gecko-dev/js/public/Proxy.h

633 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_Proxy_h
#define js_Proxy_h
#include "mozilla/Maybe.h"
#include "jsfriendapi.h"
#include "js/CallNonGenericMethod.h"
#include "js/Class.h"
namespace js {
using JS::AutoIdVector;
using JS::CallArgs;
using JS::Handle;
using JS::HandleId;
using JS::HandleObject;
using JS::HandleValue;
using JS::IsAcceptableThis;
using JS::MutableHandle;
using JS::MutableHandleObject;
using JS::MutableHandleValue;
using JS::NativeImpl;
using JS::ObjectOpResult;
using JS::PrivateValue;
using JS::PropertyDescriptor;
using JS::Value;
class RegExpGuard;
class JS_FRIEND_API(Wrapper);
/*
* A proxy is a JSObject with highly customizable behavior. ES6 specifies a
* single kind of proxy, but the customization mechanisms we use to implement
* ES6 Proxy objects are also useful wherever an object with weird behavior is
* wanted. Proxies are used to implement:
*
* - the scope objects used by the Debugger's frame.eval() method
* (see js::GetDebugScopeForFunction)
*
* - the khuey hack, whereby a whole compartment can be blown away
* even if other compartments hold references to objects in it
* (see js::NukeCrossCompartmentWrappers)
*
* - XPConnect security wrappers, which protect chrome from malicious content
* (js/xpconnect/wrappers)
*
* - DOM objects with special property behavior, like named getters
* (dom/bindings/Codegen.py generates these proxies from WebIDL)
*
* - semi-transparent use of objects that live in other processes
* (CPOWs, implemented in js/ipc)
*
* ### Proxies and internal methods
*
* ES2016 specifies 13 internal methods. The runtime semantics of just
* about everything a script can do to an object is specified in terms
* of these internal methods. For example:
*
* JS code ES6 internal method that gets called
* --------------------------- --------------------------------
* obj.prop obj.[[Get]](obj, "prop")
* "prop" in obj obj.[[HasProperty]]("prop")
* new obj() obj.[[Construct]](<empty argument List>)
*
* With regard to the implementation of these internal methods, there are three
* very different kinds of object in SpiderMonkey.
*
* 1. Native objects' internal methods are implemented in vm/NativeObject.cpp,
* with duplicate (but functionally identical) implementations scattered
* through the ICs and JITs.
*
* 2. Certain non-native objects have internal methods that are implemented as
* magical js::ObjectOps hooks. We're trying to get rid of these.
*
* 3. All other objects are proxies. A proxy's internal methods are
* implemented in C++, as the virtual methods of a C++ object stored on the
* proxy, known as its handler.
*
* This means that just about anything you do to a proxy will end up going
* through a C++ virtual method call. Possibly several. There's no reason the
* JITs and ICs can't specialize for particular proxies, based on the handler;
* but currently we don't do much of this, so the virtual method overhead
* typically is actually incurred.
*
* ### The proxy handler hierarchy
*
* A major use case for proxies is to forward each internal method call to
* another object, known as its target. The target can be an arbitrary JS
* object. Not every proxy has the notion of a target, however.
*
* To minimize code duplication, a set of abstract proxy handler classes is
* provided, from which other handlers may inherit. These abstract classes are
* organized in the following hierarchy:
*
* BaseProxyHandler
* |
* Wrapper // has a target, can be unwrapped to reveal
* | // target (see js::CheckedUnwrap)
* |
* CrossCompartmentWrapper // target is in another compartment;
* // implements membrane between compartments
*
* Example: Some DOM objects (including all the arraylike DOM objects) are
* implemented as proxies. Since these objects don't need to forward operations
* to any underlying JS object, DOMJSProxyHandler directly subclasses
* BaseProxyHandler.
*
* Gecko's security wrappers are examples of cross-compartment wrappers.
*
* ### Proxy prototype chains
*
* In addition to the normal methods, there are two models for proxy prototype
* chains.
*
* 1. Proxies can use the standard prototype mechanism used throughout the
* engine. To do so, simply pass a prototype to NewProxyObject() at
* creation time. All prototype accesses will then "just work" to treat the
* proxy as a "normal" object.
*
* 2. A proxy can implement more complicated prototype semantics (if, for
* example, it wants to delegate the prototype lookup to a wrapped object)
* by passing Proxy::LazyProto as the prototype at create time. This
* guarantees that the getPrototype() handler method will be called every
* time the object's prototype chain is accessed.
*
* This system is implemented with two methods: {get,set}Prototype. The
* default implementation of setPrototype throws a TypeError. Since it is
* not possible to create an object without a sense of prototype chain,
* handlers must implement getPrototype if opting in to the dynamic
* prototype system.
*/
/*
* BaseProxyHandler is the most generic kind of proxy handler. It does not make
* any assumptions about the target. Consequently, it does not provide any
* default implementation for most methods. As a convenience, a few high-level
* methods, like get() and set(), are given default implementations that work by
* calling the low-level methods, like getOwnPropertyDescriptor().
*
* Important: If you add a method here, you should probably also add a
* Proxy::foo entry point with an AutoEnterPolicy. If you don't, you need an
* explicit override for the method in SecurityWrapper. See bug 945826 comment 0.
*/
class JS_FRIEND_API(BaseProxyHandler)
{
/*
* Sometimes it's desirable to designate groups of proxy handlers as "similar".
* For this, we use the notion of a "family": A consumer-provided opaque pointer
* that designates the larger group to which this proxy belongs.
*
* If it will never be important to differentiate this proxy from others as
* part of a distinct group, nullptr may be used instead.
*/
const void* mFamily;
/*
* Proxy handlers can use mHasPrototype to request the following special
* treatment from the JS engine:
*
* - When mHasPrototype is true, the engine never calls these methods:
* getPropertyDescriptor, has, set, enumerate, iterate. Instead, for
* these operations, it calls the "own" methods like
* getOwnPropertyDescriptor, hasOwn, defineProperty,
* getOwnEnumerablePropertyKeys, etc., and consults the prototype chain
* if needed.
*
* - When mHasPrototype is true, the engine calls handler->get() only if
* handler->hasOwn() says an own property exists on the proxy. If not,
* it consults the prototype chain.
*
* This is useful because it frees the ProxyHandler from having to implement
* any behavior having to do with the prototype chain.
*/
bool mHasPrototype;
/*
* All proxies indicate whether they have any sort of interesting security
* policy that might prevent the caller from doing something it wants to
* the object. In the case of wrappers, this distinction is used to
* determine whether the caller may strip off the wrapper if it so desires.
*/
bool mHasSecurityPolicy;
public:
explicit constexpr BaseProxyHandler(const void* aFamily, bool aHasPrototype = false,
bool aHasSecurityPolicy = false)
: mFamily(aFamily),
mHasPrototype(aHasPrototype),
mHasSecurityPolicy(aHasSecurityPolicy)
{ }
bool hasPrototype() const {
return mHasPrototype;
}
bool hasSecurityPolicy() const {
return mHasSecurityPolicy;
}
inline const void* family() const {
return mFamily;
}
static size_t offsetOfFamily() {
return offsetof(BaseProxyHandler, mFamily);
}
virtual bool finalizeInBackground(const Value& priv) const {
/*
* Called on creation of a proxy to determine whether its finalize
* method can be finalized on the background thread.
*/
return true;
}
virtual bool canNurseryAllocate() const {
/*
* Nursery allocation is allowed if and only if it is safe to not
* run |finalize| when the ProxyObject dies.
*/
return false;
}
/* Policy enforcement methods.
*
* enter() allows the policy to specify whether the caller may perform |act|
* on the proxy's |id| property. In the case when |act| is CALL, |id| is
* generally JSID_VOID.
*
* The |act| parameter to enter() specifies the action being performed.
* If |bp| is false, the method suggests that the caller throw (though it
* may still decide to squelch the error).
*
* We make these OR-able so that assertEnteredPolicy can pass a union of them.
* For example, get{,Own}PropertyDescriptor is invoked by calls to ::get()
* ::set(), in addition to being invoked on its own, so there are several
* valid Actions that could have been entered.
*/
typedef uint32_t Action;
enum {
NONE = 0x00,
GET = 0x01,
SET = 0x02,
CALL = 0x04,
ENUMERATE = 0x08,
GET_PROPERTY_DESCRIPTOR = 0x10
};
virtual bool enter(JSContext* cx, HandleObject wrapper, HandleId id, Action act,
bool* bp) const;
/* Standard internal methods. */
virtual bool getOwnPropertyDescriptor(JSContext* cx, HandleObject proxy, HandleId id,
MutableHandle<PropertyDescriptor> desc) const = 0;
virtual bool defineProperty(JSContext* cx, HandleObject proxy, HandleId id,
Handle<PropertyDescriptor> desc,
ObjectOpResult& result) const = 0;
virtual bool ownPropertyKeys(JSContext* cx, HandleObject proxy,
AutoIdVector& props) const = 0;
virtual bool delete_(JSContext* cx, HandleObject proxy, HandleId id,
ObjectOpResult& result) const = 0;
/*
* These methods are standard, but the engine does not normally call them.
* They're opt-in. See "Proxy prototype chains" above.
*
* getPrototype() crashes if called. setPrototype() throws a TypeError.
*/
virtual bool getPrototype(JSContext* cx, HandleObject proxy, MutableHandleObject protop) const;
virtual bool setPrototype(JSContext* cx, HandleObject proxy, HandleObject proto,
ObjectOpResult& result) const;
/* Non-standard but conceptual kin to {g,s}etPrototype, so these live here. */
virtual bool getPrototypeIfOrdinary(JSContext* cx, HandleObject proxy, bool* isOrdinary,
MutableHandleObject protop) const = 0;
virtual bool setImmutablePrototype(JSContext* cx, HandleObject proxy, bool* succeeded) const;
virtual bool preventExtensions(JSContext* cx, HandleObject proxy,
ObjectOpResult& result) const = 0;
virtual bool isExtensible(JSContext* cx, HandleObject proxy, bool* extensible) const = 0;
/*
* These standard internal methods are implemented, as a convenience, so
* that ProxyHandler subclasses don't have to provide every single method.
*
* The base-class implementations work by calling getPropertyDescriptor().
* They do not follow any standard. When in doubt, override them.
*/
virtual bool has(JSContext* cx, HandleObject proxy, HandleId id, bool* bp) const;
virtual bool get(JSContext* cx, HandleObject proxy, HandleValue receiver,
HandleId id, MutableHandleValue vp) const;
virtual bool set(JSContext* cx, HandleObject proxy, HandleId id, HandleValue v,
HandleValue receiver, ObjectOpResult& result) const;
/*
* [[Call]] and [[Construct]] are standard internal methods but according
* to the spec, they are not present on every object.
*
* SpiderMonkey never calls a proxy's call()/construct() internal method
* unless isCallable()/isConstructor() returns true for that proxy.
*
* BaseProxyHandler::isCallable()/isConstructor() always return false, and
* BaseProxyHandler::call()/construct() crash if called. So if you're
* creating a kind of that is never callable, you don't have to override
* anything, but otherwise you probably want to override all four.
*/
virtual bool call(JSContext* cx, HandleObject proxy, const CallArgs& args) const;
virtual bool construct(JSContext* cx, HandleObject proxy, const CallArgs& args) const;
/* SpiderMonkey extensions. */
virtual bool enumerate(JSContext* cx, HandleObject proxy, MutableHandleObject objp) const;
virtual bool getPropertyDescriptor(JSContext* cx, HandleObject proxy, HandleId id,
MutableHandle<PropertyDescriptor> desc) const;
virtual bool hasOwn(JSContext* cx, HandleObject proxy, HandleId id, bool* bp) const;
virtual bool getOwnEnumerablePropertyKeys(JSContext* cx, HandleObject proxy,
AutoIdVector& props) const;
virtual bool nativeCall(JSContext* cx, IsAcceptableThis test, NativeImpl impl,
const CallArgs& args) const;
virtual bool hasInstance(JSContext* cx, HandleObject proxy, MutableHandleValue v, bool* bp) const;
virtual bool getBuiltinClass(JSContext* cx, HandleObject proxy,
ESClass* cls) const;
virtual bool isArray(JSContext* cx, HandleObject proxy, JS::IsArrayAnswer* answer) const;
virtual const char* className(JSContext* cx, HandleObject proxy) const;
virtual JSString* fun_toString(JSContext* cx, HandleObject proxy, unsigned indent) const;
virtual bool regexp_toShared(JSContext* cx, HandleObject proxy, RegExpGuard* g) const;
virtual bool boxedValue_unbox(JSContext* cx, HandleObject proxy, MutableHandleValue vp) const;
virtual void trace(JSTracer* trc, JSObject* proxy) const;
virtual void finalize(JSFreeOp* fop, JSObject* proxy) const;
virtual void objectMoved(JSObject* proxy, const JSObject* old) const;
// Allow proxies, wrappers in particular, to specify callability at runtime.
// Note: These do not take const JSObject*, but they do in spirit.
// We are not prepared to do this, as there's little const correctness
// in the external APIs that handle proxies.
virtual bool isCallable(JSObject* obj) const;
virtual bool isConstructor(JSObject* obj) const;
// These two hooks must be overridden, or not overridden, in tandem -- no
// overriding just one!
virtual bool watch(JSContext* cx, JS::HandleObject proxy, JS::HandleId id,
JS::HandleObject callable) const;
virtual bool unwatch(JSContext* cx, JS::HandleObject proxy, JS::HandleId id) const;
virtual bool getElements(JSContext* cx, HandleObject proxy, uint32_t begin, uint32_t end,
ElementAdder* adder) const;
/* See comment for weakmapKeyDelegateOp in js/Class.h. */
virtual JSObject* weakmapKeyDelegate(JSObject* proxy) const;
virtual bool isScripted() const { return false; }
};
extern JS_FRIEND_DATA(const js::Class* const) ProxyClassPtr;
inline bool IsProxy(const JSObject* obj)
{
return GetObjectClass(obj)->isProxy();
}
namespace detail {
const uint32_t PROXY_EXTRA_SLOTS = 2;
// Layout of the values stored by a proxy. Note that API clients require the
// private slot to be the first slot in the proxy's values, so that the private
// slot can be accessed in the same fashion as the first reserved slot, via
// {Get,Set}ReservedOrProxyPrivateSlot.
struct ProxyValueArray
{
Value privateSlot;
Value extraSlots[PROXY_EXTRA_SLOTS];
ProxyValueArray()
: privateSlot(JS::UndefinedValue())
{
for (size_t i = 0; i < PROXY_EXTRA_SLOTS; i++)
extraSlots[i] = JS::UndefinedValue();
}
};
// All proxies share the same data layout. Following the object's shape and
// type, the proxy has a ProxyDataLayout structure with a pointer to an array
// of values and the proxy's handler. This is designed both so that proxies can
// be easily swapped with other objects (via RemapWrapper) and to mimic the
// layout of other objects (proxies and other objects have the same size) so
// that common code can access either type of object.
//
// See GetReservedOrProxyPrivateSlot below.
struct ProxyDataLayout
{
ProxyValueArray* values;
const BaseProxyHandler* handler;
};
const uint32_t ProxyDataOffset = 2 * sizeof(void*);
inline ProxyDataLayout*
GetProxyDataLayout(JSObject* obj)
{
MOZ_ASSERT(IsProxy(obj));
return reinterpret_cast<ProxyDataLayout*>(reinterpret_cast<uint8_t*>(obj) + ProxyDataOffset);
}
inline const ProxyDataLayout*
GetProxyDataLayout(const JSObject* obj)
{
MOZ_ASSERT(IsProxy(obj));
return reinterpret_cast<const ProxyDataLayout*>(reinterpret_cast<const uint8_t*>(obj) +
ProxyDataOffset);
}
} // namespace detail
inline const BaseProxyHandler*
GetProxyHandler(const JSObject* obj)
{
return detail::GetProxyDataLayout(obj)->handler;
}
inline const Value&
GetProxyPrivate(const JSObject* obj)
{
return detail::GetProxyDataLayout(obj)->values->privateSlot;
}
inline JSObject*
GetProxyTargetObject(JSObject* obj)
{
return GetProxyPrivate(obj).toObjectOrNull();
}
inline const Value&
GetProxyExtra(const JSObject* obj, size_t n)
{
MOZ_ASSERT(n < detail::PROXY_EXTRA_SLOTS);
return detail::GetProxyDataLayout(obj)->values->extraSlots[n];
}
inline void
SetProxyHandler(JSObject* obj, const BaseProxyHandler* handler)
{
detail::GetProxyDataLayout(obj)->handler = handler;
}
JS_FRIEND_API(void)
SetValueInProxy(Value* slot, const Value& value);
inline void
SetProxyExtra(JSObject* obj, size_t n, const Value& extra)
{
MOZ_ASSERT(n < detail::PROXY_EXTRA_SLOTS);
Value* vp = &detail::GetProxyDataLayout(obj)->values->extraSlots[n];
// Trigger a barrier before writing the slot.
if (vp->isMarkable() || extra.isMarkable())
SetValueInProxy(vp, extra);
else
*vp = extra;
}
inline bool
IsScriptedProxy(const JSObject* obj)
{
return IsProxy(obj) && GetProxyHandler(obj)->isScripted();
}
inline const Value&
GetReservedOrProxyPrivateSlot(const JSObject* obj, size_t slot)
{
MOZ_ASSERT(slot == 0);
MOZ_ASSERT(slot < JSCLASS_RESERVED_SLOTS(GetObjectClass(obj)) || IsProxy(obj));
return reinterpret_cast<const shadow::Object*>(obj)->slotRef(slot);
}
inline void
SetReservedOrProxyPrivateSlot(JSObject* obj, size_t slot, const Value& value)
{
MOZ_ASSERT(slot == 0);
MOZ_ASSERT(slot < JSCLASS_RESERVED_SLOTS(GetObjectClass(obj)) || IsProxy(obj));
shadow::Object* sobj = reinterpret_cast<shadow::Object*>(obj);
if (sobj->slotRef(slot).isMarkable() || value.isMarkable())
SetReservedOrProxyPrivateSlotWithBarrier(obj, slot, value);
else
sobj->slotRef(slot) = value;
}
class MOZ_STACK_CLASS ProxyOptions {
protected:
/* protected constructor for subclass */
explicit ProxyOptions(bool singletonArg, bool lazyProtoArg = false)
: singleton_(singletonArg),
lazyProto_(lazyProtoArg),
clasp_(ProxyClassPtr)
{}
public:
ProxyOptions() : singleton_(false),
lazyProto_(false),
clasp_(ProxyClassPtr)
{}
bool singleton() const { return singleton_; }
ProxyOptions& setSingleton(bool flag) {
singleton_ = flag;
return *this;
}
bool lazyProto() const { return lazyProto_; }
ProxyOptions& setLazyProto(bool flag) {
lazyProto_ = flag;
return *this;
}
const Class* clasp() const {
return clasp_;
}
ProxyOptions& setClass(const Class* claspArg) {
clasp_ = claspArg;
return *this;
}
private:
bool singleton_;
bool lazyProto_;
const Class* clasp_;
};
JS_FRIEND_API(JSObject*)
NewProxyObject(JSContext* cx, const BaseProxyHandler* handler, HandleValue priv,
JSObject* proto, const ProxyOptions& options = ProxyOptions());
JSObject*
RenewProxyObject(JSContext* cx, JSObject* obj, BaseProxyHandler* handler, const Value& priv);
class JS_FRIEND_API(AutoEnterPolicy)
{
public:
typedef BaseProxyHandler::Action Action;
AutoEnterPolicy(JSContext* cx, const BaseProxyHandler* handler,
HandleObject wrapper, HandleId id, Action act, bool mayThrow)
#ifdef JS_DEBUG
: context(nullptr)
#endif
{
allow = handler->hasSecurityPolicy() ? handler->enter(cx, wrapper, id, act, &rv)
: true;
recordEnter(cx, wrapper, id, act);
// We want to throw an exception if all of the following are true:
// * The policy disallowed access.
// * The policy set rv to false, indicating that we should throw.
// * The caller did not instruct us to ignore exceptions.
// * The policy did not throw itself.
if (!allow && !rv && mayThrow)
reportErrorIfExceptionIsNotPending(cx, id);
}
virtual ~AutoEnterPolicy() { recordLeave(); }
inline bool allowed() { return allow; }
inline bool returnValue() { MOZ_ASSERT(!allowed()); return rv; }
protected:
// no-op constructor for subclass
AutoEnterPolicy()
#ifdef JS_DEBUG
: context(nullptr)
, enteredAction(BaseProxyHandler::NONE)
#endif
{}
void reportErrorIfExceptionIsNotPending(JSContext* cx, jsid id);
bool allow;
bool rv;
#ifdef JS_DEBUG
JSContext* context;
mozilla::Maybe<HandleObject> enteredProxy;
mozilla::Maybe<HandleId> enteredId;
Action enteredAction;
// NB: We explicitly don't track the entered action here, because sometimes
// set() methods do an implicit get() during their implementation, leading
// to spurious assertions.
AutoEnterPolicy* prev;
void recordEnter(JSContext* cx, HandleObject proxy, HandleId id, Action act);
void recordLeave();
friend JS_FRIEND_API(void) assertEnteredPolicy(JSContext* cx, JSObject* proxy, jsid id, Action act);
#else
inline void recordEnter(JSContext* cx, JSObject* proxy, jsid id, Action act) {}
inline void recordLeave() {}
#endif
};
#ifdef JS_DEBUG
class JS_FRIEND_API(AutoWaivePolicy) : public AutoEnterPolicy {
public:
AutoWaivePolicy(JSContext* cx, HandleObject proxy, HandleId id,
BaseProxyHandler::Action act)
{
allow = true;
recordEnter(cx, proxy, id, act);
}
};
#else
class JS_FRIEND_API(AutoWaivePolicy) {
public:
AutoWaivePolicy(JSContext* cx, HandleObject proxy, HandleId id,
BaseProxyHandler::Action act)
{}
};
#endif
#ifdef JS_DEBUG
extern JS_FRIEND_API(void)
assertEnteredPolicy(JSContext* cx, JSObject* obj, jsid id,
BaseProxyHandler::Action act);
#else
inline void assertEnteredPolicy(JSContext* cx, JSObject* obj, jsid id,
BaseProxyHandler::Action act)
{}
#endif
extern JS_FRIEND_API(JSObject*)
InitProxyClass(JSContext* cx, JS::HandleObject obj);
} /* namespace js */
#endif /* js_Proxy_h */