mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-24 13:21:05 +00:00
23f3425afe
The SurfaceCache can hold the first frame of a "static" decode as well as the animated frames in two seperate entries. We only care about what happens to the animated frames, so ignore OnSurfaceDiscarded for anything else. To accomplish this we must pass the SurfaceKey to OnSurfaceDiscarded.
1153 lines
37 KiB
C++
1153 lines
37 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/**
|
|
* SurfaceCache is a service for caching temporary surfaces in imagelib.
|
|
*/
|
|
|
|
#include "SurfaceCache.h"
|
|
|
|
#include <algorithm>
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/DebugOnly.h"
|
|
#include "mozilla/Likely.h"
|
|
#include "mozilla/Move.h"
|
|
#include "mozilla/Pair.h"
|
|
#include "mozilla/RefPtr.h"
|
|
#include "mozilla/StaticMutex.h"
|
|
#include "mozilla/StaticPtr.h"
|
|
#include "mozilla/Tuple.h"
|
|
#include "nsIMemoryReporter.h"
|
|
#include "gfx2DGlue.h"
|
|
#include "gfxPlatform.h"
|
|
#include "gfxPrefs.h"
|
|
#include "imgFrame.h"
|
|
#include "Image.h"
|
|
#include "ISurfaceProvider.h"
|
|
#include "LookupResult.h"
|
|
#include "nsExpirationTracker.h"
|
|
#include "nsHashKeys.h"
|
|
#include "nsRefPtrHashtable.h"
|
|
#include "nsSize.h"
|
|
#include "nsTArray.h"
|
|
#include "prsystem.h"
|
|
#include "ShutdownTracker.h"
|
|
|
|
using std::max;
|
|
using std::min;
|
|
|
|
namespace mozilla {
|
|
|
|
using namespace gfx;
|
|
|
|
namespace image {
|
|
|
|
class CachedSurface;
|
|
class SurfaceCacheImpl;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Static Data
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// The single surface cache instance.
|
|
static StaticRefPtr<SurfaceCacheImpl> sInstance;
|
|
|
|
// The mutex protecting the surface cache.
|
|
static StaticMutex sInstanceMutex;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// SurfaceCache Implementation
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* Cost models the cost of storing a surface in the cache. Right now, this is
|
|
* simply an estimate of the size of the surface in bytes, but in the future it
|
|
* may be worth taking into account the cost of rematerializing the surface as
|
|
* well.
|
|
*/
|
|
typedef size_t Cost;
|
|
|
|
static Cost
|
|
ComputeCost(const IntSize& aSize, uint32_t aBytesPerPixel)
|
|
{
|
|
MOZ_ASSERT(aBytesPerPixel == 1 || aBytesPerPixel == 4);
|
|
return aSize.width * aSize.height * aBytesPerPixel;
|
|
}
|
|
|
|
/**
|
|
* Since we want to be able to make eviction decisions based on cost, we need to
|
|
* be able to look up the CachedSurface which has a certain cost as well as the
|
|
* cost associated with a certain CachedSurface. To make this possible, in data
|
|
* structures we actually store a CostEntry, which contains a weak pointer to
|
|
* its associated surface.
|
|
*
|
|
* To make usage of the weak pointer safe, SurfaceCacheImpl always calls
|
|
* StartTracking after a surface is stored in the cache and StopTracking before
|
|
* it is removed.
|
|
*/
|
|
class CostEntry
|
|
{
|
|
public:
|
|
CostEntry(NotNull<CachedSurface*> aSurface, Cost aCost)
|
|
: mSurface(aSurface)
|
|
, mCost(aCost)
|
|
{ }
|
|
|
|
NotNull<CachedSurface*> Surface() const { return mSurface; }
|
|
Cost GetCost() const { return mCost; }
|
|
|
|
bool operator==(const CostEntry& aOther) const
|
|
{
|
|
return mSurface == aOther.mSurface &&
|
|
mCost == aOther.mCost;
|
|
}
|
|
|
|
bool operator<(const CostEntry& aOther) const
|
|
{
|
|
return mCost < aOther.mCost ||
|
|
(mCost == aOther.mCost && mSurface < aOther.mSurface);
|
|
}
|
|
|
|
private:
|
|
NotNull<CachedSurface*> mSurface;
|
|
Cost mCost;
|
|
};
|
|
|
|
/**
|
|
* A CachedSurface associates a surface with a key that uniquely identifies that
|
|
* surface.
|
|
*/
|
|
class CachedSurface
|
|
{
|
|
~CachedSurface() { }
|
|
public:
|
|
MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface)
|
|
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface)
|
|
|
|
explicit CachedSurface(NotNull<ISurfaceProvider*> aProvider)
|
|
: mProvider(aProvider)
|
|
, mIsLocked(false)
|
|
{ }
|
|
|
|
DrawableSurface GetDrawableSurface() const
|
|
{
|
|
if (MOZ_UNLIKELY(IsPlaceholder())) {
|
|
MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
|
|
return DrawableSurface();
|
|
}
|
|
|
|
return mProvider->Surface();
|
|
}
|
|
|
|
void SetLocked(bool aLocked)
|
|
{
|
|
if (IsPlaceholder()) {
|
|
return; // Can't lock a placeholder.
|
|
}
|
|
|
|
// Update both our state and our provider's state. Some surface providers
|
|
// are permanently locked; maintaining our own locking state enables us to
|
|
// respect SetLocked() even when it's meaningless from the provider's
|
|
// perspective.
|
|
mIsLocked = aLocked;
|
|
mProvider->SetLocked(aLocked);
|
|
}
|
|
|
|
bool IsLocked() const
|
|
{
|
|
return !IsPlaceholder() && mIsLocked && mProvider->IsLocked();
|
|
}
|
|
|
|
bool IsPlaceholder() const { return mProvider->Availability().IsPlaceholder(); }
|
|
bool IsDecoded() const { return !IsPlaceholder() && mProvider->IsFinished(); }
|
|
|
|
ImageKey GetImageKey() const { return mProvider->GetImageKey(); }
|
|
SurfaceKey GetSurfaceKey() const { return mProvider->GetSurfaceKey(); }
|
|
nsExpirationState* GetExpirationState() { return &mExpirationState; }
|
|
|
|
CostEntry GetCostEntry()
|
|
{
|
|
return image::CostEntry(WrapNotNull(this), mProvider->LogicalSizeInBytes());
|
|
}
|
|
|
|
// A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
|
|
struct MOZ_STACK_CLASS SurfaceMemoryReport
|
|
{
|
|
SurfaceMemoryReport(nsTArray<SurfaceMemoryCounter>& aCounters,
|
|
MallocSizeOf aMallocSizeOf)
|
|
: mCounters(aCounters)
|
|
, mMallocSizeOf(aMallocSizeOf)
|
|
{ }
|
|
|
|
void Add(NotNull<CachedSurface*> aCachedSurface)
|
|
{
|
|
SurfaceMemoryCounter counter(aCachedSurface->GetSurfaceKey(),
|
|
aCachedSurface->IsLocked());
|
|
|
|
if (aCachedSurface->IsPlaceholder()) {
|
|
return;
|
|
}
|
|
|
|
// Record the memory used by the ISurfaceProvider. This may not have a
|
|
// straightforward relationship to the size of the surface that
|
|
// DrawableRef() returns if the surface is generated dynamically. (i.e.,
|
|
// for surfaces with PlaybackType::eAnimated.)
|
|
size_t heap = 0;
|
|
size_t nonHeap = 0;
|
|
size_t handles = 0;
|
|
aCachedSurface->mProvider
|
|
->AddSizeOfExcludingThis(mMallocSizeOf, heap, nonHeap, handles);
|
|
counter.Values().SetDecodedHeap(heap);
|
|
counter.Values().SetDecodedNonHeap(nonHeap);
|
|
counter.Values().SetSharedHandles(handles);
|
|
|
|
mCounters.AppendElement(counter);
|
|
}
|
|
|
|
private:
|
|
nsTArray<SurfaceMemoryCounter>& mCounters;
|
|
MallocSizeOf mMallocSizeOf;
|
|
};
|
|
|
|
private:
|
|
nsExpirationState mExpirationState;
|
|
NotNull<RefPtr<ISurfaceProvider>> mProvider;
|
|
bool mIsLocked;
|
|
};
|
|
|
|
static int64_t
|
|
AreaOfIntSize(const IntSize& aSize) {
|
|
return static_cast<int64_t>(aSize.width) * static_cast<int64_t>(aSize.height);
|
|
}
|
|
|
|
/**
|
|
* An ImageSurfaceCache is a per-image surface cache. For correctness we must be
|
|
* able to remove all surfaces associated with an image when the image is
|
|
* destroyed or invalidated. Since this will happen frequently, it makes sense
|
|
* to make it cheap by storing the surfaces for each image separately.
|
|
*
|
|
* ImageSurfaceCache also keeps track of whether its associated image is locked
|
|
* or unlocked.
|
|
*/
|
|
class ImageSurfaceCache
|
|
{
|
|
~ImageSurfaceCache() { }
|
|
public:
|
|
ImageSurfaceCache() : mLocked(false) { }
|
|
|
|
MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache)
|
|
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache)
|
|
|
|
typedef
|
|
nsRefPtrHashtable<nsGenericHashKey<SurfaceKey>, CachedSurface> SurfaceTable;
|
|
|
|
bool IsEmpty() const { return mSurfaces.Count() == 0; }
|
|
|
|
void Insert(NotNull<CachedSurface*> aSurface)
|
|
{
|
|
MOZ_ASSERT(!mLocked || aSurface->IsPlaceholder() || aSurface->IsLocked(),
|
|
"Inserting an unlocked surface for a locked image");
|
|
mSurfaces.Put(aSurface->GetSurfaceKey(), aSurface);
|
|
}
|
|
|
|
void Remove(NotNull<CachedSurface*> aSurface)
|
|
{
|
|
MOZ_ASSERT(mSurfaces.GetWeak(aSurface->GetSurfaceKey()),
|
|
"Should not be removing a surface we don't have");
|
|
|
|
mSurfaces.Remove(aSurface->GetSurfaceKey());
|
|
}
|
|
|
|
already_AddRefed<CachedSurface> Lookup(const SurfaceKey& aSurfaceKey)
|
|
{
|
|
RefPtr<CachedSurface> surface;
|
|
mSurfaces.Get(aSurfaceKey, getter_AddRefs(surface));
|
|
return surface.forget();
|
|
}
|
|
|
|
Pair<already_AddRefed<CachedSurface>, MatchType>
|
|
LookupBestMatch(const SurfaceKey& aIdealKey)
|
|
{
|
|
// Try for an exact match first.
|
|
RefPtr<CachedSurface> exactMatch;
|
|
mSurfaces.Get(aIdealKey, getter_AddRefs(exactMatch));
|
|
if (exactMatch && exactMatch->IsDecoded()) {
|
|
return MakePair(exactMatch.forget(), MatchType::EXACT);
|
|
}
|
|
|
|
// There's no perfect match, so find the best match we can.
|
|
RefPtr<CachedSurface> bestMatch;
|
|
for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
|
|
NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
|
|
const SurfaceKey& currentKey = current->GetSurfaceKey();
|
|
|
|
// We never match a placeholder.
|
|
if (current->IsPlaceholder()) {
|
|
continue;
|
|
}
|
|
// Matching the playback type and SVG context is required.
|
|
if (currentKey.Playback() != aIdealKey.Playback() ||
|
|
currentKey.SVGContext() != aIdealKey.SVGContext()) {
|
|
continue;
|
|
}
|
|
// Matching the flags is required.
|
|
if (currentKey.Flags() != aIdealKey.Flags()) {
|
|
continue;
|
|
}
|
|
// Anything is better than nothing! (Within the constraints we just
|
|
// checked, of course.)
|
|
if (!bestMatch) {
|
|
bestMatch = current;
|
|
continue;
|
|
}
|
|
|
|
MOZ_ASSERT(bestMatch, "Should have a current best match");
|
|
|
|
// Always prefer completely decoded surfaces.
|
|
bool bestMatchIsDecoded = bestMatch->IsDecoded();
|
|
if (bestMatchIsDecoded && !current->IsDecoded()) {
|
|
continue;
|
|
}
|
|
if (!bestMatchIsDecoded && current->IsDecoded()) {
|
|
bestMatch = current;
|
|
continue;
|
|
}
|
|
|
|
SurfaceKey bestMatchKey = bestMatch->GetSurfaceKey();
|
|
|
|
// Compare sizes. We use an area-based heuristic here instead of computing a
|
|
// truly optimal answer, since it seems very unlikely to make a difference
|
|
// for realistic sizes.
|
|
int64_t idealArea = AreaOfIntSize(aIdealKey.Size());
|
|
int64_t currentArea = AreaOfIntSize(currentKey.Size());
|
|
int64_t bestMatchArea = AreaOfIntSize(bestMatchKey.Size());
|
|
|
|
// If the best match is smaller than the ideal size, prefer bigger sizes.
|
|
if (bestMatchArea < idealArea) {
|
|
if (currentArea > bestMatchArea) {
|
|
bestMatch = current;
|
|
}
|
|
continue;
|
|
}
|
|
// Other, prefer sizes closer to the ideal size, but still not smaller.
|
|
if (idealArea <= currentArea && currentArea < bestMatchArea) {
|
|
bestMatch = current;
|
|
continue;
|
|
}
|
|
// This surface isn't an improvement over the current best match.
|
|
}
|
|
|
|
MatchType matchType;
|
|
if (bestMatch) {
|
|
if (!exactMatch) {
|
|
// No exact match, but we found a substitute.
|
|
matchType = MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND;
|
|
} else if (exactMatch != bestMatch) {
|
|
// The exact match is still decoding, but we found a substitute.
|
|
matchType = MatchType::SUBSTITUTE_BECAUSE_PENDING;
|
|
} else {
|
|
// The exact match is still decoding, but it's the best we've got.
|
|
matchType = MatchType::EXACT;
|
|
}
|
|
} else {
|
|
if (exactMatch) {
|
|
// We found an "exact match"; it must have been a placeholder.
|
|
MOZ_ASSERT(exactMatch->IsPlaceholder());
|
|
matchType = MatchType::PENDING;
|
|
} else {
|
|
// We couldn't find an exact match *or* a substitute.
|
|
matchType = MatchType::NOT_FOUND;
|
|
}
|
|
}
|
|
|
|
return MakePair(bestMatch.forget(), matchType);
|
|
}
|
|
|
|
SurfaceTable::Iterator ConstIter() const
|
|
{
|
|
return mSurfaces.ConstIter();
|
|
}
|
|
|
|
void SetLocked(bool aLocked) { mLocked = aLocked; }
|
|
bool IsLocked() const { return mLocked; }
|
|
|
|
private:
|
|
SurfaceTable mSurfaces;
|
|
bool mLocked;
|
|
};
|
|
|
|
/**
|
|
* SurfaceCacheImpl is responsible for determining which surfaces will be cached
|
|
* and managing the surface cache data structures. Rather than interact with
|
|
* SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
|
|
* maintains high-level invariants and encapsulates the details of the surface
|
|
* cache's implementation.
|
|
*/
|
|
class SurfaceCacheImpl final : public nsIMemoryReporter
|
|
{
|
|
public:
|
|
NS_DECL_ISUPPORTS
|
|
|
|
SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS,
|
|
uint32_t aSurfaceCacheDiscardFactor,
|
|
uint32_t aSurfaceCacheSize)
|
|
: mExpirationTracker(aSurfaceCacheExpirationTimeMS)
|
|
, mMemoryPressureObserver(new MemoryPressureObserver)
|
|
, mDiscardFactor(aSurfaceCacheDiscardFactor)
|
|
, mMaxCost(aSurfaceCacheSize)
|
|
, mAvailableCost(aSurfaceCacheSize)
|
|
, mLockedCost(0)
|
|
, mOverflowCount(0)
|
|
{
|
|
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
|
|
if (os) {
|
|
os->AddObserver(mMemoryPressureObserver, "memory-pressure", false);
|
|
}
|
|
}
|
|
|
|
private:
|
|
virtual ~SurfaceCacheImpl()
|
|
{
|
|
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
|
|
if (os) {
|
|
os->RemoveObserver(mMemoryPressureObserver, "memory-pressure");
|
|
}
|
|
|
|
UnregisterWeakMemoryReporter(this);
|
|
}
|
|
|
|
public:
|
|
void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
|
|
|
|
InsertOutcome Insert(NotNull<ISurfaceProvider*> aProvider,
|
|
bool aSetAvailable)
|
|
{
|
|
// If this is a duplicate surface, refuse to replace the original.
|
|
// XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
|
|
// twice. We'll make this more efficient in bug 1185137.
|
|
LookupResult result = Lookup(aProvider->GetImageKey(),
|
|
aProvider->GetSurfaceKey(),
|
|
/* aMarkUsed = */ false);
|
|
if (MOZ_UNLIKELY(result)) {
|
|
return InsertOutcome::FAILURE_ALREADY_PRESENT;
|
|
}
|
|
|
|
if (result.Type() == MatchType::PENDING) {
|
|
RemoveEntry(aProvider->GetImageKey(), aProvider->GetSurfaceKey());
|
|
}
|
|
|
|
MOZ_ASSERT(result.Type() == MatchType::NOT_FOUND ||
|
|
result.Type() == MatchType::PENDING,
|
|
"A LookupResult with no surface should be NOT_FOUND or PENDING");
|
|
|
|
// If this is bigger than we can hold after discarding everything we can,
|
|
// refuse to cache it.
|
|
Cost cost = aProvider->LogicalSizeInBytes();
|
|
if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost))) {
|
|
mOverflowCount++;
|
|
return InsertOutcome::FAILURE;
|
|
}
|
|
|
|
// Remove elements in order of cost until we can fit this in the cache. Note
|
|
// that locked surfaces aren't in mCosts, so we never remove them here.
|
|
while (cost > mAvailableCost) {
|
|
MOZ_ASSERT(!mCosts.IsEmpty(),
|
|
"Removed everything and it still won't fit");
|
|
Remove(mCosts.LastElement().Surface());
|
|
}
|
|
|
|
// Locate the appropriate per-image cache. If there's not an existing cache
|
|
// for this image, create it.
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aProvider->GetImageKey());
|
|
if (!cache) {
|
|
cache = new ImageSurfaceCache;
|
|
mImageCaches.Put(aProvider->GetImageKey(), cache);
|
|
}
|
|
|
|
// If we were asked to mark the cache entry available, do so.
|
|
if (aSetAvailable) {
|
|
aProvider->Availability().SetAvailable();
|
|
}
|
|
|
|
NotNull<RefPtr<CachedSurface>> surface =
|
|
WrapNotNull(new CachedSurface(aProvider));
|
|
|
|
// We require that locking succeed if the image is locked and we're not
|
|
// inserting a placeholder; the caller may need to know this to handle
|
|
// errors correctly.
|
|
if (cache->IsLocked() && !surface->IsPlaceholder()) {
|
|
surface->SetLocked(true);
|
|
if (!surface->IsLocked()) {
|
|
return InsertOutcome::FAILURE;
|
|
}
|
|
}
|
|
|
|
// Insert.
|
|
MOZ_ASSERT(cost <= mAvailableCost, "Inserting despite too large a cost");
|
|
cache->Insert(surface);
|
|
StartTracking(surface);
|
|
|
|
return InsertOutcome::SUCCESS;
|
|
}
|
|
|
|
void Remove(NotNull<CachedSurface*> aSurface)
|
|
{
|
|
ImageKey imageKey = aSurface->GetImageKey();
|
|
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
|
|
MOZ_ASSERT(cache, "Shouldn't try to remove a surface with no image cache");
|
|
|
|
// If the surface was not a placeholder, tell its image that we discarded it.
|
|
if (!aSurface->IsPlaceholder()) {
|
|
static_cast<Image*>(imageKey)->OnSurfaceDiscarded(aSurface->GetSurfaceKey());
|
|
}
|
|
|
|
StopTracking(aSurface);
|
|
cache->Remove(aSurface);
|
|
|
|
// Remove the per-image cache if it's unneeded now. (Keep it if the image is
|
|
// locked, since the per-image cache is where we store that state.)
|
|
if (cache->IsEmpty() && !cache->IsLocked()) {
|
|
mImageCaches.Remove(imageKey);
|
|
}
|
|
}
|
|
|
|
void StartTracking(NotNull<CachedSurface*> aSurface)
|
|
{
|
|
CostEntry costEntry = aSurface->GetCostEntry();
|
|
MOZ_ASSERT(costEntry.GetCost() <= mAvailableCost,
|
|
"Cost too large and the caller didn't catch it");
|
|
|
|
mAvailableCost -= costEntry.GetCost();
|
|
|
|
if (aSurface->IsLocked()) {
|
|
mLockedCost += costEntry.GetCost();
|
|
MOZ_ASSERT(mLockedCost <= mMaxCost, "Locked more than we can hold?");
|
|
} else {
|
|
mCosts.InsertElementSorted(costEntry);
|
|
// This may fail during XPCOM shutdown, so we need to ensure the object is
|
|
// tracked before calling RemoveObject in StopTracking.
|
|
mExpirationTracker.AddObject(aSurface);
|
|
}
|
|
}
|
|
|
|
void StopTracking(NotNull<CachedSurface*> aSurface)
|
|
{
|
|
CostEntry costEntry = aSurface->GetCostEntry();
|
|
|
|
if (aSurface->IsLocked()) {
|
|
MOZ_ASSERT(mLockedCost >= costEntry.GetCost(), "Costs don't balance");
|
|
mLockedCost -= costEntry.GetCost();
|
|
// XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
|
|
MOZ_ASSERT(!mCosts.Contains(costEntry),
|
|
"Shouldn't have a cost entry for a locked surface");
|
|
} else {
|
|
if (MOZ_LIKELY(aSurface->GetExpirationState()->IsTracked())) {
|
|
mExpirationTracker.RemoveObject(aSurface);
|
|
} else {
|
|
// Our call to AddObject must have failed in StartTracking; most likely
|
|
// we're in XPCOM shutdown right now.
|
|
NS_ASSERTION(ShutdownTracker::ShutdownHasStarted(),
|
|
"Not expiration-tracking an unlocked surface!");
|
|
}
|
|
|
|
DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
|
|
MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
|
|
}
|
|
|
|
mAvailableCost += costEntry.GetCost();
|
|
MOZ_ASSERT(mAvailableCost <= mMaxCost,
|
|
"More available cost than we started with");
|
|
}
|
|
|
|
LookupResult Lookup(const ImageKey aImageKey,
|
|
const SurfaceKey& aSurfaceKey,
|
|
bool aMarkUsed = true)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache) {
|
|
// No cached surfaces for this image.
|
|
return LookupResult(MatchType::NOT_FOUND);
|
|
}
|
|
|
|
RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey);
|
|
if (!surface) {
|
|
// Lookup in the per-image cache missed.
|
|
return LookupResult(MatchType::NOT_FOUND);
|
|
}
|
|
|
|
if (surface->IsPlaceholder()) {
|
|
return LookupResult(MatchType::PENDING);
|
|
}
|
|
|
|
DrawableSurface drawableSurface = surface->GetDrawableSurface();
|
|
if (!drawableSurface) {
|
|
// The surface was released by the operating system. Remove the cache
|
|
// entry as well.
|
|
Remove(WrapNotNull(surface));
|
|
return LookupResult(MatchType::NOT_FOUND);
|
|
}
|
|
|
|
if (aMarkUsed) {
|
|
MarkUsed(WrapNotNull(surface), WrapNotNull(cache));
|
|
}
|
|
|
|
MOZ_ASSERT(surface->GetSurfaceKey() == aSurfaceKey,
|
|
"Lookup() not returning an exact match?");
|
|
return LookupResult(Move(drawableSurface), MatchType::EXACT);
|
|
}
|
|
|
|
LookupResult LookupBestMatch(const ImageKey aImageKey,
|
|
const SurfaceKey& aSurfaceKey)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache) {
|
|
// No cached surfaces for this image.
|
|
return LookupResult(MatchType::NOT_FOUND);
|
|
}
|
|
|
|
// Repeatedly look up the best match, trying again if the resulting surface
|
|
// has been freed by the operating system, until we can either lock a
|
|
// surface for drawing or there are no matching surfaces left.
|
|
// XXX(seth): This is O(N^2), but N is expected to be very small. If we
|
|
// encounter a performance problem here we can revisit this.
|
|
|
|
RefPtr<CachedSurface> surface;
|
|
DrawableSurface drawableSurface;
|
|
MatchType matchType = MatchType::NOT_FOUND;
|
|
while (true) {
|
|
Tie(surface, matchType) = cache->LookupBestMatch(aSurfaceKey);
|
|
|
|
if (!surface) {
|
|
return LookupResult(matchType); // Lookup in the per-image cache missed.
|
|
}
|
|
|
|
drawableSurface = surface->GetDrawableSurface();
|
|
if (drawableSurface) {
|
|
break;
|
|
}
|
|
|
|
// The surface was released by the operating system. Remove the cache
|
|
// entry as well.
|
|
Remove(WrapNotNull(surface));
|
|
}
|
|
|
|
MOZ_ASSERT_IF(matchType == MatchType::EXACT,
|
|
surface->GetSurfaceKey() == aSurfaceKey);
|
|
MOZ_ASSERT_IF(matchType == MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND ||
|
|
matchType == MatchType::SUBSTITUTE_BECAUSE_PENDING,
|
|
surface->GetSurfaceKey().SVGContext() == aSurfaceKey.SVGContext() &&
|
|
surface->GetSurfaceKey().Playback() == aSurfaceKey.Playback() &&
|
|
surface->GetSurfaceKey().Flags() == aSurfaceKey.Flags());
|
|
|
|
if (matchType == MatchType::EXACT) {
|
|
MarkUsed(WrapNotNull(surface), WrapNotNull(cache));
|
|
}
|
|
|
|
return LookupResult(Move(drawableSurface), matchType);
|
|
}
|
|
|
|
bool CanHold(const Cost aCost) const
|
|
{
|
|
return aCost <= mMaxCost;
|
|
}
|
|
|
|
size_t MaximumCapacity() const
|
|
{
|
|
return size_t(mMaxCost);
|
|
}
|
|
|
|
void SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider)
|
|
{
|
|
if (!aProvider->Availability().IsPlaceholder()) {
|
|
MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
|
|
return;
|
|
}
|
|
|
|
// Reinsert the provider, requesting that Insert() mark it available. This
|
|
// may or may not succeed, depending on whether some other decoder has
|
|
// beaten us to the punch and inserted a non-placeholder version of this
|
|
// surface first, but it's fine either way.
|
|
// XXX(seth): This could be implemented more efficiently; we should be able
|
|
// to just update our data structures without reinserting.
|
|
Insert(aProvider, /* aSetAvailable = */ true);
|
|
}
|
|
|
|
void LockImage(const ImageKey aImageKey)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache) {
|
|
cache = new ImageSurfaceCache;
|
|
mImageCaches.Put(aImageKey, cache);
|
|
}
|
|
|
|
cache->SetLocked(true);
|
|
|
|
// We don't relock this image's existing surfaces right away; instead, the
|
|
// image should arrange for Lookup() to touch them if they are still useful.
|
|
}
|
|
|
|
void UnlockImage(const ImageKey aImageKey)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache || !cache->IsLocked()) {
|
|
return; // Already unlocked.
|
|
}
|
|
|
|
cache->SetLocked(false);
|
|
DoUnlockSurfaces(WrapNotNull(cache), /* aStaticOnly = */ false);
|
|
}
|
|
|
|
void UnlockEntries(const ImageKey aImageKey)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache || !cache->IsLocked()) {
|
|
return; // Already unlocked.
|
|
}
|
|
|
|
// (Note that we *don't* unlock the per-image cache here; that's the
|
|
// difference between this and UnlockImage.)
|
|
DoUnlockSurfaces(WrapNotNull(cache),
|
|
/* aStaticOnly = */ !gfxPrefs::ImageMemAnimatedDiscardable());
|
|
}
|
|
|
|
void RemoveImage(const ImageKey aImageKey)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache) {
|
|
return; // No cached surfaces for this image, so nothing to do.
|
|
}
|
|
|
|
// Discard all of the cached surfaces for this image.
|
|
// XXX(seth): This is O(n^2) since for each item in the cache we are
|
|
// removing an element from the costs array. Since n is expected to be
|
|
// small, performance should be good, but if usage patterns change we should
|
|
// change the data structure used for mCosts.
|
|
for (auto iter = cache->ConstIter(); !iter.Done(); iter.Next()) {
|
|
StopTracking(WrapNotNull(iter.UserData()));
|
|
}
|
|
|
|
// The per-image cache isn't needed anymore, so remove it as well.
|
|
// This implicitly unlocks the image if it was locked.
|
|
mImageCaches.Remove(aImageKey);
|
|
}
|
|
|
|
void DiscardAll()
|
|
{
|
|
// Remove in order of cost because mCosts is an array and the other data
|
|
// structures are all hash tables. Note that locked surfaces are not
|
|
// removed, since they aren't present in mCosts.
|
|
while (!mCosts.IsEmpty()) {
|
|
Remove(mCosts.LastElement().Surface());
|
|
}
|
|
}
|
|
|
|
void DiscardForMemoryPressure()
|
|
{
|
|
// Compute our discardable cost. Since locked surfaces aren't discardable,
|
|
// we exclude them.
|
|
const Cost discardableCost = (mMaxCost - mAvailableCost) - mLockedCost;
|
|
MOZ_ASSERT(discardableCost <= mMaxCost, "Discardable cost doesn't add up");
|
|
|
|
// Our target is to raise our available cost by (1 / mDiscardFactor) of our
|
|
// discardable cost - in other words, we want to end up with about
|
|
// (discardableCost / mDiscardFactor) fewer bytes stored in the surface
|
|
// cache after we're done.
|
|
const Cost targetCost = mAvailableCost + (discardableCost / mDiscardFactor);
|
|
|
|
if (targetCost > mMaxCost - mLockedCost) {
|
|
MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
|
|
DiscardAll();
|
|
return;
|
|
}
|
|
|
|
// Discard surfaces until we've reduced our cost to our target cost.
|
|
while (mAvailableCost < targetCost) {
|
|
MOZ_ASSERT(!mCosts.IsEmpty(), "Removed everything and still not done");
|
|
Remove(mCosts.LastElement().Surface());
|
|
}
|
|
}
|
|
|
|
void LockSurface(NotNull<CachedSurface*> aSurface)
|
|
{
|
|
if (aSurface->IsPlaceholder() || aSurface->IsLocked()) {
|
|
return;
|
|
}
|
|
|
|
StopTracking(aSurface);
|
|
|
|
// Lock the surface. This can fail.
|
|
aSurface->SetLocked(true);
|
|
StartTracking(aSurface);
|
|
}
|
|
|
|
NS_IMETHOD
|
|
CollectReports(nsIHandleReportCallback* aHandleReport,
|
|
nsISupports* aData,
|
|
bool aAnonymize) override
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
|
|
// We have explicit memory reporting for the surface cache which is more
|
|
// accurate than the cost metrics we report here, but these metrics are
|
|
// still useful to report, since they control the cache's behavior.
|
|
MOZ_COLLECT_REPORT(
|
|
"imagelib-surface-cache-estimated-total",
|
|
KIND_OTHER, UNITS_BYTES, (mMaxCost - mAvailableCost),
|
|
"Estimated total memory used by the imagelib surface cache.");
|
|
|
|
MOZ_COLLECT_REPORT(
|
|
"imagelib-surface-cache-estimated-locked",
|
|
KIND_OTHER, UNITS_BYTES, mLockedCost,
|
|
"Estimated memory used by locked surfaces in the imagelib surface cache.");
|
|
|
|
MOZ_COLLECT_REPORT(
|
|
"imagelib-surface-cache-overflow-count",
|
|
KIND_OTHER, UNITS_COUNT, mOverflowCount,
|
|
"Count of how many times the surface cache has hit its capacity and been "
|
|
"unable to insert a new surface.");
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void CollectSizeOfSurfaces(const ImageKey aImageKey,
|
|
nsTArray<SurfaceMemoryCounter>& aCounters,
|
|
MallocSizeOf aMallocSizeOf)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache) {
|
|
return; // No surfaces for this image.
|
|
}
|
|
|
|
// Report all surfaces in the per-image cache.
|
|
CachedSurface::SurfaceMemoryReport report(aCounters, aMallocSizeOf);
|
|
for (auto iter = cache->ConstIter(); !iter.Done(); iter.Next()) {
|
|
report.Add(WrapNotNull(iter.UserData()));
|
|
}
|
|
}
|
|
|
|
private:
|
|
already_AddRefed<ImageSurfaceCache> GetImageCache(const ImageKey aImageKey)
|
|
{
|
|
RefPtr<ImageSurfaceCache> imageCache;
|
|
mImageCaches.Get(aImageKey, getter_AddRefs(imageCache));
|
|
return imageCache.forget();
|
|
}
|
|
|
|
// This is similar to CanHold() except that it takes into account the costs of
|
|
// locked surfaces. It's used internally in Insert(), but it's not exposed
|
|
// publicly because we permit multithreaded access to the surface cache, which
|
|
// means that the result would be meaningless: another thread could insert a
|
|
// surface or lock an image at any time.
|
|
bool CanHoldAfterDiscarding(const Cost aCost) const
|
|
{
|
|
return aCost <= mMaxCost - mLockedCost;
|
|
}
|
|
|
|
void MarkUsed(NotNull<CachedSurface*> aSurface,
|
|
NotNull<ImageSurfaceCache*> aCache)
|
|
{
|
|
if (aCache->IsLocked()) {
|
|
LockSurface(aSurface);
|
|
} else {
|
|
mExpirationTracker.MarkUsed(aSurface);
|
|
}
|
|
}
|
|
|
|
void DoUnlockSurfaces(NotNull<ImageSurfaceCache*> aCache, bool aStaticOnly)
|
|
{
|
|
// Unlock all the surfaces the per-image cache is holding.
|
|
for (auto iter = aCache->ConstIter(); !iter.Done(); iter.Next()) {
|
|
NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());
|
|
if (surface->IsPlaceholder() || !surface->IsLocked()) {
|
|
continue;
|
|
}
|
|
if (aStaticOnly && surface->GetSurfaceKey().Playback() != PlaybackType::eStatic) {
|
|
continue;
|
|
}
|
|
StopTracking(surface);
|
|
surface->SetLocked(false);
|
|
StartTracking(surface);
|
|
}
|
|
}
|
|
|
|
void RemoveEntry(const ImageKey aImageKey,
|
|
const SurfaceKey& aSurfaceKey)
|
|
{
|
|
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
|
|
if (!cache) {
|
|
return; // No cached surfaces for this image.
|
|
}
|
|
|
|
RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey);
|
|
if (!surface) {
|
|
return; // Lookup in the per-image cache missed.
|
|
}
|
|
|
|
Remove(WrapNotNull(surface));
|
|
}
|
|
|
|
struct SurfaceTracker : public nsExpirationTracker<CachedSurface, 2>
|
|
{
|
|
explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS)
|
|
: nsExpirationTracker<CachedSurface, 2>(aSurfaceCacheExpirationTimeMS,
|
|
"SurfaceTracker")
|
|
{ }
|
|
|
|
protected:
|
|
virtual void NotifyExpired(CachedSurface* aSurface) override
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (sInstance) {
|
|
sInstance->Remove(WrapNotNull(aSurface));
|
|
}
|
|
}
|
|
};
|
|
|
|
struct MemoryPressureObserver : public nsIObserver
|
|
{
|
|
NS_DECL_ISUPPORTS
|
|
|
|
NS_IMETHOD Observe(nsISupports*,
|
|
const char* aTopic,
|
|
const char16_t*) override
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (sInstance && strcmp(aTopic, "memory-pressure") == 0) {
|
|
sInstance->DiscardForMemoryPressure();
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
private:
|
|
virtual ~MemoryPressureObserver() { }
|
|
};
|
|
|
|
nsTArray<CostEntry> mCosts;
|
|
nsRefPtrHashtable<nsPtrHashKey<Image>,
|
|
ImageSurfaceCache> mImageCaches;
|
|
SurfaceTracker mExpirationTracker;
|
|
RefPtr<MemoryPressureObserver> mMemoryPressureObserver;
|
|
const uint32_t mDiscardFactor;
|
|
const Cost mMaxCost;
|
|
Cost mAvailableCost;
|
|
Cost mLockedCost;
|
|
size_t mOverflowCount;
|
|
};
|
|
|
|
NS_IMPL_ISUPPORTS(SurfaceCacheImpl, nsIMemoryReporter)
|
|
NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver, nsIObserver)
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Public API
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
/* static */ void
|
|
SurfaceCache::Initialize()
|
|
{
|
|
// Initialize preferences.
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_ASSERT(!sInstance, "Shouldn't initialize more than once");
|
|
|
|
// See gfxPrefs for the default values of these preferences.
|
|
|
|
// Length of time before an unused surface is removed from the cache, in
|
|
// milliseconds.
|
|
uint32_t surfaceCacheExpirationTimeMS =
|
|
gfxPrefs::ImageMemSurfaceCacheMinExpirationMS();
|
|
|
|
// What fraction of the memory used by the surface cache we should discard
|
|
// when we get a memory pressure notification. This value is interpreted as
|
|
// 1/N, so 1 means to discard everything, 2 means to discard about half of the
|
|
// memory we're using, and so forth. We clamp it to avoid division by zero.
|
|
uint32_t surfaceCacheDiscardFactor =
|
|
max(gfxPrefs::ImageMemSurfaceCacheDiscardFactor(), 1u);
|
|
|
|
// Maximum size of the surface cache, in kilobytes.
|
|
uint64_t surfaceCacheMaxSizeKB = gfxPrefs::ImageMemSurfaceCacheMaxSizeKB();
|
|
|
|
// A knob determining the actual size of the surface cache. Currently the
|
|
// cache is (size of main memory) / (surface cache size factor) KB
|
|
// or (surface cache max size) KB, whichever is smaller. The formula
|
|
// may change in the future, though.
|
|
// For example, a value of 4 would yield a 256MB cache on a 1GB machine.
|
|
// The smallest machines we are likely to run this code on have 256MB
|
|
// of memory, which would yield a 64MB cache on this setting.
|
|
// We clamp this value to avoid division by zero.
|
|
uint32_t surfaceCacheSizeFactor =
|
|
max(gfxPrefs::ImageMemSurfaceCacheSizeFactor(), 1u);
|
|
|
|
// Compute the size of the surface cache.
|
|
uint64_t memorySize = PR_GetPhysicalMemorySize();
|
|
if (memorySize == 0) {
|
|
MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
|
|
memorySize = 256 * 1024 * 1024; // Fall back to 256MB.
|
|
}
|
|
uint64_t proposedSize = memorySize / surfaceCacheSizeFactor;
|
|
uint64_t surfaceCacheSizeBytes = min(proposedSize,
|
|
surfaceCacheMaxSizeKB * 1024);
|
|
uint32_t finalSurfaceCacheSizeBytes =
|
|
min(surfaceCacheSizeBytes, uint64_t(UINT32_MAX));
|
|
|
|
// Create the surface cache singleton with the requested settings. Note that
|
|
// the size is a limit that the cache may not grow beyond, but we do not
|
|
// actually allocate any storage for surfaces at this time.
|
|
sInstance = new SurfaceCacheImpl(surfaceCacheExpirationTimeMS,
|
|
surfaceCacheDiscardFactor,
|
|
finalSurfaceCacheSizeBytes);
|
|
sInstance->InitMemoryReporter();
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::Shutdown()
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_ASSERT(sInstance, "No singleton - was Shutdown() called twice?");
|
|
sInstance = nullptr;
|
|
}
|
|
|
|
/* static */ LookupResult
|
|
SurfaceCache::Lookup(const ImageKey aImageKey,
|
|
const SurfaceKey& aSurfaceKey)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return LookupResult(MatchType::NOT_FOUND);
|
|
}
|
|
|
|
return sInstance->Lookup(aImageKey, aSurfaceKey);
|
|
}
|
|
|
|
/* static */ LookupResult
|
|
SurfaceCache::LookupBestMatch(const ImageKey aImageKey,
|
|
const SurfaceKey& aSurfaceKey)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return LookupResult(MatchType::NOT_FOUND);
|
|
}
|
|
|
|
return sInstance->LookupBestMatch(aImageKey, aSurfaceKey);
|
|
}
|
|
|
|
/* static */ InsertOutcome
|
|
SurfaceCache::Insert(NotNull<ISurfaceProvider*> aProvider)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return InsertOutcome::FAILURE;
|
|
}
|
|
|
|
return sInstance->Insert(aProvider, /* aSetAvailable = */ false);
|
|
}
|
|
|
|
/* static */ bool
|
|
SurfaceCache::CanHold(const IntSize& aSize, uint32_t aBytesPerPixel /* = 4 */)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return false;
|
|
}
|
|
|
|
Cost cost = ComputeCost(aSize, aBytesPerPixel);
|
|
return sInstance->CanHold(cost);
|
|
}
|
|
|
|
/* static */ bool
|
|
SurfaceCache::CanHold(size_t aSize)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return false;
|
|
}
|
|
|
|
return sInstance->CanHold(aSize);
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return;
|
|
}
|
|
|
|
sInstance->SurfaceAvailable(aProvider);
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::LockImage(const ImageKey aImageKey)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (sInstance) {
|
|
return sInstance->LockImage(aImageKey);
|
|
}
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::UnlockImage(const ImageKey aImageKey)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (sInstance) {
|
|
return sInstance->UnlockImage(aImageKey);
|
|
}
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::UnlockEntries(const ImageKey aImageKey)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (sInstance) {
|
|
return sInstance->UnlockEntries(aImageKey);
|
|
}
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::RemoveImage(const ImageKey aImageKey)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (sInstance) {
|
|
sInstance->RemoveImage(aImageKey);
|
|
}
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::DiscardAll()
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (sInstance) {
|
|
sInstance->DiscardAll();
|
|
}
|
|
}
|
|
|
|
/* static */ void
|
|
SurfaceCache::CollectSizeOfSurfaces(const ImageKey aImageKey,
|
|
nsTArray<SurfaceMemoryCounter>& aCounters,
|
|
MallocSizeOf aMallocSizeOf)
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return;
|
|
}
|
|
|
|
return sInstance->CollectSizeOfSurfaces(aImageKey, aCounters, aMallocSizeOf);
|
|
}
|
|
|
|
/* static */ size_t
|
|
SurfaceCache::MaximumCapacity()
|
|
{
|
|
StaticMutexAutoLock lock(sInstanceMutex);
|
|
if (!sInstance) {
|
|
return 0;
|
|
}
|
|
|
|
return sInstance->MaximumCapacity();
|
|
}
|
|
|
|
} // namespace image
|
|
} // namespace mozilla
|