gecko-dev/dom/base/ScriptSettings.h

249 lines
9.8 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// vim: ft=cpp tw=78 sw=2 et ts=2
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Utilities for managing the script settings object stack defined in webapps */
#ifndef mozilla_dom_ScriptSettings_h
#define mozilla_dom_ScriptSettings_h
#include "nsCxPusher.h"
#include "MainThreadUtils.h"
#include "nsIGlobalObject.h"
#include "nsIPrincipal.h"
#include "mozilla/Maybe.h"
class nsPIDOMWindow;
class nsGlobalWindow;
namespace mozilla {
namespace dom {
/*
* System-wide setup/teardown routines. Init and Destroy should be invoked
* once each, at startup and shutdown (respectively).
*/
void InitScriptSettings();
void DestroyScriptSettings();
// This mostly gets the entry global, but doesn't entirely match the spec in
// certain edge cases. It's good enough for some purposes, but not others. If
// you want to call this function, ping bholley and describe your use-case.
nsIGlobalObject* BrokenGetEntryGlobal();
// Note: We don't yet expose GetEntryGlobal, because in order for it to be
// correct, we first need to replace a bunch of explicit cx pushing in the
// browser with AutoEntryScript. But GetIncumbentGlobal is simpler, because it
// can mostly be inferred from the JS stack.
nsIGlobalObject* GetIncumbentGlobal();
// JS-implemented WebIDL presents an interesting situation with respect to the
// subject principal. A regular C++-implemented API can simply examine the
// compartment of the most-recently-executed script, and use that to infer the
// responsible party. However, JS-implemented APIs are run with system
// principal, and thus clobber the subject principal of the script that
// invoked the API. So we have to do some extra work to keep track of this
// information.
//
// We therefore implement the following behavior:
// * Each Script Settings Object has an optional WebIDL Caller Principal field.
// This defaults to null.
// * When we push an Entry Point in preparation to run a JS-implemented WebIDL
// callback, we grab the subject principal at the time of invocation, and
// store that as the WebIDL Caller Principal.
// * When non-null, callers can query this principal from script via an API on
// Components.utils.
nsIPrincipal* GetWebIDLCallerPrincipal();
// This may be used by callers that know that their incumbent global is non-
// null (i.e. they know there have been no System Caller pushes since the
// inner-most script execution).
inline JSObject& IncumbentJSGlobal()
{
return *GetIncumbentGlobal()->GetGlobalJSObject();
}
class ScriptSettingsStack;
class ScriptSettingsStackEntry {
friend class ScriptSettingsStack;
public:
ScriptSettingsStackEntry(nsIGlobalObject *aGlobal, bool aCandidate);
~ScriptSettingsStackEntry();
bool NoJSAPI() { return !mGlobalObject; }
protected:
nsCOMPtr<nsIGlobalObject> mGlobalObject;
bool mIsCandidateEntryPoint;
private:
// This constructor is only for use by AutoNoJSAPI.
friend class AutoNoJSAPI;
ScriptSettingsStackEntry();
ScriptSettingsStackEntry *mOlder;
};
/*
* For any interaction with JSAPI, an AutoJSAPI (or one of its subclasses)
* must be on the stack.
*
* This base class should be instantiated as-is when the caller wants to use
* JSAPI but doesn't expect to run script. The caller must then call one of its
* Init functions before being able to access the JSContext through cx().
* Its current duties are as-follows (see individual Init comments for details):
*
* * Grabbing an appropriate JSContext, and, on the main thread, pushing it onto
* the JSContext stack.
* * Entering an initial (possibly null) compartment, to ensure that the
* previously entered compartment for that JSContext is not used by mistake.
*
* Additionally, the following duties are planned, but not yet implemented:
*
* * De-poisoning the JSRuntime to allow manipulation of JSAPI. We can't
* actually implement this poisoning until all the JSContext pushing in the
* system goes through AutoJSAPI (see bug 951991). For now, this de-poisoning
* effectively corresponds to having a non-null cx on the stack.
* * Reporting any exceptions left on the JSRuntime, unless the caller steals
* or silences them.
* * Entering a JSAutoRequest. At present, this is handled by the cx pushing
* on the main thread, and by other code on workers. Depending on the order
* in which various cleanup lands, this may never be necessary, because
* JSAutoRequests may go away.
*
* In situations where the consumer expects to run script, AutoEntryScript
* should be used, which does additional manipulation of the script settings
* stack. In bug 991758, we'll add hard invariants to SpiderMonkey, such that
* any attempt to run script without an AutoEntryScript on the stack will
* fail. This prevents system code from accidentally triggering script
* execution at inopportune moments via surreptitious getters and proxies.
*/
class AutoJSAPI {
public:
// Trivial constructor. One of the Init functions must be called before
// accessing the JSContext through cx().
AutoJSAPI();
// This uses the SafeJSContext (or worker equivalent), and enters a null
// compartment, so that the consumer is forced to select a compartment to
// enter before manipulating objects.
void Init();
// This uses the SafeJSContext (or worker equivalent), and enters the
// compartment of aGlobalObject.
// If aGlobalObject or its associated JS global are null then it returns
// false and use of cx() will cause an assertion.
bool Init(nsIGlobalObject* aGlobalObject);
// Unsurprisingly, this uses aCx and enters the compartment of aGlobalObject.
// If aGlobalObject or its associated JS global are null then it returns
// false and use of cx() will cause an assertion.
// If aCx is null it will cause an assertion.
bool Init(nsIGlobalObject* aGlobalObject, JSContext* aCx);
// This may only be used on the main thread.
// This attempts to use the JSContext associated with aGlobalObject, otherwise
// it uses the SafeJSContext. It then enters the compartment of aGlobalObject.
// This means that existing error reporting mechanisms that use the JSContext
// to find the JSErrorReporter should still work as before.
// We should be able to remove this around bug 981198.
// If aGlobalObject or its associated JS global are null then it returns
// false and use of cx() will cause an assertion.
bool InitWithLegacyErrorReporting(nsIGlobalObject* aGlobalObject);
// Convenience functions to take an nsPIDOMWindow* or nsGlobalWindow*,
// when it is more easily available than an nsIGlobalObject.
bool Init(nsPIDOMWindow* aWindow);
bool Init(nsPIDOMWindow* aWindow, JSContext* aCx);
bool Init(nsGlobalWindow* aWindow);
bool Init(nsGlobalWindow* aWindow, JSContext* aCx);
bool InitWithLegacyErrorReporting(nsPIDOMWindow* aWindow);
bool InitWithLegacyErrorReporting(nsGlobalWindow* aWindow);
JSContext* cx() const {
MOZ_ASSERT(mCx, "Must call Init before using an AutoJSAPI");
MOZ_ASSERT_IF(NS_IsMainThread(), CxPusherIsStackTop());
return mCx;
}
bool CxPusherIsStackTop() const { return mCxPusher.ref().IsStackTop(); }
protected:
// Protected constructor, allowing subclasses to specify a particular cx to
// be used. This constructor initialises the AutoJSAPI, so Init must NOT be
// called on subclasses that use this.
// If aGlobalObject, its associated JS global or aCx are null this will cause
// an assertion, as will setting aIsMainThread incorrectly.
AutoJSAPI(nsIGlobalObject* aGlobalObject, bool aIsMainThread, JSContext* aCx);
private:
mozilla::Maybe<AutoCxPusher> mCxPusher;
mozilla::Maybe<JSAutoNullableCompartment> mAutoNullableCompartment;
JSContext *mCx;
void InitInternal(JSObject* aGlobal, JSContext* aCx, bool aIsMainThread);
};
/*
* A class that represents a new script entry point.
*/
class AutoEntryScript : public AutoJSAPI,
protected ScriptSettingsStackEntry {
public:
explicit AutoEntryScript(nsIGlobalObject* aGlobalObject,
bool aIsMainThread = NS_IsMainThread(),
// Note: aCx is mandatory off-main-thread.
JSContext* aCx = nullptr);
void SetWebIDLCallerPrincipal(nsIPrincipal *aPrincipal) {
mWebIDLCallerPrincipal = aPrincipal;
}
private:
// It's safe to make this a weak pointer, since it's the subject principal
// when we go on the stack, so can't go away until after we're gone. In
// particular, this is only used from the CallSetup constructor, and only in
// the aIsJSImplementedWebIDL case. And in that case, the subject principal
// is the principal of the callee function that is part of the CallArgs just a
// bit up the stack, and which will outlive us. So we know the principal
// can't go away until then either.
nsIPrincipal* mWebIDLCallerPrincipal;
friend nsIPrincipal* GetWebIDLCallerPrincipal();
};
/*
* A class that can be used to force a particular incumbent script on the stack.
*/
class AutoIncumbentScript : protected ScriptSettingsStackEntry {
public:
explicit AutoIncumbentScript(nsIGlobalObject* aGlobalObject);
private:
JS::AutoHideScriptedCaller mCallerOverride;
};
/*
* A class to put the JS engine in an unusable state. The subject principal
* will become System, the information on the script settings stack is
* rendered inaccessible, and JSAPI may not be manipulated until the class is
* either popped or an AutoJSAPI instance is subsequently pushed.
*
* This class may not be instantiated if an exception is pending.
*/
class AutoNoJSAPI : protected ScriptSettingsStackEntry {
public:
explicit AutoNoJSAPI(bool aIsMainThread = NS_IsMainThread());
private:
mozilla::Maybe<AutoCxPusher> mCxPusher;
};
} // namespace dom
} // namespace mozilla
#endif // mozilla_dom_ScriptSettings_h