mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-10-29 21:25:35 +00:00
4f153efd27
MozReview-Commit-ID: Dhrco8madlz --HG-- extra : rebase_source : b26d9d25c2dd54f7ec0e12dd51127229cb085346
195 lines
6.3 KiB
C++
195 lines
6.3 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "ComputedTimingFunction.h"
|
|
#include "nsAlgorithm.h" // For clamped()
|
|
#include "nsStyleUtil.h"
|
|
|
|
namespace mozilla {
|
|
|
|
void
|
|
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
|
|
{
|
|
mType = aFunction.mType;
|
|
if (nsTimingFunction::IsSplineType(mType)) {
|
|
mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
|
|
aFunction.mFunc.mX2, aFunction.mFunc.mY2);
|
|
} else {
|
|
mSteps = aFunction.mSteps;
|
|
}
|
|
}
|
|
|
|
static inline double
|
|
StepTiming(uint32_t aSteps,
|
|
double aPortion,
|
|
ComputedTimingFunction::BeforeFlag aBeforeFlag,
|
|
nsTimingFunction::Type aType)
|
|
{
|
|
MOZ_ASSERT(0.0 <= aPortion && aPortion <= 1.0, "out of range");
|
|
MOZ_ASSERT(aType == nsTimingFunction::Type::StepStart ||
|
|
aType == nsTimingFunction::Type::StepEnd, "invalid type");
|
|
|
|
if (aPortion == 1.0) {
|
|
return 1.0;
|
|
}
|
|
|
|
// Calculate current step using step-end behavior
|
|
uint32_t step = uint32_t(aPortion * aSteps); // floor
|
|
|
|
// step-start is one step ahead
|
|
if (aType == nsTimingFunction::Type::StepStart) {
|
|
step++;
|
|
}
|
|
|
|
// If the "before flag" is set and we are at a transition point,
|
|
// drop back a step (but only if we are not already at the zero point--
|
|
// we do this clamping here since |step| is an unsigned integer)
|
|
if (step != 0 &&
|
|
aBeforeFlag == ComputedTimingFunction::BeforeFlag::Set &&
|
|
fmod(aPortion * aSteps, 1) == 0) {
|
|
step--;
|
|
}
|
|
|
|
// Convert to a progress value
|
|
return double(step) / double(aSteps);
|
|
}
|
|
|
|
double
|
|
ComputedTimingFunction::GetValue(
|
|
double aPortion,
|
|
ComputedTimingFunction::BeforeFlag aBeforeFlag) const
|
|
{
|
|
if (HasSpline()) {
|
|
// Check for a linear curve.
|
|
// (GetSplineValue(), below, also checks this but doesn't work when
|
|
// aPortion is outside the range [0.0, 1.0]).
|
|
if (mTimingFunction.X1() == mTimingFunction.Y1() &&
|
|
mTimingFunction.X2() == mTimingFunction.Y2()) {
|
|
return aPortion;
|
|
}
|
|
|
|
// Ensure that we return 0 or 1 on both edges.
|
|
if (aPortion == 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (aPortion == 1.0) {
|
|
return 1.0;
|
|
}
|
|
|
|
// For negative values, try to extrapolate with tangent (p1 - p0) or,
|
|
// if p1 is coincident with p0, with (p2 - p0).
|
|
if (aPortion < 0.0) {
|
|
if (mTimingFunction.X1() > 0.0) {
|
|
return aPortion * mTimingFunction.Y1() / mTimingFunction.X1();
|
|
} else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) {
|
|
return aPortion * mTimingFunction.Y2() / mTimingFunction.X2();
|
|
}
|
|
// If we can't calculate a sensible tangent, don't extrapolate at all.
|
|
return 0.0;
|
|
}
|
|
|
|
// For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
|
|
// if p2 is coincident with p3, with (p1 - p3).
|
|
if (aPortion > 1.0) {
|
|
if (mTimingFunction.X2() < 1.0) {
|
|
return 1.0 + (aPortion - 1.0) *
|
|
(mTimingFunction.Y2() - 1) / (mTimingFunction.X2() - 1);
|
|
} else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) {
|
|
return 1.0 + (aPortion - 1.0) *
|
|
(mTimingFunction.Y1() - 1) / (mTimingFunction.X1() - 1);
|
|
}
|
|
// If we can't calculate a sensible tangent, don't extrapolate at all.
|
|
return 1.0;
|
|
}
|
|
|
|
return mTimingFunction.GetSplineValue(aPortion);
|
|
}
|
|
|
|
// Since we use endpoint-exclusive timing, the output of a steps(start) timing
|
|
// function when aPortion = 0.0 is the top of the first step. When aPortion is
|
|
// negative, however, we should use the bottom of the first step. We handle
|
|
// negative values of aPortion specially here since once we clamp aPortion
|
|
// to [0,1] below we will no longer be able to distinguish to the two cases.
|
|
if (aPortion < 0.0) {
|
|
return 0.0;
|
|
}
|
|
|
|
// Clamp in case of steps(end) and steps(start) for values greater than 1.
|
|
aPortion = clamped(aPortion, 0.0, 1.0);
|
|
|
|
return StepTiming(mSteps, aPortion, aBeforeFlag, mType);
|
|
}
|
|
|
|
int32_t
|
|
ComputedTimingFunction::Compare(const ComputedTimingFunction& aRhs) const
|
|
{
|
|
if (mType != aRhs.mType) {
|
|
return int32_t(mType) - int32_t(aRhs.mType);
|
|
}
|
|
|
|
if (mType == nsTimingFunction::Type::CubicBezier) {
|
|
int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
|
|
if (order != 0) {
|
|
return order;
|
|
}
|
|
} else if (mType == nsTimingFunction::Type::StepStart ||
|
|
mType == nsTimingFunction::Type::StepEnd) {
|
|
if (mSteps != aRhs.mSteps) {
|
|
return int32_t(mSteps) - int32_t(aRhs.mSteps);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ComputedTimingFunction::AppendToString(nsAString& aResult) const
|
|
{
|
|
switch (mType) {
|
|
case nsTimingFunction::Type::CubicBezier:
|
|
nsStyleUtil::AppendCubicBezierTimingFunction(mTimingFunction.X1(),
|
|
mTimingFunction.Y1(),
|
|
mTimingFunction.X2(),
|
|
mTimingFunction.Y2(),
|
|
aResult);
|
|
break;
|
|
case nsTimingFunction::Type::StepStart:
|
|
case nsTimingFunction::Type::StepEnd:
|
|
nsStyleUtil::AppendStepsTimingFunction(mType, mSteps, aResult);
|
|
break;
|
|
default:
|
|
nsStyleUtil::AppendCubicBezierKeywordTimingFunction(mType, aResult);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* static */ int32_t
|
|
ComputedTimingFunction::Compare(const Maybe<ComputedTimingFunction>& aLhs,
|
|
const Maybe<ComputedTimingFunction>& aRhs)
|
|
{
|
|
// We can't use |operator<| for const Maybe<>& here because
|
|
// 'ease' is prior to 'linear' which is represented by Nothing().
|
|
// So we have to convert Nothing() as 'linear' and check it first.
|
|
nsTimingFunction::Type lhsType = aLhs.isNothing() ?
|
|
nsTimingFunction::Type::Linear : aLhs->GetType();
|
|
nsTimingFunction::Type rhsType = aRhs.isNothing() ?
|
|
nsTimingFunction::Type::Linear : aRhs->GetType();
|
|
|
|
if (lhsType != rhsType) {
|
|
return int32_t(lhsType) - int32_t(rhsType);
|
|
}
|
|
|
|
// Both of them are Nothing().
|
|
if (lhsType == nsTimingFunction::Type::Linear) {
|
|
return 0;
|
|
}
|
|
|
|
// Other types.
|
|
return aLhs->Compare(aRhs.value());
|
|
}
|
|
|
|
} // namespace mozilla
|