gecko-dev/gfx/2d/SVGTurbulenceRenderer-inl.h
Sylvestre Ledru e226046cb8 Bug 1547143 - Format the tree: Be prescriptive with the pointer style (left) r=Ehsan
# ignore-this-changeset

Depends on D28954

Differential Revision: https://phabricator.services.mozilla.com/D28956

--HG--
extra : moz-landing-system : lando
2019-05-01 08:47:10 +00:00

363 lines
13 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "2D.h"
#include "Filters.h"
#include "SIMD.h"
namespace mozilla {
namespace gfx {
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
class SVGTurbulenceRenderer {
public:
SVGTurbulenceRenderer(const Size& aBaseFrequency, int32_t aSeed,
int aNumOctaves, const Rect& aTileRect);
already_AddRefed<DataSourceSurface> Render(const IntSize& aSize,
const Point& aOffset) const;
private:
/* The turbulence calculation code is an adapted version of what
appears in the SVG 1.1 specification:
http://www.w3.org/TR/SVG11/filters.html#feTurbulence
*/
struct StitchInfo {
int32_t width; // How much to subtract to wrap for stitching.
int32_t height;
int32_t wrapX; // Minimum value to wrap.
int32_t wrapY;
};
const static int sBSize = 0x100;
const static int sBM = 0xff;
void InitFromSeed(int32_t aSeed);
void AdjustBaseFrequencyForStitch(const Rect& aTileRect);
IntPoint AdjustForStitch(IntPoint aLatticePoint,
const StitchInfo& aStitchInfo) const;
StitchInfo CreateStitchInfo(const Rect& aTileRect) const;
f32x4_t Noise2(Point aVec, const StitchInfo& aStitchInfo) const;
i32x4_t Turbulence(const Point& aPoint) const;
Point EquivalentNonNegativeOffset(const Point& aOffset) const;
Size mBaseFrequency;
int32_t mNumOctaves;
StitchInfo mStitchInfo;
bool mStitchable;
TurbulenceType mType;
uint8_t mLatticeSelector[sBSize];
f32x4_t mGradient[sBSize][2];
};
namespace {
struct RandomNumberSource {
explicit RandomNumberSource(int32_t aSeed) : mLast(SetupSeed(aSeed)) {}
int32_t Next() {
mLast = Random(mLast);
return mLast;
}
private:
static const int32_t RAND_M = 2147483647; /* 2**31 - 1 */
static const int32_t RAND_A = 16807; /* 7**5; primitive root of m */
static const int32_t RAND_Q = 127773; /* m / a */
static const int32_t RAND_R = 2836; /* m % a */
/* Produces results in the range [1, 2**31 - 2].
Algorithm is: r = (a * r) mod m
where a = 16807 and m = 2**31 - 1 = 2147483647
See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
To test: the algorithm should produce the result 1043618065
as the 10,000th generated number if the original seed is 1.
*/
static int32_t SetupSeed(int32_t aSeed) {
if (aSeed <= 0) aSeed = -(aSeed % (RAND_M - 1)) + 1;
if (aSeed > RAND_M - 1) aSeed = RAND_M - 1;
return aSeed;
}
static int32_t Random(int32_t aSeed) {
int32_t result = RAND_A * (aSeed % RAND_Q) - RAND_R * (aSeed / RAND_Q);
if (result <= 0) result += RAND_M;
return result;
}
int32_t mLast;
};
} // unnamed namespace
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::
SVGTurbulenceRenderer(const Size& aBaseFrequency, int32_t aSeed,
int aNumOctaves, const Rect& aTileRect)
: mBaseFrequency(aBaseFrequency),
mNumOctaves(aNumOctaves),
mStitchInfo(),
mStitchable(false),
mType(TURBULENCE_TYPE_TURBULENCE) {
InitFromSeed(aSeed);
if (Stitch) {
AdjustBaseFrequencyForStitch(aTileRect);
mStitchInfo = CreateStitchInfo(aTileRect);
}
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
void SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
u8x16_t>::InitFromSeed(int32_t aSeed) {
RandomNumberSource rand(aSeed);
float gradient[4][sBSize][2];
for (int32_t k = 0; k < 4; k++) {
for (int32_t i = 0; i < sBSize; i++) {
float a, b;
do {
a = float((rand.Next() % (sBSize + sBSize)) - sBSize) / sBSize;
b = float((rand.Next() % (sBSize + sBSize)) - sBSize) / sBSize;
} while (a == 0 && b == 0);
float s = sqrt(a * a + b * b);
gradient[k][i][0] = a / s;
gradient[k][i][1] = b / s;
}
}
for (int32_t i = 0; i < sBSize; i++) {
mLatticeSelector[i] = i;
}
for (int32_t i1 = sBSize - 1; i1 > 0; i1--) {
int32_t i2 = rand.Next() % sBSize;
Swap(mLatticeSelector[i1], mLatticeSelector[i2]);
}
for (int32_t i = 0; i < sBSize; i++) {
// Contrary to the code in the spec, we build the first lattice selector
// lookup into mGradient so that we don't need to do it again for every
// pixel.
// We also change the order of the gradient indexing so that we can process
// all four color channels at the same time.
uint8_t j = mLatticeSelector[i];
mGradient[i][0] =
simd::FromF32<f32x4_t>(gradient[2][j][0], gradient[1][j][0],
gradient[0][j][0], gradient[3][j][0]);
mGradient[i][1] =
simd::FromF32<f32x4_t>(gradient[2][j][1], gradient[1][j][1],
gradient[0][j][1], gradient[3][j][1]);
}
}
// Adjust aFreq such that aLength * AdjustForLength(aFreq, aLength) is integer
// and as close to aLength * aFreq as possible.
static inline float AdjustForLength(float aFreq, float aLength) {
float lowFreq = floor(aLength * aFreq) / aLength;
float hiFreq = ceil(aLength * aFreq) / aLength;
if (aFreq / lowFreq < hiFreq / aFreq) {
return lowFreq;
}
return hiFreq;
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
void SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::
AdjustBaseFrequencyForStitch(const Rect& aTileRect) {
mBaseFrequency =
Size(AdjustForLength(mBaseFrequency.width, aTileRect.Width()),
AdjustForLength(mBaseFrequency.height, aTileRect.Height()));
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
typename SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
u8x16_t>::StitchInfo
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
u8x16_t>::CreateStitchInfo(const Rect& aTileRect) const {
StitchInfo stitch;
stitch.width =
int32_t(floorf(aTileRect.Width() * mBaseFrequency.width + 0.5f));
stitch.height =
int32_t(floorf(aTileRect.Height() * mBaseFrequency.height + 0.5f));
stitch.wrapX = int32_t(aTileRect.X() * mBaseFrequency.width) + stitch.width;
stitch.wrapY = int32_t(aTileRect.Y() * mBaseFrequency.height) + stitch.height;
return stitch;
}
static MOZ_ALWAYS_INLINE Float SCurve(Float t) { return t * t * (3 - 2 * t); }
static MOZ_ALWAYS_INLINE Point SCurve(Point t) {
return Point(SCurve(t.x), SCurve(t.y));
}
template <typename f32x4_t>
static MOZ_ALWAYS_INLINE f32x4_t BiMix(const f32x4_t& aa, const f32x4_t& ab,
const f32x4_t& ba, const f32x4_t& bb,
Point s) {
return simd::MixF32(simd::MixF32(aa, ab, s.x), simd::MixF32(ba, bb, s.x),
s.y);
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
IntPoint
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::AdjustForStitch(
IntPoint aLatticePoint, const StitchInfo& aStitchInfo) const {
if (Stitch) {
if (aLatticePoint.x >= aStitchInfo.wrapX) {
aLatticePoint.x -= aStitchInfo.width;
}
if (aLatticePoint.y >= aStitchInfo.wrapY) {
aLatticePoint.y -= aStitchInfo.height;
}
}
return aLatticePoint;
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
f32x4_t SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::Noise2(
Point aVec, const StitchInfo& aStitchInfo) const {
// aVec is guaranteed to be non-negative, so casting to int32_t always
// rounds towards negative infinity.
IntPoint topLeftLatticePoint(int32_t(aVec.x), int32_t(aVec.y));
Point r = aVec - topLeftLatticePoint; // fractional offset
IntPoint b0 = AdjustForStitch(topLeftLatticePoint, aStitchInfo);
IntPoint b1 = AdjustForStitch(b0 + IntPoint(1, 1), aStitchInfo);
uint8_t i = mLatticeSelector[b0.x & sBM];
uint8_t j = mLatticeSelector[b1.x & sBM];
const f32x4_t* qua = mGradient[(i + b0.y) & sBM];
const f32x4_t* qub = mGradient[(i + b1.y) & sBM];
const f32x4_t* qva = mGradient[(j + b0.y) & sBM];
const f32x4_t* qvb = mGradient[(j + b1.y) & sBM];
return BiMix(simd::WSumF32(qua[0], qua[1], r.x, r.y),
simd::WSumF32(qva[0], qva[1], r.x - 1.f, r.y),
simd::WSumF32(qub[0], qub[1], r.x, r.y - 1.f),
simd::WSumF32(qvb[0], qvb[1], r.x - 1.f, r.y - 1.f), SCurve(r));
}
template <typename f32x4_t, typename i32x4_t, typename u8x16_t>
static inline i32x4_t ColorToBGRA(f32x4_t aUnscaledUnpreFloat) {
// Color is an unpremultiplied float vector where 1.0f means white. We will
// convert it into an integer vector where 255 means white.
f32x4_t alpha = simd::SplatF32<3>(aUnscaledUnpreFloat);
f32x4_t scaledUnpreFloat =
simd::MulF32(aUnscaledUnpreFloat, simd::FromF32<f32x4_t>(255));
i32x4_t scaledUnpreInt = simd::F32ToI32(scaledUnpreFloat);
// Multiply all channels with alpha.
i32x4_t scaledPreInt = simd::F32ToI32(simd::MulF32(scaledUnpreFloat, alpha));
// Use the premultiplied color channels and the unpremultiplied alpha channel.
i32x4_t alphaMask = simd::From32<i32x4_t>(0, 0, 0, -1);
return simd::Pick(alphaMask, scaledPreInt, scaledUnpreInt);
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
i32x4_t SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t,
u8x16_t>::Turbulence(const Point& aPoint) const {
StitchInfo stitchInfo = mStitchInfo;
f32x4_t sum = simd::FromF32<f32x4_t>(0);
Point vec(aPoint.x * mBaseFrequency.width, aPoint.y * mBaseFrequency.height);
f32x4_t ratio = simd::FromF32<f32x4_t>(1);
for (int octave = 0; octave < mNumOctaves; octave++) {
f32x4_t thisOctave = Noise2(vec, stitchInfo);
if (Type == TURBULENCE_TYPE_TURBULENCE) {
thisOctave = simd::AbsF32(thisOctave);
}
sum = simd::AddF32(sum, simd::DivF32(thisOctave, ratio));
vec = vec * 2;
ratio = simd::MulF32(ratio, simd::FromF32<f32x4_t>(2));
if (Stitch) {
stitchInfo.width *= 2;
stitchInfo.wrapX *= 2;
stitchInfo.height *= 2;
stitchInfo.wrapY *= 2;
}
}
if (Type == TURBULENCE_TYPE_FRACTAL_NOISE) {
sum = simd::DivF32(simd::AddF32(sum, simd::FromF32<f32x4_t>(1)),
simd::FromF32<f32x4_t>(2));
}
return ColorToBGRA<f32x4_t, i32x4_t, u8x16_t>(sum);
}
static inline Float MakeNonNegative(Float aValue, Float aIncrementSize) {
if (aIncrementSize == 0) {
return 0;
}
if (aValue >= 0) {
return aValue;
}
return aValue + ceilf(-aValue / aIncrementSize) * aIncrementSize;
}
static inline Float FiniteDivide(Float aValue, Float aDivisor) {
if (aDivisor == 0) {
return 0;
}
return aValue / aDivisor;
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
Point SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::
EquivalentNonNegativeOffset(const Point& aOffset) const {
Size basePeriod = Stitch ? Size(mStitchInfo.width, mStitchInfo.height)
: Size(sBSize, sBSize);
Size repeatingSize(FiniteDivide(basePeriod.width, mBaseFrequency.width),
FiniteDivide(basePeriod.height, mBaseFrequency.height));
return Point(MakeNonNegative(aOffset.x, repeatingSize.width),
MakeNonNegative(aOffset.y, repeatingSize.height));
}
template <TurbulenceType Type, bool Stitch, typename f32x4_t, typename i32x4_t,
typename u8x16_t>
already_AddRefed<DataSourceSurface>
SVGTurbulenceRenderer<Type, Stitch, f32x4_t, i32x4_t, u8x16_t>::Render(
const IntSize& aSize, const Point& aOffset) const {
RefPtr<DataSourceSurface> target =
Factory::CreateDataSourceSurface(aSize, SurfaceFormat::B8G8R8A8);
if (!target) {
return nullptr;
}
DataSourceSurface::ScopedMap map(target, DataSourceSurface::READ_WRITE);
uint8_t* targetData = map.GetData();
uint32_t stride = map.GetStride();
Point startOffset = EquivalentNonNegativeOffset(aOffset);
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x += 4) {
int32_t targIndex = y * stride + x * 4;
i32x4_t a = Turbulence(startOffset + Point(x, y));
i32x4_t b = Turbulence(startOffset + Point(x + 1, y));
i32x4_t c = Turbulence(startOffset + Point(x + 2, y));
i32x4_t d = Turbulence(startOffset + Point(x + 3, y));
u8x16_t result1234 = simd::PackAndSaturate32To8(a, b, c, d);
simd::Store8(&targetData[targIndex], result1234);
}
}
return target.forget();
}
} // namespace gfx
} // namespace mozilla