gecko-dev/mfbt/BufferList.h
Kan-Ru Chen 506dfe6ea3 Bug 1264642 - Part 4. Use BufferList to replace raw buffers in StructuredClone. r=baku r=billm r=jorendorff
In JS StructuredClone BufferList<SystemAllocPolicy> is typedef'd to
JSStructuredCloneData and use everywhere in gecko that stores structured
clone data.

This patch changed some raw pointers to UniquePtr<JSStructuredCloneData>
and some to stack allocated JSStructuredCloneData for better life time
management. Some parameters or methods are deleted because of changing
to the new data structure.

MessagePortMessage now has the exactly same structure with
ClonedMessageData. Maybe in the future they can be consolidated.

MozReview-Commit-ID: 1IY9p5eKLgv
2016-08-23 00:40:46 +08:00

552 lines
16 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_BufferList_h
#define mozilla_BufferList_h
#include <algorithm>
#include "mozilla/AllocPolicy.h"
#include "mozilla/Move.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Types.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Vector.h"
#include <string.h>
// BufferList represents a sequence of buffers of data. A BufferList can choose
// to own its buffers or not. The class handles writing to the buffers,
// iterating over them, and reading data out. Unlike SegmentedVector, the
// buffers may be of unequal size. Like SegmentedVector, BufferList is a nice
// way to avoid large contiguous allocations (which can trigger OOMs).
namespace mozilla {
template<typename AllocPolicy>
class BufferList : private AllocPolicy
{
// Each buffer in a BufferList has a size and a capacity. The first mSize
// bytes are initialized and the remaining |mCapacity - mSize| bytes are free.
struct Segment
{
char* mData;
size_t mSize;
size_t mCapacity;
Segment(char* aData, size_t aSize, size_t aCapacity)
: mData(aData),
mSize(aSize),
mCapacity(aCapacity)
{
}
Segment(const Segment&) = delete;
Segment& operator=(const Segment&) = delete;
Segment(Segment&&) = default;
Segment& operator=(Segment&&) = default;
char* Start() const { return mData; }
char* End() const { return mData + mSize; }
};
template<typename OtherAllocPolicy>
friend class BufferList;
public:
// For the convenience of callers, all segments are required to be a multiple
// of 8 bytes in capacity. Also, every buffer except the last one is required
// to be full (i.e., size == capacity). Therefore, a byte at offset N within
// the BufferList and stored in memory at an address A will satisfy
// (N % Align == A % Align) if Align == 2, 4, or 8.
//
// NB: FlattenBytes can create non-full segments in the middle of the
// list. However, it ensures that these buffers are 8-byte aligned, so the
// offset invariant is not violated.
static const size_t kSegmentAlignment = 8;
// Allocate a BufferList. The BufferList will free all its buffers when it is
// destroyed. An initial buffer of size aInitialSize and capacity
// aInitialCapacity is allocated automatically. This data will be contiguous
// an can be accessed via |Start()|. Subsequent buffers will be allocated with
// capacity aStandardCapacity.
BufferList(size_t aInitialSize,
size_t aInitialCapacity,
size_t aStandardCapacity,
AllocPolicy aAP = AllocPolicy())
: AllocPolicy(aAP),
mOwning(true),
mSegments(aAP),
mSize(0),
mStandardCapacity(aStandardCapacity)
{
MOZ_ASSERT(aInitialCapacity % kSegmentAlignment == 0);
MOZ_ASSERT(aStandardCapacity % kSegmentAlignment == 0);
if (aInitialCapacity) {
AllocateSegment(aInitialSize, aInitialCapacity);
}
}
BufferList(const BufferList& aOther) = delete;
BufferList(BufferList&& aOther)
: mOwning(aOther.mOwning),
mSegments(Move(aOther.mSegments)),
mSize(aOther.mSize),
mStandardCapacity(aOther.mStandardCapacity)
{
aOther.mSegments.clear();
aOther.mSize = 0;
}
BufferList& operator=(const BufferList& aOther) = delete;
BufferList& operator=(BufferList&& aOther)
{
Clear();
mOwning = aOther.mOwning;
mSegments = Move(aOther.mSegments);
mSize = aOther.mSize;
aOther.mSegments.clear();
aOther.mSize = 0;
return *this;
}
~BufferList() { Clear(); }
// Returns the sum of the sizes of all the buffers.
size_t Size() const { return mSize; }
void Clear()
{
if (mOwning) {
for (Segment& segment : mSegments) {
this->free_(segment.mData);
}
}
mSegments.clear();
mSize = 0;
}
// Iterates over bytes in the segments. You can advance it by as many bytes as
// you choose.
class IterImpl
{
// Invariants:
// (0) mSegment <= bufferList.mSegments.size()
// (1) mData <= mDataEnd
// (2) If mSegment is not the last segment, mData < mDataEnd
uintptr_t mSegment;
char* mData;
char* mDataEnd;
friend class BufferList;
public:
explicit IterImpl(const BufferList& aBuffers)
: mSegment(0),
mData(nullptr),
mDataEnd(nullptr)
{
if (!aBuffers.mSegments.empty()) {
mData = aBuffers.mSegments[0].Start();
mDataEnd = aBuffers.mSegments[0].End();
}
}
// Returns a pointer to the raw data. It is valid to access up to
// RemainingInSegment bytes of this buffer.
char* Data() const
{
MOZ_RELEASE_ASSERT(!Done());
return mData;
}
// Returns true if the memory in the range [Data(), Data() + aBytes) is all
// part of one contiguous buffer.
bool HasRoomFor(size_t aBytes) const
{
MOZ_RELEASE_ASSERT(mData <= mDataEnd);
return size_t(mDataEnd - mData) >= aBytes;
}
// Returns the maximum value aBytes for which HasRoomFor(aBytes) will be
// true.
size_t RemainingInSegment() const
{
MOZ_RELEASE_ASSERT(mData <= mDataEnd);
return mDataEnd - mData;
}
// Advances the iterator by aBytes bytes. aBytes must be less than
// RemainingInSegment(). If advancing by aBytes takes the iterator to the
// end of a buffer, it will be moved to the beginning of the next buffer
// unless it is the last buffer.
void Advance(const BufferList& aBuffers, size_t aBytes)
{
const Segment& segment = aBuffers.mSegments[mSegment];
MOZ_RELEASE_ASSERT(segment.Start() <= mData);
MOZ_RELEASE_ASSERT(mData <= mDataEnd);
MOZ_RELEASE_ASSERT(mDataEnd == segment.End());
MOZ_RELEASE_ASSERT(HasRoomFor(aBytes));
mData += aBytes;
if (mData == mDataEnd && mSegment + 1 < aBuffers.mSegments.length()) {
mSegment++;
const Segment& nextSegment = aBuffers.mSegments[mSegment];
mData = nextSegment.Start();
mDataEnd = nextSegment.End();
MOZ_RELEASE_ASSERT(mData < mDataEnd);
}
}
// Advance the iterator by aBytes, possibly crossing segments. This function
// returns false if it runs out of buffers to advance through. Otherwise it
// returns true.
bool AdvanceAcrossSegments(const BufferList& aBuffers, size_t aBytes)
{
size_t bytes = aBytes;
while (bytes) {
size_t toAdvance = std::min(bytes, RemainingInSegment());
if (!toAdvance) {
return false;
}
Advance(aBuffers, toAdvance);
bytes -= toAdvance;
}
return true;
}
// Returns true when the iterator reaches the end of the BufferList.
bool Done() const
{
return mData == mDataEnd;
}
};
// Special convenience method that returns Iter().Data().
char* Start() { return mSegments[0].mData; }
IterImpl Iter() const { return IterImpl(*this); }
// Copies aSize bytes from aData into the BufferList. The storage for these
// bytes may be split across multiple buffers. Size() is increased by aSize.
inline bool WriteBytes(const char* aData, size_t aSize);
// Copies possibly non-contiguous byte range starting at aIter into
// aData. aIter is advanced by aSize bytes. Returns false if it runs out of
// data before aSize.
inline bool ReadBytes(IterImpl& aIter, char* aData, size_t aSize) const;
// FlattenBytes reconfigures the BufferList so that data in the range
// [aIter, aIter + aSize) is stored contiguously. A pointer to this data is
// returned in aOutData. Returns false if not enough data is available. All
// other iterators are invalidated by this method.
//
// This method requires aIter and aSize to be 8-byte aligned.
inline bool FlattenBytes(IterImpl& aIter, const char** aOutData, size_t aSize);
// Return a new BufferList that shares storage with this BufferList. The new
// BufferList is read-only. It allows iteration over aSize bytes starting at
// aIter. Borrow can fail, in which case *aSuccess will be false upon
// return. The borrowed BufferList can use a different AllocPolicy than the
// original one. However, it is not responsible for freeing buffers, so the
// AllocPolicy is only used for the buffer vector.
template<typename BorrowingAllocPolicy>
BufferList<BorrowingAllocPolicy> Borrow(IterImpl& aIter, size_t aSize, bool* aSuccess,
BorrowingAllocPolicy aAP = BorrowingAllocPolicy()) const;
// Return a new BufferList and move storage from this BufferList to it. The
// new BufferList owns the buffers. Move can fail, in which case *aSuccess
// will be false upon return. The new BufferList can use a different
// AllocPolicy than the original one. The new OtherAllocPolicy is responsible
// for freeing buffers, so the OtherAllocPolicy must use freeing method
// compatible to the original one.
template<typename OtherAllocPolicy>
BufferList<OtherAllocPolicy> MoveFallible(bool* aSuccess, OtherAllocPolicy aAP = OtherAllocPolicy());
// Return a new BufferList that adopts the byte range starting at Iter so that
// range [aIter, aIter + aSize) is transplanted to the returned BufferList.
// Contents of the buffer before aIter + aSize is left undefined.
// Extract can fail, in which case *aSuccess will be false upon return. The
// moved buffers are erased from the original BufferList. In case of extract
// fails, the original BufferList is intact. All other iterators except aIter
// are invalidated.
// This method requires aIter and aSize to be 8-byte aligned.
BufferList Extract(IterImpl& aIter, size_t aSize, bool* aSuccess);
private:
explicit BufferList(AllocPolicy aAP)
: AllocPolicy(aAP),
mOwning(false),
mSize(0),
mStandardCapacity(0)
{
}
void* AllocateSegment(size_t aSize, size_t aCapacity)
{
MOZ_RELEASE_ASSERT(mOwning);
char* data = this->template pod_malloc<char>(aCapacity);
if (!data) {
return nullptr;
}
if (!mSegments.append(Segment(data, aSize, aCapacity))) {
this->free_(data);
return nullptr;
}
mSize += aSize;
return data;
}
bool mOwning;
Vector<Segment, 1, AllocPolicy> mSegments;
size_t mSize;
size_t mStandardCapacity;
};
template<typename AllocPolicy>
bool
BufferList<AllocPolicy>::WriteBytes(const char* aData, size_t aSize)
{
MOZ_RELEASE_ASSERT(mOwning);
MOZ_RELEASE_ASSERT(mStandardCapacity);
size_t copied = 0;
size_t remaining = aSize;
if (!mSegments.empty()) {
Segment& lastSegment = mSegments.back();
size_t toCopy = std::min(aSize, lastSegment.mCapacity - lastSegment.mSize);
memcpy(lastSegment.mData + lastSegment.mSize, aData, toCopy);
lastSegment.mSize += toCopy;
mSize += toCopy;
copied += toCopy;
remaining -= toCopy;
}
while (remaining) {
size_t toCopy = std::min(remaining, mStandardCapacity);
void* data = AllocateSegment(toCopy, mStandardCapacity);
if (!data) {
return false;
}
memcpy(data, aData + copied, toCopy);
copied += toCopy;
remaining -= toCopy;
}
return true;
}
template<typename AllocPolicy>
bool
BufferList<AllocPolicy>::ReadBytes(IterImpl& aIter, char* aData, size_t aSize) const
{
size_t copied = 0;
size_t remaining = aSize;
while (remaining) {
size_t toCopy = std::min(aIter.RemainingInSegment(), remaining);
if (!toCopy) {
// We've run out of data in the last segment.
return false;
}
memcpy(aData + copied, aIter.Data(), toCopy);
copied += toCopy;
remaining -= toCopy;
aIter.Advance(*this, toCopy);
}
return true;
}
template<typename AllocPolicy>
bool
BufferList<AllocPolicy>::FlattenBytes(IterImpl& aIter, const char** aOutData, size_t aSize)
{
MOZ_RELEASE_ASSERT(aSize);
MOZ_RELEASE_ASSERT(mOwning);
if (aIter.HasRoomFor(aSize)) {
// If the data is already contiguous, just return a pointer.
*aOutData = aIter.Data();
aIter.Advance(*this, aSize);
return true;
}
// This buffer will become the new contiguous segment.
char* buffer = this->template pod_malloc<char>(Size());
if (!buffer) {
return false;
}
size_t copied = 0;
size_t offset;
bool found = false;
for (size_t i = 0; i < mSegments.length(); i++) {
Segment& segment = mSegments[i];
memcpy(buffer + copied, segment.Start(), segment.mSize);
if (i == aIter.mSegment) {
offset = copied + (aIter.mData - segment.Start());
// Do we have aSize bytes after aIter?
if (Size() - offset >= aSize) {
found = true;
*aOutData = buffer + offset;
aIter.mSegment = 0;
aIter.mData = buffer + offset + aSize;
aIter.mDataEnd = buffer + Size();
}
}
this->free_(segment.mData);
copied += segment.mSize;
}
mSegments.clear();
mSegments.infallibleAppend(Segment(buffer, Size(), Size()));
if (!found) {
aIter.mSegment = 0;
aIter.mData = Start();
aIter.mDataEnd = Start() + Size();
}
return found;
}
template<typename AllocPolicy> template<typename BorrowingAllocPolicy>
BufferList<BorrowingAllocPolicy>
BufferList<AllocPolicy>::Borrow(IterImpl& aIter, size_t aSize, bool* aSuccess,
BorrowingAllocPolicy aAP) const
{
BufferList<BorrowingAllocPolicy> result(aAP);
size_t size = aSize;
while (size) {
size_t toAdvance = std::min(size, aIter.RemainingInSegment());
if (!toAdvance || !result.mSegments.append(typename BufferList<BorrowingAllocPolicy>::Segment(aIter.mData, toAdvance, toAdvance))) {
*aSuccess = false;
return result;
}
aIter.Advance(*this, toAdvance);
size -= toAdvance;
}
result.mSize = aSize;
*aSuccess = true;
return result;
}
template<typename AllocPolicy> template<typename OtherAllocPolicy>
BufferList<OtherAllocPolicy>
BufferList<AllocPolicy>::MoveFallible(bool* aSuccess, OtherAllocPolicy aAP)
{
BufferList<OtherAllocPolicy> result(0, 0, mStandardCapacity, aAP);
IterImpl iter = Iter();
while (!iter.Done()) {
size_t toAdvance = iter.RemainingInSegment();
if (!toAdvance || !result.mSegments.append(typename BufferList<OtherAllocPolicy>::Segment(iter.mData, toAdvance, toAdvance))) {
*aSuccess = false;
return result;
}
iter.Advance(*this, toAdvance);
}
result.mSize = mSize;
mSegments.clear();
mSize = 0;
*aSuccess = true;
return result;
}
template<typename AllocPolicy>
BufferList<AllocPolicy>
BufferList<AllocPolicy>::Extract(IterImpl& aIter, size_t aSize, bool* aSuccess)
{
MOZ_RELEASE_ASSERT(aSize);
MOZ_RELEASE_ASSERT(mOwning);
MOZ_ASSERT(aSize % kSegmentAlignment == 0);
MOZ_ASSERT(intptr_t(aIter.mData) % kSegmentAlignment == 0);
IterImpl iter = aIter;
size_t size = aSize;
size_t toCopy = std::min(size, aIter.RemainingInSegment());
MOZ_ASSERT(toCopy % kSegmentAlignment == 0);
BufferList result(0, toCopy, mStandardCapacity);
BufferList error(0, 0, mStandardCapacity);
// Copy the head
if (!result.WriteBytes(aIter.mData, toCopy)) {
*aSuccess = false;
return error;
}
iter.Advance(*this, toCopy);
size -= toCopy;
// Move segments to result
auto resultGuard = MakeScopeExit([&] {
*aSuccess = false;
result.mSegments.erase(result.mSegments.begin()+1, result.mSegments.end());
});
size_t movedSize = 0;
uintptr_t toRemoveStart = iter.mSegment;
uintptr_t toRemoveEnd = iter.mSegment;
while (!iter.Done() &&
!iter.HasRoomFor(size)) {
if (!result.mSegments.append(Segment(mSegments[iter.mSegment].mData,
mSegments[iter.mSegment].mSize,
mSegments[iter.mSegment].mCapacity))) {
return error;
}
movedSize += iter.RemainingInSegment();
size -= iter.RemainingInSegment();
toRemoveEnd++;
iter.Advance(*this, iter.RemainingInSegment());
}
if (size) {
if (!iter.HasRoomFor(size) ||
!result.WriteBytes(iter.Data(), size)) {
return error;
}
iter.Advance(*this, size);
}
mSegments.erase(mSegments.begin() + toRemoveStart, mSegments.begin() + toRemoveEnd);
mSize -= movedSize;
aIter.mSegment = iter.mSegment - (toRemoveEnd - toRemoveStart);
aIter.mData = iter.mData;
aIter.mDataEnd = iter.mDataEnd;
MOZ_ASSERT(aIter.mDataEnd == mSegments[aIter.mSegment].End());
result.mSize = aSize;
resultGuard.release();
*aSuccess = true;
return result;
}
} // namespace mozilla
#endif /* mozilla_BufferList_h */