gecko-dev/xpcom/threads/TaskController.cpp

1074 lines
34 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "TaskController.h"
#include "nsIIdleRunnable.h"
#include "nsIRunnable.h"
#include "nsThreadUtils.h"
#include <algorithm>
#include <initializer_list>
#include "GeckoProfiler.h"
#include "mozilla/EventQueue.h"
#include "mozilla/BackgroundHangMonitor.h"
#include "mozilla/InputTaskManager.h"
#include "mozilla/VsyncTaskManager.h"
#include "mozilla/IOInterposer.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Unused.h"
#include "nsIThreadInternal.h"
#include "nsQueryObject.h"
#include "nsThread.h"
#include "prenv.h"
#include "prsystem.h"
namespace mozilla {
std::unique_ptr<TaskController> TaskController::sSingleton;
thread_local size_t mThreadPoolIndex = -1;
std::atomic<uint64_t> Task::sCurrentTaskSeqNo = 0;
const int32_t kMinimumPoolThreadCount = 2;
const int32_t kMaximumPoolThreadCount = 8;
/* static */
int32_t TaskController::GetPoolThreadCount() {
if (PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT")) {
return strtol(PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT"), nullptr, 0);
}
int32_t numCores = std::max<int32_t>(1, PR_GetNumberOfProcessors());
return std::clamp<int32_t>(numCores, kMinimumPoolThreadCount,
kMaximumPoolThreadCount);
}
#if defined(MOZ_COLLECTING_RUNNABLE_TELEMETRY)
struct TaskMarker {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("Task");
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
const nsCString& aName, uint32_t aPriority) {
aWriter.StringProperty("name", aName);
aWriter.IntProperty("priority", aPriority);
# define EVENT_PRIORITY(NAME, VALUE) \
if (aPriority == (VALUE)) { \
aWriter.StringProperty("priorityName", #NAME); \
} else
EVENT_QUEUE_PRIORITY_LIST(EVENT_PRIORITY)
# undef EVENT_PRIORITY
{
aWriter.StringProperty("priorityName", "Invalid Value");
}
}
static MarkerSchema MarkerTypeDisplay() {
using MS = MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
schema.SetChartLabel("{marker.data.name}");
schema.SetTableLabel(
"{marker.name} - {marker.data.name} - priority: "
"{marker.data.priorityName} ({marker.data.priority})");
schema.AddKeyLabelFormatSearchable("name", "Task Name", MS::Format::String,
MS::Searchable::Searchable);
schema.AddKeyLabelFormat("priorityName", "Priority Name",
MS::Format::String);
schema.AddKeyLabelFormat("priority", "Priority level", MS::Format::Integer);
return schema;
}
};
class MOZ_RAII AutoProfileTask {
public:
explicit AutoProfileTask(nsACString& aName, uint64_t aPriority)
: mName(aName), mPriority(aPriority) {
if (profiler_is_active()) {
mStartTime = TimeStamp::Now();
}
}
~AutoProfileTask() {
if (!profiler_thread_is_being_profiled_for_markers()) {
return;
}
AUTO_PROFILER_LABEL("AutoProfileTask", PROFILER);
AUTO_PROFILER_STATS(AUTO_PROFILE_TASK);
profiler_add_marker("Runnable", ::mozilla::baseprofiler::category::OTHER,
mStartTime.IsNull()
? MarkerTiming::IntervalEnd()
: MarkerTiming::IntervalUntilNowFrom(mStartTime),
TaskMarker{}, mName, mPriority);
}
private:
TimeStamp mStartTime;
nsAutoCString mName;
uint32_t mPriority;
};
# define AUTO_PROFILE_FOLLOWING_TASK(task) \
nsAutoCString name; \
(task)->GetName(name); \
AUTO_PROFILER_LABEL_DYNAMIC_NSCSTRING_NONSENSITIVE("Task", OTHER, name); \
mozilla::AutoProfileTask PROFILER_RAII(name, (task)->GetPriority());
#else
# define AUTO_PROFILE_FOLLOWING_TASK(task)
#endif
bool TaskManager::
UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
const MutexAutoLock& aProofOfLock, IterationType aIterationType) {
mCurrentSuspended = IsSuspended(aProofOfLock);
if (aIterationType == IterationType::EVENT_LOOP_TURN && !mCurrentSuspended) {
int32_t oldModifier = mCurrentPriorityModifier;
mCurrentPriorityModifier =
GetPriorityModifierForEventLoopTurn(aProofOfLock);
if (mCurrentPriorityModifier != oldModifier) {
return true;
}
}
return false;
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
class MOZ_RAII AutoSetMainThreadRunnableName {
public:
explicit AutoSetMainThreadRunnableName(const nsCString& aName) {
MOZ_ASSERT(NS_IsMainThread());
// We want to record our current runnable's name in a static so
// that BHR can record it.
mRestoreRunnableName = nsThread::sMainThreadRunnableName;
// Copy the name into sMainThreadRunnableName's buffer, and append a
// terminating null.
uint32_t length = std::min((uint32_t)nsThread::kRunnableNameBufSize - 1,
(uint32_t)aName.Length());
memcpy(nsThread::sMainThreadRunnableName.begin(), aName.BeginReading(),
length);
nsThread::sMainThreadRunnableName[length] = '\0';
}
~AutoSetMainThreadRunnableName() {
nsThread::sMainThreadRunnableName = mRestoreRunnableName;
}
private:
Array<char, nsThread::kRunnableNameBufSize> mRestoreRunnableName;
};
#endif
Task* Task::GetHighestPriorityDependency() {
Task* currentTask = this;
while (!currentTask->mDependencies.empty()) {
auto iter = currentTask->mDependencies.begin();
while (iter != currentTask->mDependencies.end()) {
if ((*iter)->mCompleted) {
auto oldIter = iter;
iter++;
// Completed tasks are removed here to prevent needlessly keeping them
// alive or iterating over them in the future.
currentTask->mDependencies.erase(oldIter);
continue;
}
currentTask = iter->get();
break;
}
}
return currentTask == this ? nullptr : currentTask;
}
TaskController* TaskController::Get() {
MOZ_ASSERT(sSingleton.get());
return sSingleton.get();
}
void TaskController::Initialize() {
MOZ_ASSERT(!sSingleton);
sSingleton = std::make_unique<TaskController>();
}
void ThreadFuncPoolThread(void* aIndex) {
mThreadPoolIndex = *reinterpret_cast<int32_t*>(aIndex);
delete reinterpret_cast<int32_t*>(aIndex);
TaskController::Get()->RunPoolThread();
}
TaskController::TaskController()
: mGraphMutex("TaskController::mGraphMutex"),
mThreadPoolCV(mGraphMutex, "TaskController::mThreadPoolCV"),
mMainThreadCV(mGraphMutex, "TaskController::mMainThreadCV"),
mRunOutOfMTTasksCounter(0) {
InputTaskManager::Init();
VsyncTaskManager::Init();
mMTProcessingRunnable = NS_NewRunnableFunction(
"TaskController::ExecutePendingMTTasks()",
[]() { TaskController::Get()->ProcessPendingMTTask(); });
mMTBlockingProcessingRunnable = NS_NewRunnableFunction(
"TaskController::ExecutePendingMTTasks()",
[]() { TaskController::Get()->ProcessPendingMTTask(true); });
}
// We want our default stack size limit to be approximately 2MB, to be safe for
// JS helper tasks that can use a lot of stack, but expect most threads to use
// much less. On Linux, however, requesting a stack of 2MB or larger risks the
// kernel allocating an entire 2MB huge page for it on first access, which we do
// not want. To avoid this possibility, we subtract 2 standard VM page sizes
// from our default.
constexpr PRUint32 sBaseStackSize = 2048 * 1024 - 2 * 4096;
// TSan enforces a minimum stack size that's just slightly larger than our
// default helper stack size. It does this to store blobs of TSan-specific data
// on each thread's stack. Unfortunately, that means that even though we'll
// actually receive a larger stack than we requested, the effective usable space
// of that stack is significantly less than what we expect. To offset TSan
// stealing our stack space from underneath us, double the default.
//
// Similarly, ASan requires more stack space due to red-zones.
#if defined(MOZ_TSAN) || defined(MOZ_ASAN)
constexpr PRUint32 sStackSize = 2 * sBaseStackSize;
#else
constexpr PRUint32 sStackSize = sBaseStackSize;
#endif
void TaskController::InitializeThreadPool() {
mPoolInitializationMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(!mThreadPoolInitialized);
mThreadPoolInitialized = true;
int32_t poolSize = GetPoolThreadCount();
for (int32_t i = 0; i < poolSize; i++) {
int32_t* index = new int32_t(i);
mPoolThreads.push_back(
{PR_CreateThread(PR_USER_THREAD, ThreadFuncPoolThread, index,
PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD,
PR_JOINABLE_THREAD, sStackSize),
nullptr});
}
}
/* static */
size_t TaskController::GetThreadStackSize() { return sStackSize; }
void TaskController::SetPerformanceCounterState(
PerformanceCounterState* aPerformanceCounterState) {
mPerformanceCounterState = aPerformanceCounterState;
}
/* static */
void TaskController::Shutdown() {
InputTaskManager::Cleanup();
VsyncTaskManager::Cleanup();
if (sSingleton) {
sSingleton->ShutdownThreadPoolInternal();
sSingleton->ShutdownInternal();
}
MOZ_ASSERT(!sSingleton);
}
void TaskController::ShutdownThreadPoolInternal() {
{
// Prevent racecondition on mShuttingDown and wait.
MutexAutoLock lock(mGraphMutex);
mShuttingDown = true;
mThreadPoolCV.NotifyAll();
}
for (PoolThread& thread : mPoolThreads) {
PR_JoinThread(thread.mThread);
}
}
void TaskController::ShutdownInternal() { sSingleton = nullptr; }
void TaskController::RunPoolThread() {
IOInterposer::RegisterCurrentThread();
// This is used to hold on to a task to make sure it is released outside the
// lock. This is required since it's perfectly feasible for task destructors
// to post events themselves.
RefPtr<Task> lastTask;
nsAutoCString threadName;
threadName.AppendLiteral("TaskController #");
threadName.AppendInt(static_cast<int64_t>(mThreadPoolIndex));
AUTO_PROFILER_REGISTER_THREAD(threadName.BeginReading());
MutexAutoLock lock(mGraphMutex);
while (true) {
bool ranTask = false;
if (!mThreadableTasks.empty()) {
for (auto iter = mThreadableTasks.begin(); iter != mThreadableTasks.end();
++iter) {
// Search for the highest priority dependency of the highest priority
// task.
// We work with rawptrs to avoid needless refcounting. All our tasks
// are always kept alive by the graph. If one is removed from the graph
// it is kept alive by mPoolThreads[mThreadPoolIndex].mCurrentTask.
Task* task = iter->get();
MOZ_ASSERT(!task->mTaskManager);
mPoolThreads[mThreadPoolIndex].mEffectiveTaskPriority =
task->GetPriority();
Task* nextTask;
while ((nextTask = task->GetHighestPriorityDependency())) {
task = nextTask;
}
if (task->IsMainThreadOnly() || task->mInProgress) {
continue;
}
mPoolThreads[mThreadPoolIndex].mCurrentTask = task;
mThreadableTasks.erase(task->mIterator);
task->mIterator = mThreadableTasks.end();
task->mInProgress = true;
if (!mThreadableTasks.empty()) {
// Ensure at least one additional thread is woken up if there are
// more threadable tasks to process. Notifying all threads at once
// isn't actually better for performance since they all need the
// GraphMutex to proceed anyway.
mThreadPoolCV.Notify();
}
bool taskCompleted = false;
{
MutexAutoUnlock unlock(mGraphMutex);
lastTask = nullptr;
AUTO_PROFILE_FOLLOWING_TASK(task);
taskCompleted = task->Run();
ranTask = true;
}
task->mInProgress = false;
if (!taskCompleted) {
// Presumably this task was interrupted, leave its dependencies
// unresolved and reinsert into the queue.
auto insertion = mThreadableTasks.insert(
mPoolThreads[mThreadPoolIndex].mCurrentTask);
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
} else {
task->mCompleted = true;
#ifdef DEBUG
task->mIsInGraph = false;
#endif
task->mDependencies.clear();
// This may have unblocked a main thread task. We could do this only
// if there was a main thread task before this one in the dependency
// chain.
mMayHaveMainThreadTask = true;
// Since this could have multiple dependencies thare are restricted
// to the main thread. Let's make sure that's awake.
EnsureMainThreadTasksScheduled();
MaybeInterruptTask(GetHighestPriorityMTTask());
}
// Store last task for release next time we release the lock or enter
// wait state.
lastTask = mPoolThreads[mThreadPoolIndex].mCurrentTask.forget();
break;
}
}
// Ensure the last task is released before we enter the wait state.
if (lastTask) {
MutexAutoUnlock unlock(mGraphMutex);
lastTask = nullptr;
// Run another loop iteration, while we were unlocked there was an
// opportunity for another task to be posted or shutdown to be initiated.
continue;
}
if (!ranTask) {
if (mShuttingDown) {
IOInterposer::UnregisterCurrentThread();
MOZ_ASSERT(mThreadableTasks.empty());
return;
}
AUTO_PROFILER_LABEL("TaskController::RunPoolThread", IDLE);
mThreadPoolCV.Wait();
}
}
}
void TaskController::AddTask(already_AddRefed<Task>&& aTask) {
RefPtr<Task> task(aTask);
if (!task->IsMainThreadOnly()) {
MutexAutoLock lock(mPoolInitializationMutex);
if (!mThreadPoolInitialized) {
InitializeThreadPool();
}
}
MutexAutoLock lock(mGraphMutex);
if (TaskManager* manager = task->GetManager()) {
if (manager->mTaskCount == 0) {
mTaskManagers.insert(manager);
}
manager->DidQueueTask();
// Set this here since if this manager's priority modifier doesn't change
// we will not reprioritize when iterating over the queue.
task->mPriorityModifier = manager->mCurrentPriorityModifier;
}
if (profiler_is_active_and_unpaused()) {
task->mInsertionTime = TimeStamp::Now();
}
#ifdef DEBUG
task->mIsInGraph = true;
for (const RefPtr<Task>& otherTask : task->mDependencies) {
MOZ_ASSERT(!otherTask->mTaskManager ||
otherTask->mTaskManager == task->mTaskManager);
}
#endif
LogTask::LogDispatch(task);
std::pair<std::set<RefPtr<Task>, Task::PriorityCompare>::iterator, bool>
insertion;
if (task->IsMainThreadOnly()) {
insertion = mMainThreadTasks.insert(std::move(task));
} else {
insertion = mThreadableTasks.insert(std::move(task));
}
(*insertion.first)->mIterator = insertion.first;
MOZ_ASSERT(insertion.second);
MaybeInterruptTask(*insertion.first);
}
void TaskController::WaitForTaskOrMessage() {
MutexAutoLock lock(mGraphMutex);
while (!mMayHaveMainThreadTask) {
AUTO_PROFILER_LABEL("TaskController::WaitForTaskOrMessage", IDLE);
mMainThreadCV.Wait();
}
}
void TaskController::ExecuteNextTaskOnlyMainThread() {
MOZ_ASSERT(NS_IsMainThread());
MutexAutoLock lock(mGraphMutex);
ExecuteNextTaskOnlyMainThreadInternal(lock);
}
void TaskController::ProcessPendingMTTask(bool aMayWait) {
MOZ_ASSERT(NS_IsMainThread());
MutexAutoLock lock(mGraphMutex);
for (;;) {
// We only ever process one event here. However we may sometimes
// not actually process a real event because of suspended tasks.
// This loop allows us to wait until we've processed something
// in that scenario.
mMTTaskRunnableProcessedTask = ExecuteNextTaskOnlyMainThreadInternal(lock);
if (mMTTaskRunnableProcessedTask || !aMayWait) {
break;
}
#ifdef MOZ_ENABLE_BACKGROUND_HANG_MONITOR
// Unlock before calling into the BackgroundHangMonitor API as it uses
// the timer API.
{
MutexAutoUnlock unlock(mGraphMutex);
BackgroundHangMonitor().NotifyWait();
}
#endif
{
// ProcessNextEvent will also have attempted to wait, however we may have
// given it a Runnable when all the tasks in our task graph were suspended
// but we weren't able to cheaply determine that.
AUTO_PROFILER_LABEL("TaskController::ProcessPendingMTTask", IDLE);
mMainThreadCV.Wait();
}
#ifdef MOZ_ENABLE_BACKGROUND_HANG_MONITOR
{
MutexAutoUnlock unlock(mGraphMutex);
BackgroundHangMonitor().NotifyActivity();
}
#endif
}
if (mMayHaveMainThreadTask) {
EnsureMainThreadTasksScheduled();
}
}
void TaskController::ReprioritizeTask(Task* aTask, uint32_t aPriority) {
MutexAutoLock lock(mGraphMutex);
std::set<RefPtr<Task>, Task::PriorityCompare>* queue = &mMainThreadTasks;
if (!aTask->IsMainThreadOnly()) {
queue = &mThreadableTasks;
}
MOZ_ASSERT(aTask->mIterator != queue->end());
queue->erase(aTask->mIterator);
aTask->mPriority = aPriority;
auto insertion = queue->insert(aTask);
MOZ_ASSERT(insertion.second);
aTask->mIterator = insertion.first;
MaybeInterruptTask(aTask);
}
// Code supporting runnable compatibility.
// Task that wraps a runnable.
class RunnableTask : public Task {
public:
RunnableTask(already_AddRefed<nsIRunnable>&& aRunnable, int32_t aPriority,
bool aMainThread = true)
: Task(aMainThread, aPriority), mRunnable(aRunnable) {}
virtual bool Run() override {
mRunnable->Run();
mRunnable = nullptr;
return true;
}
void SetIdleDeadline(TimeStamp aDeadline) override {
nsCOMPtr<nsIIdleRunnable> idleRunnable = do_QueryInterface(mRunnable);
if (idleRunnable) {
idleRunnable->SetDeadline(aDeadline);
}
}
virtual bool GetName(nsACString& aName) override {
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
if (nsCOMPtr<nsINamed> named = do_QueryInterface(mRunnable)) {
MOZ_ALWAYS_TRUE(NS_SUCCEEDED(named->GetName(aName)));
} else {
aName.AssignLiteral("non-nsINamed runnable");
}
if (aName.IsEmpty()) {
aName.AssignLiteral("anonymous runnable");
}
return true;
#else
return false;
#endif
}
private:
RefPtr<nsIRunnable> mRunnable;
};
void TaskController::DispatchRunnable(already_AddRefed<nsIRunnable>&& aRunnable,
uint32_t aPriority,
TaskManager* aManager) {
RefPtr<RunnableTask> task = new RunnableTask(std::move(aRunnable), aPriority);
task->SetManager(aManager);
TaskController::Get()->AddTask(task.forget());
}
nsIRunnable* TaskController::GetRunnableForMTTask(bool aReallyWait) {
MutexAutoLock lock(mGraphMutex);
while (mMainThreadTasks.empty()) {
if (!aReallyWait) {
return nullptr;
}
AUTO_PROFILER_LABEL("TaskController::GetRunnableForMTTask::Wait", IDLE);
mMainThreadCV.Wait();
}
return aReallyWait ? mMTBlockingProcessingRunnable : mMTProcessingRunnable;
}
bool TaskController::HasMainThreadPendingTasks() {
MOZ_ASSERT(NS_IsMainThread());
auto resetIdleState = MakeScopeExit([&idleManager = mIdleTaskManager] {
if (idleManager) {
idleManager->State().ClearCachedIdleDeadline();
}
});
for (bool considerIdle : {false, true}) {
if (considerIdle && !mIdleTaskManager) {
continue;
}
MutexAutoLock lock(mGraphMutex);
if (considerIdle) {
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
// Temporarily unlock so we can peek our idle deadline.
// XXX We could do this _before_ we take the lock if the API would let us.
// We do want to do this before looking at mMainThreadTasks, in case
// someone adds one while we're unlocked.
{
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().CachePeekedIdleDeadline(unlock);
}
}
// Return early if there's no tasks at all.
if (mMainThreadTasks.empty()) {
return false;
}
// We can cheaply count how many tasks are suspended.
uint64_t totalSuspended = 0;
for (TaskManager* manager : mTaskManagers) {
DebugOnly<bool> modifierChanged =
manager
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
lock, TaskManager::IterationType::NOT_EVENT_LOOP_TURN);
MOZ_ASSERT(!modifierChanged);
// The idle manager should be suspended unless we're doing the idle pass.
MOZ_ASSERT(manager != mIdleTaskManager || manager->mCurrentSuspended ||
considerIdle,
"Why are idle tasks not suspended here?");
if (manager->mCurrentSuspended) {
// XXX - If managers manage off-main-thread tasks this breaks! This
// scenario is explicitly not supported.
//
// This is only incremented inside the lock -or- decremented on the main
// thread so this is safe.
totalSuspended += manager->mTaskCount;
}
}
// This would break down if we have a non-suspended task depending on a
// suspended task. This is why for the moment we do not allow tasks
// to be dependent on tasks managed by another taskmanager.
if (mMainThreadTasks.size() > totalSuspended) {
// If mIdleTaskManager->mTaskCount is 0, we never updated the suspended
// state of mIdleTaskManager above, hence shouldn't even check it here.
// But in that case idle tasks are not contributing to our suspended task
// count anyway.
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
!mIdleTaskManager->mCurrentSuspended) {
MOZ_ASSERT(considerIdle, "Why is mIdleTaskManager not suspended?");
// Check whether the idle tasks were really needed to make our "we have
// an unsuspended task" decision. If they were, we need to force-enable
// idle tasks until we run our next task.
if (mMainThreadTasks.size() - mIdleTaskManager->mTaskCount <=
totalSuspended) {
mIdleTaskManager->State().EnforcePendingTaskGuarantee();
}
}
return true;
}
}
return false;
}
uint64_t TaskController::PendingMainthreadTaskCountIncludingSuspended() {
MutexAutoLock lock(mGraphMutex);
return mMainThreadTasks.size();
}
bool TaskController::ExecuteNextTaskOnlyMainThreadInternal(
const MutexAutoLock& aProofOfLock) {
MOZ_ASSERT(NS_IsMainThread());
mGraphMutex.AssertCurrentThreadOwns();
// Block to make it easier to jump to our cleanup.
bool taskRan = false;
do {
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
if (taskRan) {
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
mIdleTaskManager->IsSuspended(aProofOfLock)) {
uint32_t activeTasks = mMainThreadTasks.size();
for (TaskManager* manager : mTaskManagers) {
if (manager->IsSuspended(aProofOfLock)) {
activeTasks -= manager->mTaskCount;
} else {
break;
}
}
if (!activeTasks) {
// We have only idle (and maybe other suspended) tasks left, so need
// to update the idle state. We need to temporarily release the lock
// while we do that.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RequestIdleDeadlineIfNeeded(unlock);
}
}
break;
}
if (!mIdleTaskManager) {
break;
}
if (mIdleTaskManager->mTaskCount) {
// We have idle tasks that we may not have gotten above because
// our idle state is not up to date. We need to update the idle state
// and try again. We need to temporarily release the lock while we do
// that.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().UpdateCachedIdleDeadline(unlock);
} else {
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RanOutOfTasks(unlock);
}
// When we unlocked, someone may have queued a new task on us. So try to
// see whether we can run things again.
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
} while (false);
if (mIdleTaskManager) {
// The pending task guarantee is not needed anymore, since we just tried
// running a task
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
if (mMainThreadTasks.empty()) {
++mRunOutOfMTTasksCounter;
// XXX the IdlePeriodState API demands we have a MutexAutoUnlock for it.
// Otherwise we could perhaps just do this after we exit the locked block,
// by pushing the lock down into this method. Though it's not clear that
// we could check mMainThreadTasks.size() once we unlock, and whether we
// could maybe substitute mMayHaveMainThreadTask for that check.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RanOutOfTasks(unlock);
}
}
return taskRan;
}
bool TaskController::DoExecuteNextTaskOnlyMainThreadInternal(
const MutexAutoLock& aProofOfLock) {
mGraphMutex.AssertCurrentThreadOwns();
nsCOMPtr<nsIThread> mainIThread;
NS_GetMainThread(getter_AddRefs(mainIThread));
nsThread* mainThread = static_cast<nsThread*>(mainIThread.get());
if (mainThread) {
mainThread->SetRunningEventDelay(TimeDuration(), TimeStamp());
}
uint32_t totalSuspended = 0;
for (TaskManager* manager : mTaskManagers) {
bool modifierChanged =
manager
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
aProofOfLock, TaskManager::IterationType::EVENT_LOOP_TURN);
if (modifierChanged) {
ProcessUpdatedPriorityModifier(manager);
}
if (manager->mCurrentSuspended) {
totalSuspended += manager->mTaskCount;
}
}
MOZ_ASSERT(mMainThreadTasks.size() >= totalSuspended);
// This would break down if we have a non-suspended task depending on a
// suspended task. This is why for the moment we do not allow tasks
// to be dependent on tasks managed by another taskmanager.
if (mMainThreadTasks.size() > totalSuspended) {
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();
iter++) {
Task* task = iter->get();
if (task->mTaskManager && task->mTaskManager->mCurrentSuspended) {
// Even though we may want to run some dependencies of this task, we
// will run them at their own priority level and not the priority
// level of their dependents.
continue;
}
task = GetFinalDependency(task);
if (!task->IsMainThreadOnly() || task->mInProgress ||
(task->mTaskManager && task->mTaskManager->mCurrentSuspended)) {
continue;
}
mCurrentTasksMT.push(task);
mMainThreadTasks.erase(task->mIterator);
task->mIterator = mMainThreadTasks.end();
task->mInProgress = true;
TaskManager* manager = task->GetManager();
bool result = false;
{
MutexAutoUnlock unlock(mGraphMutex);
if (manager) {
manager->WillRunTask();
if (manager != mIdleTaskManager) {
// Notify the idle period state that we're running a non-idle task.
// This needs to happen while our mutex is not locked!
mIdleTaskManager->State().FlagNotIdle();
} else {
TimeStamp idleDeadline =
mIdleTaskManager->State().GetCachedIdleDeadline();
MOZ_ASSERT(
idleDeadline,
"How can we not have a deadline if our manager is enabled?");
task->SetIdleDeadline(idleDeadline);
}
}
if (mIdleTaskManager) {
// We found a task to run; we can clear the idle deadline on our idle
// task manager. This _must_ be done before we actually run the task,
// because running the task could reenter via spinning the event loop
// and we want to make sure there's no cached idle deadline at that
// point. But we have to make sure we do it after out SetIdleDeadline
// call above, in the case when the task is actually an idle task.
mIdleTaskManager->State().ClearCachedIdleDeadline();
}
TimeStamp now = TimeStamp::Now();
if (mainThread) {
if (task->GetPriority() < uint32_t(EventQueuePriority::InputHigh) ||
task->mInsertionTime.IsNull()) {
mainThread->SetRunningEventDelay(TimeDuration(), now);
} else {
mainThread->SetRunningEventDelay(now - task->mInsertionTime, now);
}
}
nsAutoCString name;
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
task->GetName(name);
#endif
PerformanceCounterState::Snapshot snapshot =
mPerformanceCounterState->RunnableWillRun(
now, manager == mIdleTaskManager);
{
LogTask::Run log(task);
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
AutoSetMainThreadRunnableName nameGuard(name);
#endif
AUTO_PROFILE_FOLLOWING_TASK(task);
result = task->Run();
}
// Task itself should keep manager alive.
if (manager) {
manager->DidRunTask();
}
mPerformanceCounterState->RunnableDidRun(name, std::move(snapshot));
}
// Task itself should keep manager alive.
if (manager && result && manager->mTaskCount == 0) {
mTaskManagers.erase(manager);
}
task->mInProgress = false;
if (!result) {
// Presumably this task was interrupted, leave its dependencies
// unresolved and reinsert into the queue.
auto insertion =
mMainThreadTasks.insert(std::move(mCurrentTasksMT.top()));
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
manager->WillRunTask();
} else {
task->mCompleted = true;
#ifdef DEBUG
task->mIsInGraph = false;
#endif
// Clear dependencies to release references.
task->mDependencies.clear();
if (!mThreadableTasks.empty()) {
// We're going to wake up a single thread in our pool. This thread
// is responsible for waking up additional threads in the situation
// where more than one task became available.
mThreadPoolCV.Notify();
}
}
mCurrentTasksMT.pop();
return true;
}
}
mMayHaveMainThreadTask = false;
if (mIdleTaskManager) {
// We did not find a task to run. We still need to clear the cached idle
// deadline on our idle state, because that deadline was only relevant to
// the execution of this function. Had we found a task, we would have
// cleared the deadline before running that task.
mIdleTaskManager->State().ClearCachedIdleDeadline();
}
return false;
}
Task* TaskController::GetFinalDependency(Task* aTask) {
Task* nextTask;
while ((nextTask = aTask->GetHighestPriorityDependency())) {
aTask = nextTask;
}
return aTask;
}
void TaskController::MaybeInterruptTask(Task* aTask) {
mGraphMutex.AssertCurrentThreadOwns();
if (!aTask) {
return;
}
// This optimization prevents many slow lookups in long chains of similar
// priority.
if (!aTask->mDependencies.empty()) {
Task* firstDependency = aTask->mDependencies.begin()->get();
if (aTask->GetPriority() <= firstDependency->GetPriority() &&
!firstDependency->mCompleted &&
aTask->IsMainThreadOnly() == firstDependency->IsMainThreadOnly()) {
// This task has the same or a higher priority as one of its dependencies,
// never any need to interrupt.
return;
}
}
Task* finalDependency = GetFinalDependency(aTask);
if (finalDependency->mInProgress) {
// No need to wake anything, we can't schedule this task right now anyway.
return;
}
if (aTask->IsMainThreadOnly()) {
mMayHaveMainThreadTask = true;
EnsureMainThreadTasksScheduled();
if (mCurrentTasksMT.empty()) {
return;
}
// We could go through the steps above here and interrupt an off main
// thread task in case it has a lower priority.
if (!finalDependency->IsMainThreadOnly()) {
return;
}
if (mCurrentTasksMT.top()->GetPriority() < aTask->GetPriority()) {
mCurrentTasksMT.top()->RequestInterrupt(aTask->GetPriority());
}
} else {
Task* lowestPriorityTask = nullptr;
for (PoolThread& thread : mPoolThreads) {
if (!thread.mCurrentTask) {
mThreadPoolCV.Notify();
// There's a free thread, no need to interrupt anything.
return;
}
if (!lowestPriorityTask) {
lowestPriorityTask = thread.mCurrentTask.get();
continue;
}
// This should possibly select the lowest priority task which was started
// the latest. But for now we ignore that optimization.
// This also doesn't guarantee a task is interruptable, so that's an
// avenue for improvements as well.
if (lowestPriorityTask->GetPriority() > thread.mEffectiveTaskPriority) {
lowestPriorityTask = thread.mCurrentTask.get();
}
}
if (lowestPriorityTask->GetPriority() < aTask->GetPriority()) {
lowestPriorityTask->RequestInterrupt(aTask->GetPriority());
}
// We choose not to interrupt main thread tasks for tasks which may be
// executed off the main thread.
}
}
Task* TaskController::GetHighestPriorityMTTask() {
mGraphMutex.AssertCurrentThreadOwns();
if (!mMainThreadTasks.empty()) {
return mMainThreadTasks.begin()->get();
}
return nullptr;
}
void TaskController::EnsureMainThreadTasksScheduled() {
if (mObserver) {
mObserver->OnDispatchedEvent();
}
if (mExternalCondVar) {
mExternalCondVar->Notify();
}
mMainThreadCV.Notify();
}
void TaskController::ProcessUpdatedPriorityModifier(TaskManager* aManager) {
mGraphMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(NS_IsMainThread());
int32_t modifier = aManager->mCurrentPriorityModifier;
std::vector<RefPtr<Task>> storedTasks;
// Find all relevant tasks.
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();) {
if ((*iter)->mTaskManager == aManager) {
storedTasks.push_back(*iter);
iter = mMainThreadTasks.erase(iter);
} else {
iter++;
}
}
// Reinsert found tasks with their new priorities.
for (RefPtr<Task>& ref : storedTasks) {
// Kept alive at first by the vector and then by mMainThreadTasks.
Task* task = ref;
task->mPriorityModifier = modifier;
auto insertion = mMainThreadTasks.insert(std::move(ref));
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
}
}
} // namespace mozilla