mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-10-30 13:45:27 +00:00
674 lines
17 KiB
C
674 lines
17 KiB
C
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the Netscape security libraries.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Netscape Communications Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2001
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
/* $Id: sslmutex.c,v 1.19 2004/04/27 23:04:39 gerv%gerv.net Exp $ */
|
|
|
|
#include "seccomon.h"
|
|
/* This ifdef should match the one in sslsnce.c */
|
|
#if (defined(XP_UNIX) || defined(XP_WIN32) || defined (XP_OS2) || defined(XP_BEOS)) && !defined(_WIN32_WCE)
|
|
|
|
#include "sslmutex.h"
|
|
#include "prerr.h"
|
|
|
|
static SECStatus single_process_sslMutex_Init(sslMutex* pMutex)
|
|
{
|
|
PR_ASSERT(pMutex != 0 && pMutex->u.sslLock == 0 );
|
|
|
|
pMutex->u.sslLock = PR_NewLock();
|
|
if (!pMutex->u.sslLock) {
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus single_process_sslMutex_Destroy(sslMutex* pMutex)
|
|
{
|
|
PR_ASSERT(pMutex != 0);
|
|
PR_ASSERT(pMutex->u.sslLock!= 0);
|
|
if (!pMutex->u.sslLock) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
PR_DestroyLock(pMutex->u.sslLock);
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus single_process_sslMutex_Unlock(sslMutex* pMutex)
|
|
{
|
|
PR_ASSERT(pMutex != 0 );
|
|
PR_ASSERT(pMutex->u.sslLock !=0);
|
|
if (!pMutex->u.sslLock) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
PR_Unlock(pMutex->u.sslLock);
|
|
return SECSuccess;
|
|
}
|
|
|
|
static SECStatus single_process_sslMutex_Lock(sslMutex* pMutex)
|
|
{
|
|
PR_ASSERT(pMutex != 0);
|
|
PR_ASSERT(pMutex->u.sslLock != 0 );
|
|
if (!pMutex->u.sslLock) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
PR_Lock(pMutex->u.sslLock);
|
|
return SECSuccess;
|
|
}
|
|
|
|
#if defined(LINUX) || defined(AIX) || defined(VMS) || defined(BEOS) || defined(BSDI) || defined(NETBSD) || defined(OPENBSD)
|
|
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include "unix_err.h"
|
|
#include "pratom.h"
|
|
|
|
#define SSL_MUTEX_MAGIC 0xfeedfd
|
|
#define NONBLOCKING_POSTS 1 /* maybe this is faster */
|
|
|
|
#if NONBLOCKING_POSTS
|
|
|
|
#ifndef FNONBLOCK
|
|
#define FNONBLOCK O_NONBLOCK
|
|
#endif
|
|
|
|
static int
|
|
setNonBlocking(int fd, int nonBlocking)
|
|
{
|
|
int flags;
|
|
int err;
|
|
|
|
flags = fcntl(fd, F_GETFL, 0);
|
|
if (0 > flags)
|
|
return flags;
|
|
if (nonBlocking)
|
|
flags |= FNONBLOCK;
|
|
else
|
|
flags &= ~FNONBLOCK;
|
|
err = fcntl(fd, F_SETFL, flags);
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
SECStatus
|
|
sslMutex_Init(sslMutex *pMutex, int shared)
|
|
{
|
|
int err;
|
|
PR_ASSERT(pMutex);
|
|
pMutex->isMultiProcess = (PRBool)(shared != 0);
|
|
if (!shared) {
|
|
return single_process_sslMutex_Init(pMutex);
|
|
}
|
|
pMutex->u.pipeStr.mPipes[0] = -1;
|
|
pMutex->u.pipeStr.mPipes[1] = -1;
|
|
pMutex->u.pipeStr.mPipes[2] = -1;
|
|
pMutex->u.pipeStr.nWaiters = 0;
|
|
|
|
err = pipe(pMutex->u.pipeStr.mPipes);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
/* close-on-exec is false by default */
|
|
if (!shared) {
|
|
err = fcntl(pMutex->u.pipeStr.mPipes[0], F_SETFD, FD_CLOEXEC);
|
|
if (err)
|
|
goto loser;
|
|
|
|
err = fcntl(pMutex->u.pipeStr.mPipes[1], F_SETFD, FD_CLOEXEC);
|
|
if (err)
|
|
goto loser;
|
|
}
|
|
|
|
#if NONBLOCKING_POSTS
|
|
err = setNonBlocking(pMutex->u.pipeStr.mPipes[1], 1);
|
|
if (err)
|
|
goto loser;
|
|
#endif
|
|
|
|
pMutex->u.pipeStr.mPipes[2] = SSL_MUTEX_MAGIC;
|
|
|
|
#if defined(LINUX) && defined(i386)
|
|
/* Pipe starts out empty */
|
|
return SECSuccess;
|
|
#else
|
|
/* Pipe starts with one byte. */
|
|
return sslMutex_Unlock(pMutex);
|
|
#endif
|
|
|
|
loser:
|
|
nss_MD_unix_map_default_error(errno);
|
|
close(pMutex->u.pipeStr.mPipes[0]);
|
|
close(pMutex->u.pipeStr.mPipes[1]);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Destroy(sslMutex *pMutex)
|
|
{
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Destroy(pMutex);
|
|
}
|
|
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
close(pMutex->u.pipeStr.mPipes[0]);
|
|
close(pMutex->u.pipeStr.mPipes[1]);
|
|
|
|
pMutex->u.pipeStr.mPipes[0] = -1;
|
|
pMutex->u.pipeStr.mPipes[1] = -1;
|
|
pMutex->u.pipeStr.mPipes[2] = -1;
|
|
pMutex->u.pipeStr.nWaiters = 0;
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
#if defined(LINUX) && defined(i386)
|
|
/* No memory barrier needed for this platform */
|
|
|
|
/* nWaiters includes the holder of the lock (if any) and the number
|
|
** threads waiting for it. After incrementing nWaiters, if the count
|
|
** is exactly 1, then you have the lock and may proceed. If the
|
|
** count is greater than 1, then you must wait on the pipe.
|
|
*/
|
|
|
|
|
|
SECStatus
|
|
sslMutex_Unlock(sslMutex *pMutex)
|
|
{
|
|
PRInt32 newValue;
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Unlock(pMutex);
|
|
}
|
|
|
|
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
/* Do Memory Barrier here. */
|
|
newValue = PR_AtomicDecrement(&pMutex->u.pipeStr.nWaiters);
|
|
if (newValue > 0) {
|
|
int cc;
|
|
char c = 1;
|
|
do {
|
|
cc = write(pMutex->u.pipeStr.mPipes[1], &c, 1);
|
|
} while (cc < 0 && (errno == EINTR || errno == EAGAIN));
|
|
if (cc != 1) {
|
|
if (cc < 0)
|
|
nss_MD_unix_map_default_error(errno);
|
|
else
|
|
PORT_SetError(PR_UNKNOWN_ERROR);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Lock(sslMutex *pMutex)
|
|
{
|
|
PRInt32 newValue;
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Lock(pMutex);
|
|
}
|
|
|
|
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
newValue = PR_AtomicIncrement(&pMutex->u.pipeStr.nWaiters);
|
|
/* Do Memory Barrier here. */
|
|
if (newValue > 1) {
|
|
int cc;
|
|
char c;
|
|
do {
|
|
cc = read(pMutex->u.pipeStr.mPipes[0], &c, 1);
|
|
} while (cc < 0 && errno == EINTR);
|
|
if (cc != 1) {
|
|
if (cc < 0)
|
|
nss_MD_unix_map_default_error(errno);
|
|
else
|
|
PORT_SetError(PR_UNKNOWN_ERROR);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
#else
|
|
|
|
/* Using Atomic operations requires the use of a memory barrier instruction
|
|
** on PowerPC, Sparc, and Alpha. NSPR's PR_Atomic functions do not perform
|
|
** them, and NSPR does not provide a function that does them (e.g. PR_Barrier).
|
|
** So, we don't use them on those platforms.
|
|
*/
|
|
|
|
SECStatus
|
|
sslMutex_Unlock(sslMutex *pMutex)
|
|
{
|
|
int cc;
|
|
char c = 1;
|
|
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Unlock(pMutex);
|
|
}
|
|
|
|
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
do {
|
|
cc = write(pMutex->u.pipeStr.mPipes[1], &c, 1);
|
|
} while (cc < 0 && (errno == EINTR || errno == EAGAIN));
|
|
if (cc != 1) {
|
|
if (cc < 0)
|
|
nss_MD_unix_map_default_error(errno);
|
|
else
|
|
PORT_SetError(PR_UNKNOWN_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Lock(sslMutex *pMutex)
|
|
{
|
|
int cc;
|
|
char c;
|
|
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Lock(pMutex);
|
|
}
|
|
|
|
if (pMutex->u.pipeStr.mPipes[2] != SSL_MUTEX_MAGIC) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
do {
|
|
cc = read(pMutex->u.pipeStr.mPipes[0], &c, 1);
|
|
} while (cc < 0 && errno == EINTR);
|
|
if (cc != 1) {
|
|
if (cc < 0)
|
|
nss_MD_unix_map_default_error(errno);
|
|
else
|
|
PORT_SetError(PR_UNKNOWN_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
#endif
|
|
|
|
#elif defined(WIN32)
|
|
|
|
#include "win32err.h"
|
|
|
|
/* on Windows, we need to find the optimal type of locking mechanism to use
|
|
for the sslMutex.
|
|
|
|
There are 3 cases :
|
|
1) single-process, use a PRLock, as for all other platforms
|
|
2) Win95 multi-process, use a Win32 mutex
|
|
3) on WINNT multi-process, use a PRLock + a Win32 mutex
|
|
|
|
*/
|
|
|
|
#ifdef WINNT
|
|
|
|
SECStatus sslMutex_2LevelInit(sslMutex *sem)
|
|
{
|
|
/* the following adds a PRLock to sslMutex . This is done in each
|
|
process of a multi-process server and is only needed on WINNT, if
|
|
using fibers. We can't tell if native threads or fibers are used, so
|
|
we always do it on WINNT
|
|
*/
|
|
PR_ASSERT(sem);
|
|
if (sem) {
|
|
/* we need to reset the sslLock in the children or the single_process init
|
|
function below will assert */
|
|
sem->u.sslLock = NULL;
|
|
}
|
|
return single_process_sslMutex_Init(sem);
|
|
}
|
|
|
|
static SECStatus sslMutex_2LevelDestroy(sslMutex *sem)
|
|
{
|
|
return single_process_sslMutex_Destroy(sem);
|
|
}
|
|
|
|
#endif
|
|
|
|
SECStatus
|
|
sslMutex_Init(sslMutex *pMutex, int shared)
|
|
{
|
|
#ifdef WINNT
|
|
SECStatus retvalue;
|
|
#endif
|
|
HANDLE hMutex;
|
|
SECURITY_ATTRIBUTES attributes =
|
|
{ sizeof(SECURITY_ATTRIBUTES), NULL, TRUE };
|
|
|
|
PR_ASSERT(pMutex != 0 && (pMutex->u.sslMutx == 0 ||
|
|
pMutex->u.sslMutx == INVALID_HANDLE_VALUE) );
|
|
|
|
pMutex->isMultiProcess = (PRBool)(shared != 0);
|
|
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Init(pMutex);
|
|
}
|
|
|
|
#ifdef WINNT
|
|
/* we need a lock on WINNT for fibers in the parent process */
|
|
retvalue = sslMutex_2LevelInit(pMutex);
|
|
if (SECSuccess != retvalue)
|
|
return SECFailure;
|
|
#endif
|
|
|
|
if (!pMutex || ((hMutex = pMutex->u.sslMutx) != 0 &&
|
|
hMutex != INVALID_HANDLE_VALUE)) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
attributes.bInheritHandle = (shared ? TRUE : FALSE);
|
|
hMutex = CreateMutex(&attributes, FALSE, NULL);
|
|
if (hMutex == NULL) {
|
|
hMutex = INVALID_HANDLE_VALUE;
|
|
nss_MD_win32_map_default_error(GetLastError());
|
|
return SECFailure;
|
|
}
|
|
pMutex->u.sslMutx = hMutex;
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Destroy(sslMutex *pMutex)
|
|
{
|
|
HANDLE hMutex;
|
|
int rv;
|
|
int retvalue = SECSuccess;
|
|
|
|
PR_ASSERT(pMutex != 0);
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Destroy(pMutex);
|
|
}
|
|
|
|
/* multi-process mode */
|
|
#ifdef WINNT
|
|
/* on NT, get rid of the PRLock used for fibers within a process */
|
|
retvalue = sslMutex_2LevelDestroy(pMutex);
|
|
#endif
|
|
|
|
PR_ASSERT( pMutex->u.sslMutx != 0 &&
|
|
pMutex->u.sslMutx != INVALID_HANDLE_VALUE);
|
|
if (!pMutex || (hMutex = pMutex->u.sslMutx) == 0
|
|
|| hMutex == INVALID_HANDLE_VALUE) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = CloseHandle(hMutex); /* ignore error */
|
|
if (rv) {
|
|
pMutex->u.sslMutx = hMutex = INVALID_HANDLE_VALUE;
|
|
} else {
|
|
nss_MD_win32_map_default_error(GetLastError());
|
|
retvalue = SECFailure;
|
|
}
|
|
return retvalue;
|
|
}
|
|
|
|
int
|
|
sslMutex_Unlock(sslMutex *pMutex)
|
|
{
|
|
BOOL success = FALSE;
|
|
HANDLE hMutex;
|
|
|
|
PR_ASSERT(pMutex != 0 );
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Unlock(pMutex);
|
|
}
|
|
|
|
PR_ASSERT(pMutex->u.sslMutx != 0 &&
|
|
pMutex->u.sslMutx != INVALID_HANDLE_VALUE);
|
|
if (!pMutex || (hMutex = pMutex->u.sslMutx) == 0 ||
|
|
hMutex == INVALID_HANDLE_VALUE) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure;
|
|
}
|
|
success = ReleaseMutex(hMutex);
|
|
if (!success) {
|
|
nss_MD_win32_map_default_error(GetLastError());
|
|
return SECFailure;
|
|
}
|
|
#ifdef WINNT
|
|
return single_process_sslMutex_Unlock(pMutex);
|
|
/* release PRLock for other fibers in the process */
|
|
#else
|
|
return SECSuccess;
|
|
#endif
|
|
}
|
|
|
|
int
|
|
sslMutex_Lock(sslMutex *pMutex)
|
|
{
|
|
HANDLE hMutex;
|
|
DWORD event;
|
|
DWORD lastError;
|
|
SECStatus rv;
|
|
SECStatus retvalue = SECSuccess;
|
|
PR_ASSERT(pMutex != 0);
|
|
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Lock(pMutex);
|
|
}
|
|
#ifdef WINNT
|
|
/* lock first to preserve from other threads/fibers
|
|
in the same process */
|
|
retvalue = single_process_sslMutex_Lock(pMutex);
|
|
#endif
|
|
PR_ASSERT(pMutex->u.sslMutx != 0 &&
|
|
pMutex->u.sslMutx != INVALID_HANDLE_VALUE);
|
|
if (!pMutex || (hMutex = pMutex->u.sslMutx) == 0 ||
|
|
hMutex == INVALID_HANDLE_VALUE) {
|
|
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
|
|
return SECFailure; /* what else ? */
|
|
}
|
|
/* acquire the mutex to be the only owner accross all other processes */
|
|
event = WaitForSingleObject(hMutex, INFINITE);
|
|
switch (event) {
|
|
case WAIT_OBJECT_0:
|
|
case WAIT_ABANDONED:
|
|
rv = SECSuccess;
|
|
break;
|
|
|
|
case WAIT_TIMEOUT:
|
|
#if defined(WAIT_IO_COMPLETION)
|
|
case WAIT_IO_COMPLETION:
|
|
#endif
|
|
default: /* should never happen. nothing we can do. */
|
|
PR_ASSERT(!("WaitForSingleObject returned invalid value."));
|
|
PORT_SetError(PR_UNKNOWN_ERROR);
|
|
rv = SECFailure;
|
|
break;
|
|
|
|
case WAIT_FAILED: /* failure returns this */
|
|
rv = SECFailure;
|
|
lastError = GetLastError(); /* for debugging */
|
|
nss_MD_win32_map_default_error(lastError);
|
|
break;
|
|
}
|
|
|
|
if (! (SECSuccess == retvalue && SECSuccess == rv)) {
|
|
return SECFailure;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
#elif defined(XP_UNIX)
|
|
|
|
#include <errno.h>
|
|
#include "unix_err.h"
|
|
|
|
SECStatus
|
|
sslMutex_Init(sslMutex *pMutex, int shared)
|
|
{
|
|
int rv;
|
|
PR_ASSERT(pMutex);
|
|
pMutex->isMultiProcess = (PRBool)(shared != 0);
|
|
if (!shared) {
|
|
return single_process_sslMutex_Init(pMutex);
|
|
}
|
|
do {
|
|
rv = sem_init(&pMutex->u.sem, shared, 1);
|
|
} while (rv < 0 && errno == EINTR);
|
|
if (rv < 0) {
|
|
nss_MD_unix_map_default_error(errno);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Destroy(sslMutex *pMutex)
|
|
{
|
|
int rv;
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Destroy(pMutex);
|
|
}
|
|
do {
|
|
rv = sem_destroy(&pMutex->u.sem);
|
|
} while (rv < 0 && errno == EINTR);
|
|
if (rv < 0) {
|
|
nss_MD_unix_map_default_error(errno);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Unlock(sslMutex *pMutex)
|
|
{
|
|
int rv;
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Unlock(pMutex);
|
|
}
|
|
do {
|
|
rv = sem_post(&pMutex->u.sem);
|
|
} while (rv < 0 && errno == EINTR);
|
|
if (rv < 0) {
|
|
nss_MD_unix_map_default_error(errno);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Lock(sslMutex *pMutex)
|
|
{
|
|
int rv;
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Lock(pMutex);
|
|
}
|
|
do {
|
|
rv = sem_wait(&pMutex->u.sem);
|
|
} while (rv < 0 && errno == EINTR);
|
|
if (rv < 0) {
|
|
nss_MD_unix_map_default_error(errno);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
#else
|
|
|
|
SECStatus
|
|
sslMutex_Init(sslMutex *pMutex, int shared)
|
|
{
|
|
PR_ASSERT(pMutex);
|
|
pMutex->isMultiProcess = (PRBool)(shared != 0);
|
|
if (!shared) {
|
|
return single_process_sslMutex_Init(pMutex);
|
|
}
|
|
PORT_Assert(!("sslMutex_Init not implemented for multi-process applications !"));
|
|
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Destroy(sslMutex *pMutex)
|
|
{
|
|
PR_ASSERT(pMutex);
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Destroy(pMutex);
|
|
}
|
|
PORT_Assert(!("sslMutex_Destroy not implemented for multi-process applications !"));
|
|
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Unlock(sslMutex *pMutex)
|
|
{
|
|
PR_ASSERT(pMutex);
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Unlock(pMutex);
|
|
}
|
|
PORT_Assert(!("sslMutex_Unlock not implemented for multi-process applications !"));
|
|
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
sslMutex_Lock(sslMutex *pMutex)
|
|
{
|
|
PR_ASSERT(pMutex);
|
|
if (PR_FALSE == pMutex->isMultiProcess) {
|
|
return single_process_sslMutex_Lock(pMutex);
|
|
}
|
|
PORT_Assert(!("sslMutex_Lock not implemented for multi-process applications !"));
|
|
PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
|
|
return SECFailure;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|