventRegions.ToString().get(), aRegions.ToString().get()));
mEventRegions = aRegions;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set the opacity which will be applied to this layer as it
* is composited to the destination.
*/
void SetOpacity(float aOpacity)
{
if (mOpacity != aOpacity) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Opacity", this));
mOpacity = aOpacity;
Mutated();
}
}
void SetMixBlendMode(gfx::CompositionOp aMixBlendMode)
{
if (mMixBlendMode != aMixBlendMode) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MixBlendMode", this));
mMixBlendMode = aMixBlendMode;
Mutated();
}
}
void SetForceIsolatedGroup(bool aForceIsolatedGroup)
{
if(mForceIsolatedGroup != aForceIsolatedGroup) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ForceIsolatedGroup", this));
mForceIsolatedGroup = aForceIsolatedGroup;
Mutated();
}
}
bool GetForceIsolatedGroup() const
{
return mForceIsolatedGroup;
}
/**
* CONSTRUCTION PHASE ONLY
* Set a clip rect which will be applied to this layer as it is
* composited to the destination. The coordinates are relative to
* the parent layer (i.e. the contents of this layer
* are transformed before this clip rect is applied).
* For the root layer, the coordinates are relative to the widget,
* in device pixels.
* If aRect is null no clipping will be performed.
*/
void SetClipRect(const Maybe<ParentLayerIntRect>& aRect)
{
if (mClipRect) {
if (!aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is <none>", this,
mClipRect->x, mClipRect->y, mClipRect->width, mClipRect->height));
mClipRect.reset();
Mutated();
} else {
if (!aRect->IsEqualEdges(*mClipRect)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was %d,%d,%d,%d is %d,%d,%d,%d", this,
mClipRect->x, mClipRect->y, mClipRect->width, mClipRect->height,
aRect->x, aRect->y, aRect->width, aRect->height));
mClipRect = aRect;
Mutated();
}
}
} else {
if (aRect) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ClipRect was <none> is %d,%d,%d,%d", this,
aRect->x, aRect->y, aRect->width, aRect->height));
mClipRect = aRect;
Mutated();
}
}
}
/**
* CONSTRUCTION PHASE ONLY
* Set a layer to mask this layer.
*
* The mask layer should be applied using its effective transform (after it
* is calculated by ComputeEffectiveTransformForMaskLayer), this should use
* this layer's parent's transform and the mask layer's transform, but not
* this layer's. That is, the mask layer is specified relative to this layer's
* position in it's parent layer's coord space.
* Currently, only 2D translations are supported for the mask layer transform.
*
* Ownership of aMaskLayer passes to this.
* Typical use would be an ImageLayer with an alpha image used for masking.
* See also ContainerState::BuildMaskLayer in FrameLayerBuilder.cpp.
*/
void SetMaskLayer(Layer* aMaskLayer)
{
#ifdef DEBUG
if (aMaskLayer) {
bool maskIs2D = aMaskLayer->GetTransform().CanDraw2D();
NS_ASSERTION(maskIs2D, "Mask layer has invalid transform.");
}
#endif
if (mMaskLayer != aMaskLayer) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) MaskLayer", this));
mMaskLayer = aMaskLayer;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Add a FrameMetrics-associated mask layer.
*/
void SetAncestorMaskLayers(const nsTArray<RefPtr<Layer>>& aLayers) {
if (aLayers != mAncestorMaskLayers) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) AncestorMaskLayers", this));
mAncestorMaskLayers = aLayers;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer what its transform should be. The transformation
* is applied when compositing the layer into its parent container.
*/
void SetBaseTransform(const gfx::Matrix4x4& aMatrix)
{
NS_ASSERTION(!aMatrix.IsSingular(),
"Shouldn't be trying to draw with a singular matrix!");
mPendingTransform = nullptr;
if (mTransform == aMatrix) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) BaseTransform", this));
mTransform = aMatrix;
Mutated();
}
/**
* Can be called at any time.
*
* Like SetBaseTransform(), but can be called before the next
* transform (i.e. outside an open transaction). Semantically, this
* method enqueues a new transform value to be set immediately after
* the next transaction is opened.
*/
void SetBaseTransformForNextTransaction(const gfx::Matrix4x4& aMatrix)
{
mPendingTransform = new gfx::Matrix4x4(aMatrix);
}
void SetPostScale(float aXScale, float aYScale)
{
if (mPostXScale == aXScale && mPostYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PostScale", this));
mPostXScale = aXScale;
mPostYScale = aYScale;
Mutated();
}
/**
* CONSTRUCTION PHASE ONLY
* A layer is "fixed position" when it draws content from a content
* (not chrome) document, the topmost content document has a root scrollframe
* with a displayport, but the layer does not move when that displayport scrolls.
*/
void SetIsFixedPosition(bool aFixedPosition)
{
if (mIsFixedPosition != aFixedPosition) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) IsFixedPosition", this));
mIsFixedPosition = aFixedPosition;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* This flag is true when the transform on the layer is a perspective
* transform. The compositor treats perspective transforms specially
* for async scrolling purposes.
*/
void SetTransformIsPerspective(bool aTransformIsPerspective)
{
if (mTransformIsPerspective != aTransformIsPerspective) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) TransformIsPerspective", this));
mTransformIsPerspective = aTransformIsPerspective;
Mutated();
}
}
// Call AddAnimation to add a new animation to this layer from layout code.
// Caller must fill in all the properties of the returned animation.
// A later animation overrides an earlier one.
Animation* AddAnimation();
// ClearAnimations clears animations on this layer.
void ClearAnimations();
// This is only called when the layer tree is updated. Do not call this from
// layout code. To add an animation to this layer, use AddAnimation.
void SetAnimations(const AnimationArray& aAnimations);
// Go through all animations in this layer and its children and, for
// any animations with a null start time, update their start time such
// that at |aReadyTime| the animation's current time corresponds to its
// 'initial current time' value.
void StartPendingAnimations(const TimeStamp& aReadyTime);
// These are a parallel to AddAnimation and clearAnimations, except
// they add pending animations that apply only when the next
// transaction is begun. (See also
// SetBaseTransformForNextTransaction.)
Animation* AddAnimationForNextTransaction();
void ClearAnimationsForNextTransaction();
/**
* CONSTRUCTION PHASE ONLY
* If a layer represents a fixed position element, this data is stored on the
* layer for use by the compositor.
*
* - |aScrollId| identifies the scroll frame that this element is fixed
* with respect to.
*
* - |aAnchor| is the point on the layer that is considered the "anchor"
* point, that is, the point which remains in the same position when
* compositing the layer tree with a transformation (such as when
* asynchronously scrolling and zooming).
*
* - |aSides| is the set of sides to which the element is fixed relative to.
* This is used if the viewport size is changed in the compositor and
* fixed position items need to shift accordingly. This value is made up
* combining appropriate values from mozilla::SideBits.
*
* - |aIsClipFixed| is true if this layer's clip rect and mask layer
* should also remain fixed during async scrolling/animations.
* This is the case for fixed position layers, but not for
* fixed background layers.
*/
void SetFixedPositionData(FrameMetrics::ViewID aScrollId,
const LayerPoint& aAnchor,
int32_t aSides,
bool aIsClipFixed)
{
if (!mFixedPositionData ||
mFixedPositionData->mScrollId != aScrollId ||
mFixedPositionData->mAnchor != aAnchor ||
mFixedPositionData->mSides != aSides ||
mFixedPositionData->mIsClipFixed != aIsClipFixed) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) FixedPositionData", this));
if (!mFixedPositionData) {
mFixedPositionData = MakeUnique<FixedPositionData>();
}
mFixedPositionData->mScrollId = aScrollId;
mFixedPositionData->mAnchor = aAnchor;
mFixedPositionData->mSides = aSides;
mFixedPositionData->mIsClipFixed = aIsClipFixed;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* If a layer is "sticky position", |aScrollId| holds the scroll identifier
* of the scrollable content that contains it. The difference between the two
* rectangles |aOuter| and |aInner| is treated as two intervals in each
* dimension, with the current scroll position at the origin. For each
* dimension, while that component of the scroll position lies within either
* interval, the layer should not move relative to its scrolling container.
*/
void SetStickyPositionData(FrameMetrics::ViewID aScrollId, LayerRect aOuter,
LayerRect aInner)
{
if (!mStickyPositionData ||
!mStickyPositionData->mOuter.IsEqualEdges(aOuter) ||
!mStickyPositionData->mInner.IsEqualEdges(aInner)) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) StickyPositionData", this));
if (!mStickyPositionData) {
mStickyPositionData = new StickyPositionData;
}
mStickyPositionData->mScrollId = aScrollId;
mStickyPositionData->mOuter = aOuter;
mStickyPositionData->mInner = aInner;
Mutated();
}
}
enum ScrollDirection {
NONE,
VERTICAL,
HORIZONTAL
};
/**
* CONSTRUCTION PHASE ONLY
* If a layer is a scrollbar layer, |aScrollId| holds the scroll identifier
* of the scrollable content that the scrollbar is for.
*/
void SetScrollbarData(FrameMetrics::ViewID aScrollId, ScrollDirection aDir, float aThumbRatio)
{
if (mScrollbarTargetId != aScrollId ||
mScrollbarDirection != aDir ||
mScrollbarThumbRatio != aThumbRatio)
{
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScrollbarData", this));
mScrollbarTargetId = aScrollId;
mScrollbarDirection = aDir;
mScrollbarThumbRatio = aThumbRatio;
Mutated();
}
}
// Set during construction for the container layer of scrollbar components.
void SetIsScrollbarContainer()
{
if (!mIsScrollbarContainer) {
mIsScrollbarContainer = true;
Mutated();
}
}
// These getters can be used anytime.
float GetOpacity() { return mOpacity; }
gfx::CompositionOp GetMixBlendMode() const { return mMixBlendMode; }
const Maybe<ParentLayerIntRect>& GetClipRect() const { return mClipRect; }
uint32_t GetContentFlags() { return mContentFlags; }
const gfx::IntRect& GetLayerBounds() const { return mLayerBounds; }
const LayerIntRegion& GetVisibleRegion() const { return mVisibleRegion; }
const FrameMetrics& GetFrameMetrics(uint32_t aIndex) const;
uint32_t GetFrameMetricsCount() const { return mFrameMetrics.Length(); }
const nsTArray<FrameMetrics>& GetAllFrameMetrics() { return mFrameMetrics; }
bool HasScrollableFrameMetrics() const;
bool IsScrollInfoLayer() const;
const EventRegions& GetEventRegions() const { return mEventRegions; }
ContainerLayer* GetParent() { return mParent; }
Layer* GetNextSibling() { return mNextSibling; }
const Layer* GetNextSibling() const { return mNextSibling; }
Layer* GetPrevSibling() { return mPrevSibling; }
const Layer* GetPrevSibling() const { return mPrevSibling; }
virtual Layer* GetFirstChild() const { return nullptr; }
virtual Layer* GetLastChild() const { return nullptr; }
const gfx::Matrix4x4 GetTransform() const;
// Same as GetTransform(), but returns the transform as a strongly-typed
// matrix. Eventually this will replace GetTransform().
const CSSTransformMatrix GetTransformTyped() const;
const gfx::Matrix4x4& GetBaseTransform() const { return mTransform; }
// Note: these are virtual because ContainerLayerComposite overrides them.
virtual float GetPostXScale() const { return mPostXScale; }
virtual float GetPostYScale() const { return mPostYScale; }
bool GetIsFixedPosition() { return mIsFixedPosition; }
bool GetTransformIsPerspective() const { return mTransformIsPerspective; }
bool GetIsStickyPosition() { return mStickyPositionData; }
FrameMetrics::ViewID GetFixedPositionScrollContainerId() { return mFixedPositionData ? mFixedPositionData->mScrollId : FrameMetrics::NULL_SCROLL_ID; }
LayerPoint GetFixedPositionAnchor() { return mFixedPositionData ? mFixedPositionData->mAnchor : LayerPoint(); }
int32_t GetFixedPositionSides() { return mFixedPositionData ? mFixedPositionData->mSides : eSideBitsNone; }
bool IsClipFixed() { return mFixedPositionData ? mFixedPositionData->mIsClipFixed : false; }
FrameMetrics::ViewID GetStickyScrollContainerId() { return mStickyPositionData->mScrollId; }
const LayerRect& GetStickyScrollRangeOuter() { return mStickyPositionData->mOuter; }
const LayerRect& GetStickyScrollRangeInner() { return mStickyPositionData->mInner; }
FrameMetrics::ViewID GetScrollbarTargetContainerId() { return mScrollbarTargetId; }
ScrollDirection GetScrollbarDirection() { return mScrollbarDirection; }
float GetScrollbarThumbRatio() { return mScrollbarThumbRatio; }
bool IsScrollbarContainer() { return mIsScrollbarContainer; }
Layer* GetMaskLayer() const { return mMaskLayer; }
// Ancestor mask layers are associated with FrameMetrics, but for simplicity
// in maintaining the layer tree structure we attach them to the layer.
size_t GetAncestorMaskLayerCount() const {
return mAncestorMaskLayers.Length();
}
Layer* GetAncestorMaskLayerAt(size_t aIndex) const {
return mAncestorMaskLayers.ElementAt(aIndex);
}
bool HasMaskLayers() const {
return GetMaskLayer() || mAncestorMaskLayers.Length() > 0;
}
/*
* Get the combined clip rect of the Layer clip and all clips on FrameMetrics.
* This is intended for use in Layout. The compositor needs to apply async
* transforms to find the combined clip.
*/
Maybe<ParentLayerIntRect> GetCombinedClipRect() const;
/**
* Retrieve the root level visible region for |this| taking into account
* clipping applied to parent layers of |this| as well as subtracting
* visible regions of higher siblings of this layer and each ancestor.
*
* Note translation values for offsets of visible regions and accumulated
* aLayerOffset are integer rounded using Point's RoundedToInt.
*
* @param aResult - the resulting visible region of this layer.
* @param aLayerOffset - this layer's total offset from the root layer.
* @return - false if during layer tree traversal a parent or sibling
* transform is found to be non-translational. This method returns early
* in this case, results will not be valid. Returns true on successful
* traversal.
*/
bool GetVisibleRegionRelativeToRootLayer(nsIntRegion& aResult,
nsIntPoint* aLayerOffset);
// Note that all lengths in animation data are either in CSS pixels or app
// units and must be converted to device pixels by the compositor.
AnimationArray& GetAnimations() { return mAnimations; }
InfallibleTArray<AnimData>& GetAnimationData() { return mAnimationData; }
uint64_t GetAnimationGeneration() { return mAnimationGeneration; }
void SetAnimationGeneration(uint64_t aCount) { mAnimationGeneration = aCount; }
bool HasTransformAnimation() const;
/**
* Returns the local transform for this layer: either mTransform or,
* for shadow layers, GetShadowTransform(), in either case with the
* pre- and post-scales applied.
*/
const gfx::Matrix4x4 GetLocalTransform();
/**
* Same as GetLocalTransform(), but returns a strongly-typed matrix.
* Eventually, this will replace GetLocalTransform().
*/
const LayerToParentLayerMatrix4x4 GetLocalTransformTyped();
/**
* Returns the local opacity for this layer: either mOpacity or,
* for shadow layers, GetShadowOpacity()
*/
float GetLocalOpacity();
/**
* DRAWING PHASE ONLY
*
* Apply pending changes to layers before drawing them, if those
* pending changes haven't been overridden by later changes.
*/
void ApplyPendingUpdatesToSubtree();
/**
* DRAWING PHASE ONLY
*
* Write layer-subtype-specific attributes into aAttrs. Used to
* synchronize layer attributes to their shadows'.
*/
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { }
// Returns true if it's OK to save the contents of aLayer in an
// opaque surface (a surface without an alpha channel).
// If we can use a surface without an alpha channel, we should, because
// it will often make painting of antialiased text faster and higher
// quality.
bool CanUseOpaqueSurface();
SurfaceMode GetSurfaceMode()
{
if (CanUseOpaqueSurface())
return SurfaceMode::SURFACE_OPAQUE;
if (mContentFlags & CONTENT_COMPONENT_ALPHA)
return SurfaceMode::SURFACE_COMPONENT_ALPHA;
return SurfaceMode::SURFACE_SINGLE_CHANNEL_ALPHA;
}
// Returns true if this layer can be treated as opaque for visibility
// computation. A layer may be non-opaque for visibility even if it
// is not transparent, for example, if it has a mix-blend-mode.
bool IsOpaqueForVisibility();
/**
* This setter can be used anytime. The user data for all keys is
* initially null. Ownership pases to the layer manager.
*/
void SetUserData(void* aKey, LayerUserData* aData)
{
mUserData.Add(static_cast<gfx::UserDataKey*>(aKey), aData, LayerManager::LayerUserDataDestroy);
}
/**
* This can be used anytime. Ownership passes to the caller!
*/
nsAutoPtr<LayerUserData> RemoveUserData(void* aKey);
/**
* This getter can be used anytime.
*/
bool HasUserData(void* aKey)
{
return mUserData.Has(static_cast<gfx::UserDataKey*>(aKey));
}
/**
* This getter can be used anytime. Ownership is retained by the layer
* manager.
*/
LayerUserData* GetUserData(void* aKey) const
{
return static_cast<LayerUserData*>(mUserData.Get(static_cast<gfx::UserDataKey*>(aKey)));
}
/**
* |Disconnect()| is used by layers hooked up over IPC. It may be
* called at any time, and may not be called at all. Using an
* IPC-enabled layer after Destroy() (drawing etc.) results in a
* safe no-op; no crashy or uaf etc.
*
* XXX: this interface is essentially LayerManager::Destroy, but at
* Layer granularity. It might be beneficial to unify them.
*/
virtual void Disconnect() {}
/**
* Dynamic downcast to a PaintedLayer. Returns null if this is not
* a PaintedLayer.
*/
virtual PaintedLayer* AsPaintedLayer() { return nullptr; }
/**
* Dynamic cast to a ContainerLayer. Returns null if this is not
* a ContainerLayer.
*/
virtual ContainerLayer* AsContainerLayer() { return nullptr; }
virtual const ContainerLayer* AsContainerLayer() const { return nullptr; }
/**
* Dynamic cast to a RefLayer. Returns null if this is not a
* RefLayer.
*/
virtual RefLayer* AsRefLayer() { return nullptr; }
/**
* Dynamic cast to a Color. Returns null if this is not a
* ColorLayer.
*/
virtual ColorLayer* AsColorLayer() { return nullptr; }
/**
* Dynamic cast to a LayerComposite. Return null if this is not a
* LayerComposite. Can be used anytime.
*/
virtual LayerComposite* AsLayerComposite() { return nullptr; }
/**
* Dynamic cast to a ShadowableLayer. Return null if this is not a
* ShadowableLayer. Can be used anytime.
*/
virtual ShadowableLayer* AsShadowableLayer() { return nullptr; }
// These getters can be used anytime. They return the effective
// values that should be used when drawing this layer to screen,
// accounting for this layer possibly being a shadow.
const Maybe<ParentLayerIntRect>& GetEffectiveClipRect();
const LayerIntRegion& GetEffectiveVisibleRegion();
bool Extend3DContext() {
return GetContentFlags() & CONTENT_EXTEND_3D_CONTEXT;
}
bool Combines3DTransformWithAncestors() {
return GetParent() &&
reinterpret_cast<Layer*>(GetParent())->Extend3DContext();
}
bool Is3DContextLeaf() {
return !Extend3DContext() && Combines3DTransformWithAncestors();
}
/**
* It is true if the user can see the back of the layer and the
* backface is hidden. The compositor should skip the layer if the
* result is true.
*/
bool IsBackfaceHidden();
bool IsVisible() {
// For containers extending 3D context, visible region
// is meaningless, since they are just intermediate result of
// content.
return !GetEffectiveVisibleRegion().IsEmpty() || Extend3DContext();
}
/**
* Returns the product of the opacities of this layer and all ancestors up
* to and excluding the nearest ancestor that has UseIntermediateSurface() set.
*/
float GetEffectiveOpacity();
/**
* Returns the blendmode of this layer.
*/
gfx::CompositionOp GetEffectiveMixBlendMode();
/**
* This returns the effective transform computed by
* ComputeEffectiveTransforms. Typically this is a transform that transforms
* this layer all the way to some intermediate surface or destination
* surface. For non-BasicLayers this will be a transform to the nearest
* ancestor with UseIntermediateSurface() (or to the root, if there is no
* such ancestor), but for BasicLayers it's different.
*/
const gfx::Matrix4x4& GetEffectiveTransform() const { return mEffectiveTransform; }
/**
* This returns the effective transform for Layer's buffer computed by
* ComputeEffectiveTransforms. Typically this is a transform that transforms
* this layer's buffer all the way to some intermediate surface or destination
* surface. For non-BasicLayers this will be a transform to the nearest
* ancestor with UseIntermediateSurface() (or to the root, if there is no
* such ancestor), but for BasicLayers it's different.
*
* By default, its value is same to GetEffectiveTransform().
* When ImageLayer is rendered with ScaleMode::STRETCH,
* it becomes different from GetEffectiveTransform().
*/
virtual const gfx::Matrix4x4& GetEffectiveTransformForBuffer() const
{
return mEffectiveTransform;
}
/**
* @param aTransformToSurface the composition of the transforms
* from the parent layer (if any) to the destination pixel grid.
*
* Computes mEffectiveTransform for this layer and all its descendants.
* mEffectiveTransform transforms this layer up to the destination
* pixel grid (whatever aTransformToSurface is relative to).
*
* We promise that when this is called on a layer, all ancestor layers
* have already had ComputeEffectiveTransforms called.
*/
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) = 0;
/**
* Computes the effective transform for mask layers, if this layer has any.
*/
void ComputeEffectiveTransformForMaskLayers(const gfx::Matrix4x4& aTransformToSurface);
static void ComputeEffectiveTransformForMaskLayer(Layer* aMaskLayer,
const gfx::Matrix4x4& aTransformToSurface);
/**
* Calculate the scissor rect required when rendering this layer.
* Returns a rectangle relative to the intermediate surface belonging to the
* nearest ancestor that has an intermediate surface, or relative to the root
* viewport if no ancestor has an intermediate surface, corresponding to the
* clip rect for this layer intersected with aCurrentScissorRect.
*/
RenderTargetIntRect CalculateScissorRect(const RenderTargetIntRect& aCurrentScissorRect);
virtual const char* Name() const =0;
virtual LayerType GetType() const =0;
/**
* Only the implementation should call this. This is per-implementation
* private data. Normally, all layers with a given layer manager
* use the same type of ImplData.
*/
void* ImplData() { return mImplData; }
/**
* Only the implementation should use these methods.
*/
void SetParent(ContainerLayer* aParent) { mParent = aParent; }
void SetNextSibling(Layer* aSibling) { mNextSibling = aSibling; }
void SetPrevSibling(Layer* aSibling) { mPrevSibling = aSibling; }
/**
* Dump information about this layer manager and its managed tree to
* aStream.
*/
void Dump(std::stringstream& aStream, const char* aPrefix="", bool aDumpHtml=false);
/**
* Dump information about just this layer manager itself to aStream.
*/
void DumpSelf(std::stringstream& aStream, const char* aPrefix="");
/**
* Dump information about this layer and its child & sibling layers to
* layerscope packet.
*/
void Dump(layerscope::LayersPacket* aPacket, const void* aParent);
/**
* Log information about this layer manager and its managed tree to
* the NSPR log (if enabled for "Layers").
*/
void Log(const char* aPrefix="");
/**
* Log information about just this layer manager itself to the NSPR
* log (if enabled for "Layers").
*/
void LogSelf(const char* aPrefix="");
// Print interesting information about this into aStream. Internally
// used to implement Dump*() and Log*(). If subclasses have
// additional interesting properties, they should override this with
// an implementation that first calls the base implementation then
// appends additional info to aTo.
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix);
// Just like PrintInfo, but this function dump information into layerscope packet,
// instead of a StringStream. It is also internally used to implement Dump();
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent);
/**
* Store display list log.
*/
void SetDisplayListLog(const char *log);
/**
* Return display list log.
*/
void GetDisplayListLog(nsCString& log);
static bool IsLogEnabled() { return LayerManager::IsLogEnabled(); }
/**
* Returns the current area of the layer (in layer-space coordinates)
* marked as needed to be recomposited.
*/
const nsIntRegion& GetInvalidRegion() { return mInvalidRegion; }
void AddInvalidRegion(const nsIntRegion& aRegion) {
mInvalidRegion.Or(mInvalidRegion, aRegion);
}
/**
* Mark the entirety of the layer's visible region as being invalid.
*/
void SetInvalidRectToVisibleRegion() { mInvalidRegion = GetVisibleRegion().ToUnknownRegion(); }
/**
* Adds to the current invalid rect.
*/
void AddInvalidRect(const gfx::IntRect& aRect) { mInvalidRegion.Or(mInvalidRegion, aRect); }
/**
* Clear the invalid rect, marking the layer as being identical to what is currently
* composited.
*/
void ClearInvalidRect() { mInvalidRegion.SetEmpty(); }
// These functions allow attaching an AsyncPanZoomController to this layer,
// and can be used anytime.
// A layer has an APZC at index aIndex only-if GetFrameMetrics(aIndex).IsScrollable();
// attempting to get an APZC for a non-scrollable metrics will return null.
// The aIndex for these functions must be less than GetFrameMetricsCount().
void SetAsyncPanZoomController(uint32_t aIndex, AsyncPanZoomController *controller);
AsyncPanZoomController* GetAsyncPanZoomController(uint32_t aIndex) const;
// The FrameMetricsChanged function is used internally to ensure the APZC array length
// matches the frame metrics array length.
private:
void FrameMetricsChanged();
public:
void ApplyPendingUpdatesForThisTransaction();
#ifdef DEBUG
void SetDebugColorIndex(uint32_t aIndex) { mDebugColorIndex = aIndex; }
uint32_t GetDebugColorIndex() { return mDebugColorIndex; }
#endif
virtual LayerRenderState GetRenderState() { return LayerRenderState(); }
void Mutated()
{
mManager->Mutated(this);
}
virtual int32_t GetMaxLayerSize() { return Manager()->GetMaxTextureSize(); }
/**
* Returns true if this layer's effective transform is not just
* a translation by integers, or if this layer or some ancestor layer
* is marked as having a transform that may change without a full layer
* transaction.
*/
bool MayResample();
RenderTargetRect TransformRectToRenderTarget(const LayerIntRect& aRect);
/**
* Add debugging information to the layer dump.
*/
void AddExtraDumpInfo(const nsACString& aStr)
{
#ifdef MOZ_DUMP_PAINTING
mExtraDumpInfo.AppendElement(aStr);
#endif
}
/**
* Clear debugging information. Useful for recycling.
*/
void ClearExtraDumpInfo()
{
#ifdef MOZ_DUMP_PAINTING
mExtraDumpInfo.Clear();
#endif
}
/**
* Replace the current effective transform with the given one,
* returning the old one. This is currently added as a hack for VR
* rendering, and might go away if we find a better way to do this.
* If you think you have a need for this method, talk with
* vlad/mstange/mwoodrow first.
*/
virtual gfx::Matrix4x4 ReplaceEffectiveTransform(const gfx::Matrix4x4& aNewEffectiveTransform) {
gfx::Matrix4x4 old = mEffectiveTransform;
mEffectiveTransform = aNewEffectiveTransform;
ComputeEffectiveTransformForMaskLayers(mEffectiveTransform);
return old;
}
protected:
Layer(LayerManager* aManager, void* aImplData);
// Protected destructor, to discourage deletion outside of Release():
virtual ~Layer();
/**
* We can snap layer transforms for two reasons:
* 1) To avoid unnecessary resampling when a transform is a translation
* by a non-integer number of pixels.
* Snapping the translation to an integer number of pixels avoids
* blurring the layer and can be faster to composite.
* 2) When a layer is used to render a rectangular object, we need to
* emulate the rendering of rectangular inactive content and snap the
* edges of the rectangle to pixel boundaries. This is both to ensure
* layer rendering is consistent with inactive content rendering, and to
* avoid seams.
* This function implements type 1 snapping. If aTransform is a 2D
* translation, and this layer's layer manager has enabled snapping
* (which is the default), return aTransform with the translation snapped
* to nearest pixels. Otherwise just return aTransform. Call this when the
* layer does not correspond to a single rectangular content object.
* This function does not try to snap if aTransform has a scale, because in
* that case resampling is inevitable and there's no point in trying to
* avoid it. In fact snapping can cause problems because pixel edges in the
* layer's content can be rendered unpredictably (jiggling) as the scale
* interacts with the snapping of the translation, especially with animated
* transforms.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransformTranslation(const gfx::Matrix4x4& aTransform,
gfx::Matrix* aResidualTransform);
/**
* See comment for SnapTransformTranslation.
* This function implements type 2 snapping. If aTransform is a translation
* and/or scale, transform aSnapRect by aTransform, snap to pixel boundaries,
* and return the transform that maps aSnapRect to that rect. Otherwise
* just return aTransform.
* @param aSnapRect a rectangle whose edges should be snapped to pixel
* boundaries in the destination surface.
* @param aResidualTransform a transform to apply before the result transform
* in order to get the results to completely match aTransform.
*/
gfx::Matrix4x4 SnapTransform(const gfx::Matrix4x4& aTransform,
const gfxRect& aSnapRect,
gfx::Matrix* aResidualTransform);
LayerManager* mManager;
ContainerLayer* mParent;
Layer* mNextSibling;
Layer* mPrevSibling;
void* mImplData;
RefPtr<Layer> mMaskLayer;
nsTArray<RefPtr<Layer>> mAncestorMaskLayers;
gfx::UserData mUserData;
gfx::IntRect mLayerBounds;
LayerIntRegion mVisibleRegion;
nsTArray<FrameMetrics> mFrameMetrics;
EventRegions mEventRegions;
gfx::Matrix4x4 mTransform;
// A mutation of |mTransform| that we've queued to be applied at the
// end of the next transaction (if nothing else overrides it in the
// meantime).
nsAutoPtr<gfx::Matrix4x4> mPendingTransform;
float mPostXScale;
float mPostYScale;
gfx::Matrix4x4 mEffectiveTransform;
AnimationArray mAnimations;
// See mPendingTransform above.
nsAutoPtr<AnimationArray> mPendingAnimations;
InfallibleTArray<AnimData> mAnimationData;
float mOpacity;
gfx::CompositionOp mMixBlendMode;
bool mForceIsolatedGroup;
Maybe<ParentLayerIntRect> mClipRect;
gfx::IntRect mTileSourceRect;
nsIntRegion mInvalidRegion;
nsTArray<RefPtr<AsyncPanZoomController> > mApzcs;
uint32_t mContentFlags;
bool mUseTileSourceRect;
bool mIsFixedPosition;
bool mTransformIsPerspective;
struct FixedPositionData {
FrameMetrics::ViewID mScrollId;
LayerPoint mAnchor;
int32_t mSides;
bool mIsClipFixed;
};
UniquePtr<FixedPositionData> mFixedPositionData;
struct StickyPositionData {
FrameMetrics::ViewID mScrollId;
LayerRect mOuter;
LayerRect mInner;
};
nsAutoPtr<StickyPositionData> mStickyPositionData;
FrameMetrics::ViewID mScrollbarTargetId;
ScrollDirection mScrollbarDirection;
// The scrollbar thumb ratio is the ratio of the thumb position (in the CSS
// pixels of the scrollframe's parent's space) to the scroll position (in the
// CSS pixels of the scrollframe's space).
float mScrollbarThumbRatio;
bool mIsScrollbarContainer;
DebugOnly<uint32_t> mDebugColorIndex;
// If this layer is used for OMTA, then this counter is used to ensure we
// stay in sync with the animation manager
uint64_t mAnimationGeneration;
#ifdef MOZ_DUMP_PAINTING
nsTArray<nsCString> mExtraDumpInfo;
#endif
// Store display list log.
nsCString mDisplayListLog;
};
/**
* A Layer which we can paint into. It is a conceptually
* infinite surface, but each PaintedLayer has an associated "valid region"
* of contents that it is currently storing, which is finite. PaintedLayer
* implementations can store content between paints.
*
* PaintedLayers are rendered into during the drawing phase of a transaction.
*
* Currently the contents of a PaintedLayer are in the device output color
* space.
*/
class PaintedLayer : public Layer {
public:
/**
* CONSTRUCTION PHASE ONLY
* Tell this layer that the content in some region has changed and
* will need to be repainted. This area is removed from the valid
* region.
*/
virtual void InvalidateRegion(const nsIntRegion& aRegion) = 0;
/**
* CONSTRUCTION PHASE ONLY
* Set whether ComputeEffectiveTransforms should compute the
* "residual translation" --- the translation that should be applied *before*
* mEffectiveTransform to get the ideal transform for this PaintedLayer.
* When this is true, ComputeEffectiveTransforms will compute the residual
* and ensure that the layer is invalidated whenever the residual changes.
* When it's false, a change in the residual will not trigger invalidation
* and GetResidualTranslation will return 0,0.
* So when the residual is to be ignored, set this to false for better
* performance.
*/
void SetAllowResidualTranslation(bool aAllow) { mAllowResidualTranslation = aAllow; }
/**
* Can be used anytime
*/
const nsIntRegion& GetValidRegion() const { return mValidRegion; }
virtual PaintedLayer* AsPaintedLayer() override { return this; }
MOZ_LAYER_DECL_NAME("PaintedLayer", TYPE_PAINTED)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override
{
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
gfx::Matrix residual;
mEffectiveTransform = SnapTransformTranslation(idealTransform,
mAllowResidualTranslation ? &residual : nullptr);
// The residual can only be a translation because SnapTransformTranslation
// only changes the transform if it's a translation
NS_ASSERTION(residual.IsTranslation(),
"Residual transform can only be a translation");
if (!gfx::ThebesPoint(residual.GetTranslation()).WithinEpsilonOf(mResidualTranslation, 1e-3f)) {
mResidualTranslation = gfx::ThebesPoint(residual.GetTranslation());
DebugOnly<mozilla::gfx::Point> transformedOrig =
idealTransform * mozilla::gfx::Point();
#ifdef DEBUG
DebugOnly<mozilla::gfx::Point> transformed =
idealTransform * mozilla::gfx::Point(mResidualTranslation.x,
mResidualTranslation.y) -
*&transformedOrig;
#endif
NS_ASSERTION(-0.5 <= (&transformed)->x && (&transformed)->x < 0.5 &&
-0.5 <= (&transformed)->y && (&transformed)->y < 0.5,
"Residual translation out of range");
mValidRegion.SetEmpty();
}
ComputeEffectiveTransformForMaskLayers(aTransformToSurface);
}
LayerManager::PaintedLayerCreationHint GetCreationHint() const { return mCreationHint; }
bool UsedForReadback() { return mUsedForReadback; }
void SetUsedForReadback(bool aUsed) { mUsedForReadback = aUsed; }
/**
* Returns true if aLayer is optimized for the given PaintedLayerCreationHint.
*/
virtual bool IsOptimizedFor(LayerManager::PaintedLayerCreationHint aCreationHint)
{ return true; }
/**
* Returns the residual translation. Apply this translation when drawing
* into the PaintedLayer so that when mEffectiveTransform is applied afterwards
* by layer compositing, the results exactly match the "ideal transform"
* (the product of the transform of this layer and its ancestors).
* Returns 0,0 unless SetAllowResidualTranslation(true) has been called.
* The residual translation components are always in the range [-0.5, 0.5).
*/
gfxPoint GetResidualTranslation() const { return mResidualTranslation; }
protected:
PaintedLayer(LayerManager* aManager, void* aImplData,
LayerManager::PaintedLayerCreationHint aCreationHint = LayerManager::NONE)
: Layer(aManager, aImplData)
, mValidRegion()
, mCreationHint(aCreationHint)
, mUsedForReadback(false)
, mAllowResidualTranslation(false)
{
mContentFlags = 0; // Clear NO_TEXT, NO_TEXT_OVER_TRANSPARENT
}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
/**
* ComputeEffectiveTransforms snaps the ideal transform to get mEffectiveTransform.
* mResidualTranslation is the translation that should be applied *before*
* mEffectiveTransform to get the ideal transform.
*/
gfxPoint mResidualTranslation;
nsIntRegion mValidRegion;
/**
* The creation hint that was used when constructing this layer.
*/
const LayerManager::PaintedLayerCreationHint mCreationHint;
/**
* Set when this PaintedLayer is participating in readback, i.e. some
* ReadbackLayer (may) be getting its background from this layer.
*/
bool mUsedForReadback;
/**
* True when
*/
bool mAllowResidualTranslation;
};
/**
* A Layer which other layers render into. It holds references to its
* children.
*/
class ContainerLayer : public Layer {
public:
~ContainerLayer();
/**
* CONSTRUCTION PHASE ONLY
* Insert aChild into the child list of this container. aChild must
* not be currently in any child list or the root for the layer manager.
* If aAfter is non-null, it must be a child of this container and
* we insert after that layer. If it's null we insert at the start.
*/
virtual bool InsertAfter(Layer* aChild, Layer* aAfter);
/**
* CONSTRUCTION PHASE ONLY
* Remove aChild from the child list of this container. aChild must
* be a child of this container.
*/
virtual bool RemoveChild(Layer* aChild);
/**
* CONSTRUCTION PHASE ONLY
* Reposition aChild from the child list of this container. aChild must
* be a child of this container.
* If aAfter is non-null, it must be a child of this container and we
* reposition after that layer. If it's null, we reposition at the start.
*/
virtual bool RepositionChild(Layer* aChild, Layer* aAfter);
void SetPreScale(float aXScale, float aYScale)
{
if (mPreXScale == aXScale && mPreYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) PreScale", this));
mPreXScale = aXScale;
mPreYScale = aYScale;
Mutated();
}
void SetInheritedScale(float aXScale, float aYScale)
{
if (mInheritedXScale == aXScale && mInheritedYScale == aYScale) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) InheritedScale", this));
mInheritedXScale = aXScale;
mInheritedYScale = aYScale;
Mutated();
}
void SetScaleToResolution(bool aScaleToResolution, float aResolution)
{
if (mScaleToResolution == aScaleToResolution && mPresShellResolution == aResolution) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ScaleToResolution", this));
mScaleToResolution = aScaleToResolution;
mPresShellResolution = aResolution;
Mutated();
}
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) override;
void SortChildrenBy3DZOrder(nsTArray<Layer*>& aArray);
// These getters can be used anytime.
virtual ContainerLayer* AsContainerLayer() override { return this; }
virtual const ContainerLayer* AsContainerLayer() const override { return this; }
virtual Layer* GetFirstChild() const override { return mFirstChild; }
virtual Layer* GetLastChild() const override { return mLastChild; }
float GetPreXScale() const { return mPreXScale; }
float GetPreYScale() const { return mPreYScale; }
float GetInheritedXScale() const { return mInheritedXScale; }
float GetInheritedYScale() const { return mInheritedYScale; }
float GetPresShellResolution() const { return mPresShellResolution; }
bool ScaleToResolution() const { return mScaleToResolution; }
MOZ_LAYER_DECL_NAME("ContainerLayer", TYPE_CONTAINER)
/**
* ContainerLayer backends need to override ComputeEffectiveTransforms
* since the decision about whether to use a temporary surface for the
* container is backend-specific. ComputeEffectiveTransforms must also set
* mUseIntermediateSurface.
*/
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override = 0;
/**
* Call this only after ComputeEffectiveTransforms has been invoked
* on this layer.
* Returns true if this will use an intermediate surface. This is largely
* backend-dependent, but it affects the operation of GetEffectiveOpacity().
*/
bool UseIntermediateSurface() { return mUseIntermediateSurface; }
/**
* Returns the rectangle covered by the intermediate surface,
* in this layer's coordinate system.
*
* NOTE: Since this layer has an intermediate surface it follows
* that LayerPixel == RenderTargetPixel
*/
RenderTargetIntRect GetIntermediateSurfaceRect()
{
NS_ASSERTION(mUseIntermediateSurface, "Must have intermediate surface");
return RenderTargetIntRect::FromUnknownRect(GetEffectiveVisibleRegion().ToUnknownRegion().GetBounds());
}
/**
* Returns true if this container has more than one non-empty child
*/
bool HasMultipleChildren();
/**
* Returns true if this container supports children with component alpha.
* Should only be called while painting a child of this layer.
*/
bool SupportsComponentAlphaChildren() { return mSupportsComponentAlphaChildren; }
/**
* Returns true if aLayer or any layer in its parent chain has the opaque
* content flag set.
*/
static bool HasOpaqueAncestorLayer(Layer* aLayer);
void SetChildrenChanged(bool aVal) {
mChildrenChanged = aVal;
}
void SetEventRegionsOverride(EventRegionsOverride aVal) {
if (mEventRegionsOverride == aVal) {
return;
}
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) EventRegionsOverride", this));
mEventRegionsOverride = aVal;
Mutated();
}
EventRegionsOverride GetEventRegionsOverride() const {
return mEventRegionsOverride;
}
/**
* VR
*/
void SetVRDeviceID(uint32_t aVRDeviceID) {
mVRDeviceID = aVRDeviceID;
}
uint32_t GetVRDeviceID() {
return mVRDeviceID;
}
/**
* Replace the current effective transform with the given one,
* returning the old one. This is currently added as a hack for VR
* rendering, and might go away if we find a better way to do this.
* If you think you have a need for this method, talk with
* vlad/mstange/mwoodrow first.
*/
gfx::Matrix4x4 ReplaceEffectiveTransform(const gfx::Matrix4x4& aNewEffectiveTransform) override {
gfx::Matrix4x4 old = mEffectiveTransform;
mEffectiveTransform = aNewEffectiveTransform;
ComputeEffectiveTransformsForChildren(mEffectiveTransform);
ComputeEffectiveTransformForMaskLayers(mEffectiveTransform);
return old;
}
protected:
friend class ReadbackProcessor;
void DidInsertChild(Layer* aLayer);
void DidRemoveChild(Layer* aLayer);
void Collect3DContextLeaves(nsTArray<Layer*>& aToSort);
ContainerLayer(LayerManager* aManager, void* aImplData);
/**
* A default implementation of ComputeEffectiveTransforms for use by OpenGL
* and D3D.
*/
void DefaultComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface);
/**
* A default implementation to compute and set the value for SupportsComponentAlphaChildren().
*
* If aNeedsSurfaceCopy is provided, then it is set to true if the caller needs to copy the background
* up into the intermediate surface created, false otherwise.
*/
void DefaultComputeSupportsComponentAlphaChildren(bool* aNeedsSurfaceCopy = nullptr);
/**
* Loops over the children calling ComputeEffectiveTransforms on them.
*/
void ComputeEffectiveTransformsForChildren(const gfx::Matrix4x4& aTransformToSurface);
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
/**
* True for if the container start a new 3D context extended by one
* or more children.
*/
bool Creates3DContextWithExtendingChildren();
Layer* mFirstChild;
Layer* mLastChild;
float mPreXScale;
float mPreYScale;
// The resolution scale inherited from the parent layer. This will already
// be part of mTransform.
float mInheritedXScale;
float mInheritedYScale;
// For layers corresponding to an nsDisplayResolution, the resolution of the
// associated pres shell; for other layers, 1.0.
float mPresShellResolution;
// Whether the compositor should scale to mPresShellResolution.
bool mScaleToResolution;
bool mUseIntermediateSurface;
bool mSupportsComponentAlphaChildren;
bool mMayHaveReadbackChild;
// This is updated by ComputeDifferences. This will be true if we need to invalidate
// the intermediate surface.
bool mChildrenChanged;
EventRegionsOverride mEventRegionsOverride;
uint32_t mVRDeviceID;
};
/**
* A Layer which just renders a solid color in its visible region. It actually
* can fill any area that contains the visible region, so if you need to
* restrict the area filled, set a clip region on this layer.
*/
class ColorLayer : public Layer {
public:
virtual ColorLayer* AsColorLayer() override { return this; }
/**
* CONSTRUCTION PHASE ONLY
* Set the color of the layer.
*/
virtual void SetColor(const gfx::Color& aColor)
{
if (mColor != aColor) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Color", this));
mColor = aColor;
Mutated();
}
}
void SetBounds(const gfx::IntRect& aBounds)
{
if (!mBounds.IsEqualEdges(aBounds)) {
mBounds = aBounds;
Mutated();
}
}
const gfx::IntRect& GetBounds()
{
return mBounds;
}
// This getter can be used anytime.
virtual const gfx::Color& GetColor() { return mColor; }
MOZ_LAYER_DECL_NAME("ColorLayer", TYPE_COLOR)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override
{
gfx::Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface;
mEffectiveTransform = SnapTransformTranslation(idealTransform, nullptr);
ComputeEffectiveTransformForMaskLayers(aTransformToSurface);
}
protected:
ColorLayer(LayerManager* aManager, void* aImplData)
: Layer(aManager, aImplData)
, mColor()
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
gfx::IntRect mBounds;
gfx::Color mColor;
};
/**
* A Layer for HTML Canvas elements. It's backed by either a
* gfxASurface or a GLContext (for WebGL layers), and has some control
* for intelligent updating from the source if necessary (for example,
* if hardware compositing is not available, for reading from the GL
* buffer into an image surface that we can layer composite.)
*
* After Initialize is called, the underlying canvas Surface/GLContext
* must not be modified during a layer transaction.
*/
class CanvasLayer : public Layer {
public:
struct Data {
Data()
: mBufferProvider(nullptr)
, mGLContext(nullptr)
, mRenderer(nullptr)
, mFrontbufferGLTex(0)
, mSize(0,0)
, mHasAlpha(false)
, mIsGLAlphaPremult(true)
{ }
// One of these three must be specified for Canvas2D, but never more than one
PersistentBufferProvider* mBufferProvider; // A BufferProvider for the Canvas contents
mozilla::gl::GLContext* mGLContext; // or this, for GL.
AsyncCanvasRenderer* mRenderer; // or this, for OffscreenCanvas
// Frontbuffer override
uint32_t mFrontbufferGLTex;
// The size of the canvas content
gfx::IntSize mSize;
// Whether the canvas drawingbuffer has an alpha channel.
bool mHasAlpha;
// Whether mGLContext contains data that is alpha-premultiplied.
bool mIsGLAlphaPremult;
};
/**
* CONSTRUCTION PHASE ONLY
* Initialize this CanvasLayer with the given data. The data must
* have either mSurface or mGLContext initialized (but not both), as
* well as mSize.
*
* This must only be called once.
*/
virtual void Initialize(const Data& aData) = 0;
/**
* Check the data is owned by this layer is still valid for rendering
*/
virtual bool IsDataValid(const Data& aData) { return true; }
/**
* Notify this CanvasLayer that the canvas surface contents have
* changed (or will change) before the next transaction.
*/
void Updated() { mDirty = true; SetInvalidRectToVisibleRegion(); }
/**
* Notify this CanvasLayer that the canvas surface contents have
* been painted since the last change.
*/
void Painted() { mDirty = false; }
/**
* Returns true if the canvas surface contents have changed since the
* last paint.
*/
bool IsDirty()
{
// We can only tell if we are dirty if we're part of the
// widget's retained layer tree.
if (!mManager || !mManager->IsWidgetLayerManager()) {
return true;
}
return mDirty;
}
/**
* Register a callback to be called at the start of each transaction.
*/
typedef void PreTransactionCallback(void* closureData);
void SetPreTransactionCallback(PreTransactionCallback* callback, void* closureData)
{
mPreTransCallback = callback;
mPreTransCallbackData = closureData;
}
const nsIntRect& GetBounds() const { return mBounds; }
protected:
void FirePreTransactionCallback()
{
if (mPreTransCallback) {
mPreTransCallback(mPreTransCallbackData);
}
}
public:
/**
* Register a callback to be called at the end of each transaction.
*/
typedef void (* DidTransactionCallback)(void* aClosureData);
void SetDidTransactionCallback(DidTransactionCallback aCallback, void* aClosureData)
{
mPostTransCallback = aCallback;
mPostTransCallbackData = aClosureData;
}
/**
* CONSTRUCTION PHASE ONLY
* Set the filter used to resample this image (if necessary).
*/
void SetFilter(gfx::Filter aFilter)
{
if (mFilter != aFilter) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) Filter", this));
mFilter = aFilter;
Mutated();
}
}
gfx::Filter GetFilter() const { return mFilter; }
MOZ_LAYER_DECL_NAME("CanvasLayer", TYPE_CANVAS)
virtual void ComputeEffectiveTransforms(const gfx::Matrix4x4& aTransformToSurface) override
{
// Snap our local transform first, and snap the inherited transform as well.
// This makes our snapping equivalent to what would happen if our content
// was drawn into a PaintedLayer (gfxContext would snap using the local
// transform, then we'd snap again when compositing the PaintedLayer).
mEffectiveTransform =
SnapTransform(GetLocalTransform(), gfxRect(0, 0, mBounds.width, mBounds.height),
nullptr)*
SnapTransformTranslation(aTransformToSurface, nullptr);
ComputeEffectiveTransformForMaskLayers(aTransformToSurface);
}
bool GetIsAsyncRenderer() const
{
return !!mAsyncRenderer;
}
protected:
CanvasLayer(LayerManager* aManager, void* aImplData);
virtual ~CanvasLayer();
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
void FireDidTransactionCallback()
{
if (mPostTransCallback) {
mPostTransCallback(mPostTransCallbackData);
}
}
/**
* 0, 0, canvaswidth, canvasheight
*/
gfx::IntRect mBounds;
PreTransactionCallback* mPreTransCallback;
void* mPreTransCallbackData;
DidTransactionCallback mPostTransCallback;
void* mPostTransCallbackData;
gfx::Filter mFilter;
RefPtr<AsyncCanvasRenderer> mAsyncRenderer;
private:
/**
* Set to true in Updated(), cleared during a transaction.
*/
bool mDirty;
};
/**
* ContainerLayer that refers to a "foreign" layer tree, through an
* ID. Usage of RefLayer looks like
*
* Construction phase:
* allocate ID for layer subtree
* create RefLayer, SetReferentId(ID)
*
* Composition:
* look up subtree for GetReferentId()
* ConnectReferentLayer(subtree)
* compose
* ClearReferentLayer()
*
* Clients will usually want to Connect/Clear() on each transaction to
* avoid difficulties managing memory across multiple layer subtrees.
*/
class RefLayer : public ContainerLayer {
friend class LayerManager;
private:
virtual bool InsertAfter(Layer* aChild, Layer* aAfter) override
{ MOZ_CRASH(); return false; }
virtual bool RemoveChild(Layer* aChild) override
{ MOZ_CRASH(); return false; }
virtual bool RepositionChild(Layer* aChild, Layer* aAfter) override
{ MOZ_CRASH(); return false; }
using Layer::SetFrameMetrics;
public:
/**
* CONSTRUCTION PHASE ONLY
* Set the ID of the layer's referent.
*/
void SetReferentId(uint64_t aId)
{
MOZ_ASSERT(aId != 0);
if (mId != aId) {
MOZ_LAYERS_LOG_IF_SHADOWABLE(this, ("Layer::Mutated(%p) ReferentId", this));
mId = aId;
Mutated();
}
}
/**
* CONSTRUCTION PHASE ONLY
* Connect this ref layer to its referent, temporarily.
* ClearReferentLayer() must be called after composition.
*/
void ConnectReferentLayer(Layer* aLayer)
{
MOZ_ASSERT(!mFirstChild && !mLastChild);
MOZ_ASSERT(!aLayer->GetParent());
if (aLayer->Manager() != Manager()) {
// This can happen when e.g. rendering while dragging tabs
// between windows - aLayer's manager may be the manager for the
// old window's tab. In that case, it will be changed before the
// next render (see SetLayerManager). It is simply easier to
// ignore the rendering here than it is to pause it.
NS_WARNING("ConnectReferentLayer failed - Incorrect LayerManager");
return;
}
mFirstChild = mLastChild = aLayer;
aLayer->SetParent(this);
}
/**
* DRAWING PHASE ONLY
* |aLayer| is the same as the argument to ConnectReferentLayer().
*/
void DetachReferentLayer(Layer* aLayer)
{
mFirstChild = mLastChild = nullptr;
aLayer->SetParent(nullptr);
}
// These getters can be used anytime.
virtual RefLayer* AsRefLayer() override { return this; }
virtual int64_t GetReferentId() { return mId; }
/**
* DRAWING PHASE ONLY
*/
virtual void FillSpecificAttributes(SpecificLayerAttributes& aAttrs) override;
MOZ_LAYER_DECL_NAME("RefLayer", TYPE_REF)
protected:
RefLayer(LayerManager* aManager, void* aImplData)
: ContainerLayer(aManager, aImplData) , mId(0)
{}
virtual void PrintInfo(std::stringstream& aStream, const char* aPrefix) override;
virtual void DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) override;
// 0 is a special value that means "no ID".
uint64_t mId;
};
void SetAntialiasingFlags(Layer* aLayer, gfx::DrawTarget* aTarget);
#ifdef MOZ_DUMP_PAINTING
void WriteSnapshotToDumpFile(Layer* aLayer, gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(LayerManager* aManager, gfx::DataSourceSurface* aSurf);
void WriteSnapshotToDumpFile(Compositor* aCompositor, gfx::DrawTarget* aTarget);
#endif
// A utility function used by different LayerManager implementations.
gfx::IntRect ToOutsideIntRect(const gfxRect &aRect);
} // namespace layers
} // namespace mozilla
#endif /* GFX_LAYERS_H */