gecko-dev/mfbt/MathAlgorithms.h
Jeff Walden 1871e9f3f8 Bug 835542 - Implement mozilla::Abs. r=Ms2ger
--HG--
extra : rebase_source : a3e62ff76365d27cc4cb10e4fee942ddb8b10b79
2013-02-15 19:55:36 -08:00

122 lines
3.5 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* mfbt maths algorithms. */
#ifndef mozilla_MathAlgorithms_h_
#define mozilla_MathAlgorithms_h_
#include "mozilla/Assertions.h"
#include "mozilla/StandardInteger.h"
#include "mozilla/TypeTraits.h"
#include <limits.h>
#include <math.h>
namespace mozilla {
// Greatest Common Divisor
template<typename IntegerType>
MOZ_ALWAYS_INLINE IntegerType
EuclidGCD(IntegerType a, IntegerType b)
{
// Euclid's algorithm; O(N) in the worst case. (There are better
// ways, but we don't need them for the current use of this algo.)
MOZ_ASSERT(a > 0);
MOZ_ASSERT(b > 0);
while (a != b) {
if (a > b) {
a = a - b;
} else {
b = b - a;
}
}
return a;
}
// Least Common Multiple
template<typename IntegerType>
MOZ_ALWAYS_INLINE IntegerType
EuclidLCM(IntegerType a, IntegerType b)
{
// Divide first to reduce overflow risk.
return (a / EuclidGCD(a, b)) * b;
}
namespace detail {
// For now mozilla::Abs only takes intN_T, the signed natural types, and
// float/double/long double. Feel free to add overloads for other standard,
// signed types if you need them.
template<typename T>
struct SupportedForAbsFixed : FalseType {};
template<> struct SupportedForAbsFixed<int8_t> : TrueType {};
template<> struct SupportedForAbsFixed<int16_t> : TrueType {};
template<> struct SupportedForAbsFixed<int32_t> : TrueType {};
template<> struct SupportedForAbsFixed<int64_t> : TrueType {};
template<typename T>
struct SupportedForAbs : SupportedForAbsFixed<T> {};
template<> struct SupportedForAbs<char> : IntegralConstant<bool, char(-1) < char(0)> {};
template<> struct SupportedForAbs<signed char> : TrueType {};
template<> struct SupportedForAbs<short> : TrueType {};
template<> struct SupportedForAbs<int> : TrueType {};
template<> struct SupportedForAbs<long> : TrueType {};
template<> struct SupportedForAbs<long long> : TrueType {};
template<> struct SupportedForAbs<float> : TrueType {};
template<> struct SupportedForAbs<double> : TrueType {};
template<> struct SupportedForAbs<long double> : TrueType {};
} // namespace detail
template<typename T>
inline typename mozilla::EnableIf<detail::SupportedForAbs<T>::value, T>::Type
Abs(const T t)
{
// The absolute value of the smallest possible value of a signed-integer type
// won't fit in that type (on twos-complement systems -- and we're blithely
// assuming we're on such systems, for the non-<stdint.h> types listed above),
// so assert that the input isn't that value.
//
// This is the case if: the value is non-negative; or if adding one (giving a
// value in the range [-maxvalue, 0]), then negating (giving a value in the
// range [0, maxvalue]), doesn't produce maxvalue (because in twos-complement,
// (minvalue + 1) == -maxvalue).
MOZ_ASSERT(t >= 0 ||
-(t + 1) != T((1ULL << (CHAR_BIT * sizeof(T) - 1)) - 1),
"You can't negate the smallest possible negative integer!");
return t >= 0 ? t : -t;
}
template<>
inline float
Abs<float>(const float f)
{
return fabsf(f);
}
template<>
inline double
Abs<double>(const double d)
{
return fabs(d);
}
template<>
inline long double
Abs<long double>(const long double d)
{
return fabsl(d);
}
} /* namespace mozilla */
#endif /* mozilla_MathAlgorithms_h_ */