gecko-dev/hal/Hal.cpp
Thomas Zimmermann 27283de2b8 Bug 1232687: Add system-service interface to HAL, r=gsvelto
The new HAL interface allows for starting, stopping, and querying
the status of system services. How these operations are performed
depends on the underlying system.

The current implementation for Gonk already contains a workaround
from Bluetooth, where quickly restarted system services require a
cool-down time between retrys.
2016-01-04 16:08:21 +01:00

1217 lines
29 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=8 et ft=cpp : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Hal.h"
#include "HalImpl.h"
#include "HalLog.h"
#include "HalSandbox.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "mozilla/Observer.h"
#include "nsIDocument.h"
#include "nsIDOMDocument.h"
#include "nsPIDOMWindow.h"
#include "nsIDOMWindow.h"
#include "mozilla/Services.h"
#include "nsIWebNavigation.h"
#include "nsITabChild.h"
#include "nsIDocShell.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/ClearOnShutdown.h"
#include "WindowIdentifier.h"
#include "nsJSUtils.h"
#include "mozilla/dom/ScreenOrientation.h"
#include "mozilla/dom/ContentChild.h"
#include "mozilla/dom/ContentParent.h"
#ifdef XP_WIN
#include <process.h>
#define getpid _getpid
#endif
using namespace mozilla::services;
using namespace mozilla::dom;
#define PROXY_IF_SANDBOXED(_call) \
do { \
if (InSandbox()) { \
if (!hal_sandbox::HalChildDestroyed()) { \
hal_sandbox::_call; \
} \
} else { \
hal_impl::_call; \
} \
} while (0)
#define RETURN_PROXY_IF_SANDBOXED(_call, defValue)\
do { \
if (InSandbox()) { \
if (hal_sandbox::HalChildDestroyed()) { \
return defValue; \
} \
return hal_sandbox::_call; \
} else { \
return hal_impl::_call; \
} \
} while (0)
namespace mozilla {
namespace hal {
PRLogModuleInfo *
GetHalLog()
{
static PRLogModuleInfo *sHalLog;
if (!sHalLog) {
sHalLog = PR_NewLogModule("hal");
}
return sHalLog;
}
namespace {
void
AssertMainThread()
{
MOZ_ASSERT(NS_IsMainThread());
}
bool
InSandbox()
{
return GeckoProcessType_Content == XRE_GetProcessType();
}
void
AssertMainProcess()
{
MOZ_ASSERT(GeckoProcessType_Default == XRE_GetProcessType());
}
#if !defined(MOZ_WIDGET_GONK)
bool
WindowIsActive(nsIDOMWindow* aWindow)
{
nsCOMPtr<nsPIDOMWindow> window = do_QueryInterface(aWindow);
NS_ENSURE_TRUE(window, false);
nsIDocument* document = window->GetDoc();
NS_ENSURE_TRUE(document, false);
return !document->Hidden();
}
#endif // !defined(MOZ_WIDGET_GONK)
StaticAutoPtr<WindowIdentifier::IDArrayType> gLastIDToVibrate;
void InitLastIDToVibrate()
{
gLastIDToVibrate = new WindowIdentifier::IDArrayType();
ClearOnShutdown(&gLastIDToVibrate);
}
} // namespace
void
Vibrate(const nsTArray<uint32_t>& pattern, nsIDOMWindow* window)
{
Vibrate(pattern, WindowIdentifier(window));
}
void
Vibrate(const nsTArray<uint32_t>& pattern, const WindowIdentifier &id)
{
AssertMainThread();
#if !defined(MOZ_WIDGET_GONK)
// Only active windows may start vibrations. If |id| hasn't gone
// through the IPC layer -- that is, if our caller is the outside
// world, not hal_proxy -- check whether the window is active. If
// |id| has gone through IPC, don't check the window's visibility;
// only the window corresponding to the bottommost process has its
// visibility state set correctly.
if (!id.HasTraveledThroughIPC() && !WindowIsActive(id.GetWindow())) {
HAL_LOG("Vibrate: Window is inactive, dropping vibrate.");
return;
}
#endif // !defined(MOZ_WIDGET_GONK)
if (!InSandbox()) {
if (!gLastIDToVibrate) {
InitLastIDToVibrate();
}
*gLastIDToVibrate = id.AsArray();
}
// Don't forward our ID if we are not in the sandbox, because hal_impl
// doesn't need it, and we don't want it to be tempted to read it. The
// empty identifier will assert if it's used.
PROXY_IF_SANDBOXED(Vibrate(pattern, InSandbox() ? id : WindowIdentifier()));
}
void
CancelVibrate(nsIDOMWindow* window)
{
CancelVibrate(WindowIdentifier(window));
}
void
CancelVibrate(const WindowIdentifier &id)
{
AssertMainThread();
// Although only active windows may start vibrations, a window may
// cancel its own vibration even if it's no longer active.
//
// After a window is marked as inactive, it sends a CancelVibrate
// request. We want this request to cancel a playing vibration
// started by that window, so we certainly don't want to reject the
// cancellation request because the window is now inactive.
//
// But it could be the case that, after this window became inactive,
// some other window came along and started a vibration. We don't
// want this window's cancellation request to cancel that window's
// actively-playing vibration!
//
// To solve this problem, we keep track of the id of the last window
// to start a vibration, and only accepts cancellation requests from
// the same window. All other cancellation requests are ignored.
if (InSandbox() || (gLastIDToVibrate && *gLastIDToVibrate == id.AsArray())) {
// Don't forward our ID if we are not in the sandbox, because hal_impl
// doesn't need it, and we don't want it to be tempted to read it. The
// empty identifier will assert if it's used.
PROXY_IF_SANDBOXED(CancelVibrate(InSandbox() ? id : WindowIdentifier()));
}
}
template <class InfoType>
class ObserversManager
{
public:
void AddObserver(Observer<InfoType>* aObserver) {
if (!mObservers) {
mObservers = new mozilla::ObserverList<InfoType>();
}
mObservers->AddObserver(aObserver);
if (mObservers->Length() == 1) {
EnableNotifications();
}
}
void RemoveObserver(Observer<InfoType>* aObserver) {
bool removed = mObservers && mObservers->RemoveObserver(aObserver);
if (!removed) {
return;
}
if (mObservers->Length() == 0) {
DisableNotifications();
OnNotificationsDisabled();
delete mObservers;
mObservers = nullptr;
}
}
void BroadcastInformation(const InfoType& aInfo) {
// It is possible for mObservers to be nullptr here on some platforms,
// because a call to BroadcastInformation gets queued up asynchronously
// while RemoveObserver is running (and before the notifications are
// disabled). The queued call can then get run after mObservers has
// been nulled out. See bug 757025.
if (!mObservers) {
return;
}
mObservers->Broadcast(aInfo);
}
protected:
virtual void EnableNotifications() = 0;
virtual void DisableNotifications() = 0;
virtual void OnNotificationsDisabled() {}
private:
mozilla::ObserverList<InfoType>* mObservers;
};
template <class InfoType>
class CachingObserversManager : public ObserversManager<InfoType>
{
public:
InfoType GetCurrentInformation() {
if (mHasValidCache) {
return mInfo;
}
GetCurrentInformationInternal(&mInfo);
mHasValidCache = true;
return mInfo;
}
void CacheInformation(const InfoType& aInfo) {
mHasValidCache = true;
mInfo = aInfo;
}
void BroadcastCachedInformation() {
this->BroadcastInformation(mInfo);
}
protected:
virtual void GetCurrentInformationInternal(InfoType*) = 0;
virtual void OnNotificationsDisabled() {
mHasValidCache = false;
}
private:
InfoType mInfo;
bool mHasValidCache;
};
class BatteryObserversManager : public CachingObserversManager<BatteryInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableBatteryNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableBatteryNotifications());
}
void GetCurrentInformationInternal(BatteryInformation* aInfo) {
PROXY_IF_SANDBOXED(GetCurrentBatteryInformation(aInfo));
}
};
static BatteryObserversManager sBatteryObservers;
class NetworkObserversManager : public CachingObserversManager<NetworkInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableNetworkNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableNetworkNotifications());
}
void GetCurrentInformationInternal(NetworkInformation* aInfo) {
PROXY_IF_SANDBOXED(GetCurrentNetworkInformation(aInfo));
}
};
static NetworkObserversManager sNetworkObservers;
class WakeLockObserversManager : public ObserversManager<WakeLockInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableWakeLockNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableWakeLockNotifications());
}
};
static WakeLockObserversManager sWakeLockObservers;
class ScreenConfigurationObserversManager : public CachingObserversManager<ScreenConfiguration>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableScreenConfigurationNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableScreenConfigurationNotifications());
}
void GetCurrentInformationInternal(ScreenConfiguration* aInfo) {
PROXY_IF_SANDBOXED(GetCurrentScreenConfiguration(aInfo));
}
};
static ScreenConfigurationObserversManager sScreenConfigurationObservers;
void
RegisterBatteryObserver(BatteryObserver* aObserver)
{
AssertMainThread();
sBatteryObservers.AddObserver(aObserver);
}
void
UnregisterBatteryObserver(BatteryObserver* aObserver)
{
AssertMainThread();
sBatteryObservers.RemoveObserver(aObserver);
}
void
GetCurrentBatteryInformation(BatteryInformation* aInfo)
{
AssertMainThread();
*aInfo = sBatteryObservers.GetCurrentInformation();
}
void
NotifyBatteryChange(const BatteryInformation& aInfo)
{
AssertMainThread();
sBatteryObservers.CacheInformation(aInfo);
sBatteryObservers.BroadcastCachedInformation();
}
bool GetScreenEnabled()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetScreenEnabled(), false);
}
void SetScreenEnabled(bool aEnabled)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetScreenEnabled(aEnabled));
}
bool GetKeyLightEnabled()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetKeyLightEnabled(), false);
}
void SetKeyLightEnabled(bool aEnabled)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetKeyLightEnabled(aEnabled));
}
bool GetCpuSleepAllowed()
{
// Generally for interfaces that are accessible by normal web content
// we should cache the result and be notified on state changes, like
// what the battery API does. But since this is only used by
// privileged interface, the synchronous getter is OK here.
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetCpuSleepAllowed(), true);
}
void SetCpuSleepAllowed(bool aAllowed)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetCpuSleepAllowed(aAllowed));
}
double GetScreenBrightness()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetScreenBrightness(), 0);
}
void SetScreenBrightness(double aBrightness)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetScreenBrightness(clamped(aBrightness, 0.0, 1.0)));
}
class SystemClockChangeObserversManager : public ObserversManager<int64_t>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableSystemClockChangeNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableSystemClockChangeNotifications());
}
};
static SystemClockChangeObserversManager sSystemClockChangeObservers;
void
RegisterSystemClockChangeObserver(SystemClockChangeObserver* aObserver)
{
AssertMainThread();
sSystemClockChangeObservers.AddObserver(aObserver);
}
void
UnregisterSystemClockChangeObserver(SystemClockChangeObserver* aObserver)
{
AssertMainThread();
sSystemClockChangeObservers.RemoveObserver(aObserver);
}
void
NotifySystemClockChange(const int64_t& aClockDeltaMS)
{
sSystemClockChangeObservers.BroadcastInformation(aClockDeltaMS);
}
class SystemTimezoneChangeObserversManager : public ObserversManager<SystemTimezoneChangeInformation>
{
protected:
void EnableNotifications() {
PROXY_IF_SANDBOXED(EnableSystemTimezoneChangeNotifications());
}
void DisableNotifications() {
PROXY_IF_SANDBOXED(DisableSystemTimezoneChangeNotifications());
}
};
static SystemTimezoneChangeObserversManager sSystemTimezoneChangeObservers;
void
RegisterSystemTimezoneChangeObserver(SystemTimezoneChangeObserver* aObserver)
{
AssertMainThread();
sSystemTimezoneChangeObservers.AddObserver(aObserver);
}
void
UnregisterSystemTimezoneChangeObserver(SystemTimezoneChangeObserver* aObserver)
{
AssertMainThread();
sSystemTimezoneChangeObservers.RemoveObserver(aObserver);
}
void
NotifySystemTimezoneChange(const SystemTimezoneChangeInformation& aSystemTimezoneChangeInfo)
{
nsJSUtils::ResetTimeZone();
sSystemTimezoneChangeObservers.BroadcastInformation(aSystemTimezoneChangeInfo);
}
void
AdjustSystemClock(int64_t aDeltaMilliseconds)
{
AssertMainThread();
PROXY_IF_SANDBOXED(AdjustSystemClock(aDeltaMilliseconds));
}
void
SetTimezone(const nsCString& aTimezoneSpec)
{
AssertMainThread();
PROXY_IF_SANDBOXED(SetTimezone(aTimezoneSpec));
}
int32_t
GetTimezoneOffset()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetTimezoneOffset(), 0);
}
nsCString
GetTimezone()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetTimezone(), nsCString(""));
}
void
EnableSensorNotifications(SensorType aSensor) {
AssertMainThread();
PROXY_IF_SANDBOXED(EnableSensorNotifications(aSensor));
}
void
DisableSensorNotifications(SensorType aSensor) {
AssertMainThread();
PROXY_IF_SANDBOXED(DisableSensorNotifications(aSensor));
}
typedef mozilla::ObserverList<SensorData> SensorObserverList;
static SensorObserverList* gSensorObservers = nullptr;
static SensorObserverList &
GetSensorObservers(SensorType sensor_type) {
MOZ_ASSERT(sensor_type < NUM_SENSOR_TYPE);
if(!gSensorObservers) {
gSensorObservers = new SensorObserverList[NUM_SENSOR_TYPE];
}
return gSensorObservers[sensor_type];
}
void
RegisterSensorObserver(SensorType aSensor, ISensorObserver *aObserver) {
SensorObserverList &observers = GetSensorObservers(aSensor);
AssertMainThread();
observers.AddObserver(aObserver);
if(observers.Length() == 1) {
EnableSensorNotifications(aSensor);
}
}
void
UnregisterSensorObserver(SensorType aSensor, ISensorObserver *aObserver) {
AssertMainThread();
if (!gSensorObservers) {
return;
}
SensorObserverList &observers = GetSensorObservers(aSensor);
if (!observers.RemoveObserver(aObserver) || observers.Length() > 0) {
return;
}
DisableSensorNotifications(aSensor);
// Destroy sSensorObservers only if all observer lists are empty.
for (int i = 0; i < NUM_SENSOR_TYPE; i++) {
if (gSensorObservers[i].Length() > 0) {
return;
}
}
delete [] gSensorObservers;
gSensorObservers = nullptr;
}
void
NotifySensorChange(const SensorData &aSensorData) {
SensorObserverList &observers = GetSensorObservers(aSensorData.sensor());
AssertMainThread();
observers.Broadcast(aSensorData);
}
void
RegisterNetworkObserver(NetworkObserver* aObserver)
{
AssertMainThread();
sNetworkObservers.AddObserver(aObserver);
}
void
UnregisterNetworkObserver(NetworkObserver* aObserver)
{
AssertMainThread();
sNetworkObservers.RemoveObserver(aObserver);
}
void
GetCurrentNetworkInformation(NetworkInformation* aInfo)
{
AssertMainThread();
*aInfo = sNetworkObservers.GetCurrentInformation();
}
void
NotifyNetworkChange(const NetworkInformation& aInfo)
{
sNetworkObservers.CacheInformation(aInfo);
sNetworkObservers.BroadcastCachedInformation();
}
void Reboot()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(Reboot());
}
void PowerOff()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(PowerOff());
}
void StartForceQuitWatchdog(ShutdownMode aMode, int32_t aTimeoutSecs)
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(StartForceQuitWatchdog(aMode, aTimeoutSecs));
}
void
RegisterWakeLockObserver(WakeLockObserver* aObserver)
{
AssertMainThread();
sWakeLockObservers.AddObserver(aObserver);
}
void
UnregisterWakeLockObserver(WakeLockObserver* aObserver)
{
AssertMainThread();
sWakeLockObservers.RemoveObserver(aObserver);
}
void
ModifyWakeLock(const nsAString& aTopic,
WakeLockControl aLockAdjust,
WakeLockControl aHiddenAdjust,
uint64_t aProcessID /* = CONTENT_PROCESS_ID_UNKNOWN */)
{
AssertMainThread();
if (aProcessID == CONTENT_PROCESS_ID_UNKNOWN) {
aProcessID = InSandbox() ? ContentChild::GetSingleton()->GetID() :
CONTENT_PROCESS_ID_MAIN;
}
PROXY_IF_SANDBOXED(ModifyWakeLock(aTopic, aLockAdjust,
aHiddenAdjust, aProcessID));
}
void
GetWakeLockInfo(const nsAString& aTopic, WakeLockInformation* aWakeLockInfo)
{
AssertMainThread();
PROXY_IF_SANDBOXED(GetWakeLockInfo(aTopic, aWakeLockInfo));
}
void
NotifyWakeLockChange(const WakeLockInformation& aInfo)
{
AssertMainThread();
sWakeLockObservers.BroadcastInformation(aInfo);
}
void
RegisterScreenConfigurationObserver(ScreenConfigurationObserver* aObserver)
{
AssertMainThread();
sScreenConfigurationObservers.AddObserver(aObserver);
}
void
UnregisterScreenConfigurationObserver(ScreenConfigurationObserver* aObserver)
{
AssertMainThread();
sScreenConfigurationObservers.RemoveObserver(aObserver);
}
void
GetCurrentScreenConfiguration(ScreenConfiguration* aScreenConfiguration)
{
AssertMainThread();
*aScreenConfiguration = sScreenConfigurationObservers.GetCurrentInformation();
}
void
NotifyScreenConfigurationChange(const ScreenConfiguration& aScreenConfiguration)
{
sScreenConfigurationObservers.CacheInformation(aScreenConfiguration);
sScreenConfigurationObservers.BroadcastCachedInformation();
}
bool
LockScreenOrientation(const dom::ScreenOrientationInternal& aOrientation)
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(LockScreenOrientation(aOrientation), false);
}
void
UnlockScreenOrientation()
{
AssertMainThread();
PROXY_IF_SANDBOXED(UnlockScreenOrientation());
}
void
EnableSwitchNotifications(SwitchDevice aDevice) {
AssertMainThread();
PROXY_IF_SANDBOXED(EnableSwitchNotifications(aDevice));
}
void
DisableSwitchNotifications(SwitchDevice aDevice) {
AssertMainThread();
PROXY_IF_SANDBOXED(DisableSwitchNotifications(aDevice));
}
SwitchState GetCurrentSwitchState(SwitchDevice aDevice)
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetCurrentSwitchState(aDevice), SWITCH_STATE_UNKNOWN);
}
void NotifySwitchStateFromInputDevice(SwitchDevice aDevice, SwitchState aState)
{
AssertMainThread();
PROXY_IF_SANDBOXED(NotifySwitchStateFromInputDevice(aDevice, aState));
}
typedef mozilla::ObserverList<SwitchEvent> SwitchObserverList;
static SwitchObserverList *sSwitchObserverLists = nullptr;
static SwitchObserverList&
GetSwitchObserverList(SwitchDevice aDevice) {
MOZ_ASSERT(0 <= aDevice && aDevice < NUM_SWITCH_DEVICE);
if (sSwitchObserverLists == nullptr) {
sSwitchObserverLists = new SwitchObserverList[NUM_SWITCH_DEVICE];
}
return sSwitchObserverLists[aDevice];
}
static void
ReleaseObserversIfNeeded() {
for (int i = 0; i < NUM_SWITCH_DEVICE; i++) {
if (sSwitchObserverLists[i].Length() != 0)
return;
}
//The length of every list is 0, no observer in the list.
delete [] sSwitchObserverLists;
sSwitchObserverLists = nullptr;
}
void
RegisterSwitchObserver(SwitchDevice aDevice, SwitchObserver *aObserver)
{
AssertMainThread();
SwitchObserverList& observer = GetSwitchObserverList(aDevice);
observer.AddObserver(aObserver);
if (observer.Length() == 1) {
EnableSwitchNotifications(aDevice);
}
}
void
UnregisterSwitchObserver(SwitchDevice aDevice, SwitchObserver *aObserver)
{
AssertMainThread();
if (!sSwitchObserverLists) {
return;
}
SwitchObserverList& observer = GetSwitchObserverList(aDevice);
if (!observer.RemoveObserver(aObserver) || observer.Length() > 0) {
return;
}
DisableSwitchNotifications(aDevice);
ReleaseObserversIfNeeded();
}
void
NotifySwitchChange(const SwitchEvent& aEvent)
{
// When callback this notification, main thread may call unregister function
// first. We should check if this pointer is valid.
if (!sSwitchObserverLists)
return;
SwitchObserverList& observer = GetSwitchObserverList(aEvent.device());
observer.Broadcast(aEvent);
}
static AlarmObserver* sAlarmObserver;
bool
RegisterTheOneAlarmObserver(AlarmObserver* aObserver)
{
MOZ_ASSERT(!InSandbox());
MOZ_ASSERT(!sAlarmObserver);
sAlarmObserver = aObserver;
RETURN_PROXY_IF_SANDBOXED(EnableAlarm(), false);
}
void
UnregisterTheOneAlarmObserver()
{
if (sAlarmObserver) {
sAlarmObserver = nullptr;
PROXY_IF_SANDBOXED(DisableAlarm());
}
}
void
NotifyAlarmFired()
{
if (sAlarmObserver) {
sAlarmObserver->Notify(void_t());
}
}
bool
SetAlarm(int32_t aSeconds, int32_t aNanoseconds)
{
// It's pointless to program an alarm nothing is going to observe ...
MOZ_ASSERT(sAlarmObserver);
RETURN_PROXY_IF_SANDBOXED(SetAlarm(aSeconds, aNanoseconds), false);
}
void
SetProcessPriority(int aPid, ProcessPriority aPriority, uint32_t aLRU)
{
// n.b. The sandboxed implementation crashes; SetProcessPriority works only
// from the main process.
PROXY_IF_SANDBOXED(SetProcessPriority(aPid, aPriority, aLRU));
}
void
SetCurrentThreadPriority(hal::ThreadPriority aThreadPriority)
{
PROXY_IF_SANDBOXED(SetCurrentThreadPriority(aThreadPriority));
}
void
SetThreadPriority(PlatformThreadId aThreadId,
hal::ThreadPriority aThreadPriority)
{
PROXY_IF_SANDBOXED(SetThreadPriority(aThreadId, aThreadPriority));
}
// From HalTypes.h.
const char*
ProcessPriorityToString(ProcessPriority aPriority)
{
switch (aPriority) {
case PROCESS_PRIORITY_MASTER:
return "MASTER";
case PROCESS_PRIORITY_PREALLOC:
return "PREALLOC";
case PROCESS_PRIORITY_FOREGROUND_HIGH:
return "FOREGROUND_HIGH";
case PROCESS_PRIORITY_FOREGROUND:
return "FOREGROUND";
case PROCESS_PRIORITY_FOREGROUND_KEYBOARD:
return "FOREGROUND_KEYBOARD";
case PROCESS_PRIORITY_BACKGROUND_PERCEIVABLE:
return "BACKGROUND_PERCEIVABLE";
case PROCESS_PRIORITY_BACKGROUND:
return "BACKGROUND";
case PROCESS_PRIORITY_UNKNOWN:
return "UNKNOWN";
default:
MOZ_ASSERT(false);
return "???";
}
}
const char *
ThreadPriorityToString(ThreadPriority aPriority)
{
switch (aPriority) {
case THREAD_PRIORITY_COMPOSITOR:
return "COMPOSITOR";
default:
MOZ_ASSERT(false);
return "???";
}
}
static StaticAutoPtr<ObserverList<FMRadioOperationInformation> > sFMRadioObservers;
static StaticAutoPtr<ObserverList<FMRadioRDSGroup> > sFMRadioRDSObservers;
static void
InitializeFMRadioObserver()
{
if (!sFMRadioObservers) {
sFMRadioObservers = new ObserverList<FMRadioOperationInformation>;
sFMRadioRDSObservers = new ObserverList<FMRadioRDSGroup>;
ClearOnShutdown(&sFMRadioRDSObservers);
ClearOnShutdown(&sFMRadioObservers);
}
}
void
RegisterFMRadioObserver(FMRadioObserver* aFMRadioObserver) {
AssertMainThread();
InitializeFMRadioObserver();
sFMRadioObservers->AddObserver(aFMRadioObserver);
}
void
UnregisterFMRadioObserver(FMRadioObserver* aFMRadioObserver) {
AssertMainThread();
InitializeFMRadioObserver();
sFMRadioObservers->RemoveObserver(aFMRadioObserver);
}
void
NotifyFMRadioStatus(const FMRadioOperationInformation& aFMRadioState) {
InitializeFMRadioObserver();
sFMRadioObservers->Broadcast(aFMRadioState);
}
void
RegisterFMRadioRDSObserver(FMRadioRDSObserver* aFMRadioRDSObserver) {
AssertMainThread();
InitializeFMRadioObserver();
sFMRadioRDSObservers->AddObserver(aFMRadioRDSObserver);
}
void
UnregisterFMRadioRDSObserver(FMRadioRDSObserver* aFMRadioRDSObserver) {
AssertMainThread();
InitializeFMRadioObserver();
sFMRadioRDSObservers->RemoveObserver(aFMRadioRDSObserver);
}
void
NotifyFMRadioRDSGroup(const FMRadioRDSGroup& aRDSGroup) {
InitializeFMRadioObserver();
sFMRadioRDSObservers->Broadcast(aRDSGroup);
}
void
EnableFMRadio(const FMRadioSettings& aInfo) {
AssertMainThread();
PROXY_IF_SANDBOXED(EnableFMRadio(aInfo));
}
void
DisableFMRadio() {
AssertMainThread();
PROXY_IF_SANDBOXED(DisableFMRadio());
}
void
FMRadioSeek(const FMRadioSeekDirection& aDirection) {
PROXY_IF_SANDBOXED(FMRadioSeek(aDirection));
}
void
GetFMRadioSettings(FMRadioSettings* aInfo) {
AssertMainThread();
PROXY_IF_SANDBOXED(GetFMRadioSettings(aInfo));
}
void
SetFMRadioFrequency(const uint32_t aFrequency) {
PROXY_IF_SANDBOXED(SetFMRadioFrequency(aFrequency));
}
uint32_t
GetFMRadioFrequency() {
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetFMRadioFrequency(), 0);
}
bool
IsFMRadioOn() {
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(IsFMRadioOn(), false);
}
uint32_t
GetFMRadioSignalStrength() {
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(GetFMRadioSignalStrength(), 0);
}
void
CancelFMRadioSeek() {
AssertMainThread();
PROXY_IF_SANDBOXED(CancelFMRadioSeek());
}
bool
EnableRDS(uint32_t aMask) {
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(EnableRDS(aMask), false);
}
void
DisableRDS() {
AssertMainThread();
PROXY_IF_SANDBOXED(DisableRDS());
}
FMRadioSettings
GetFMBandSettings(FMRadioCountry aCountry) {
FMRadioSettings settings;
switch (aCountry) {
case FM_RADIO_COUNTRY_US:
case FM_RADIO_COUNTRY_EU:
settings.upperLimit() = 108000;
settings.lowerLimit() = 87800;
settings.spaceType() = 200;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_JP_STANDARD:
settings.upperLimit() = 76000;
settings.lowerLimit() = 90000;
settings.spaceType() = 100;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_CY:
case FM_RADIO_COUNTRY_DE:
case FM_RADIO_COUNTRY_DK:
case FM_RADIO_COUNTRY_ES:
case FM_RADIO_COUNTRY_FI:
case FM_RADIO_COUNTRY_FR:
case FM_RADIO_COUNTRY_HU:
case FM_RADIO_COUNTRY_IR:
case FM_RADIO_COUNTRY_IT:
case FM_RADIO_COUNTRY_KW:
case FM_RADIO_COUNTRY_LT:
case FM_RADIO_COUNTRY_ML:
case FM_RADIO_COUNTRY_NO:
case FM_RADIO_COUNTRY_OM:
case FM_RADIO_COUNTRY_PG:
case FM_RADIO_COUNTRY_NL:
case FM_RADIO_COUNTRY_CZ:
case FM_RADIO_COUNTRY_UK:
case FM_RADIO_COUNTRY_RW:
case FM_RADIO_COUNTRY_SN:
case FM_RADIO_COUNTRY_SI:
case FM_RADIO_COUNTRY_ZA:
case FM_RADIO_COUNTRY_SE:
case FM_RADIO_COUNTRY_CH:
case FM_RADIO_COUNTRY_TW:
case FM_RADIO_COUNTRY_UA:
settings.upperLimit() = 108000;
settings.lowerLimit() = 87500;
settings.spaceType() = 100;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_VA:
case FM_RADIO_COUNTRY_MA:
case FM_RADIO_COUNTRY_TR:
settings.upperLimit() = 10800;
settings.lowerLimit() = 87500;
settings.spaceType() = 100;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_AU:
case FM_RADIO_COUNTRY_BD:
settings.upperLimit() = 108000;
settings.lowerLimit() = 87500;
settings.spaceType() = 200;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_AW:
case FM_RADIO_COUNTRY_BS:
case FM_RADIO_COUNTRY_CO:
case FM_RADIO_COUNTRY_KR:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_EC:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 0;
break;
case FM_RADIO_COUNTRY_GM:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 0;
settings.preEmphasis() = 75;
break;
case FM_RADIO_COUNTRY_QA:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_SG:
settings.upperLimit() = 108000;
settings.lowerLimit() = 88000;
settings.spaceType() = 200;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_IN:
settings.upperLimit() = 100000;
settings.lowerLimit() = 108000;
settings.spaceType() = 100;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_NZ:
settings.upperLimit() = 100000;
settings.lowerLimit() = 88000;
settings.spaceType() = 50;
settings.preEmphasis() = 50;
break;
case FM_RADIO_COUNTRY_USER_DEFINED:
break;
default:
MOZ_ASSERT(0);
break;
};
return settings;
}
void FactoryReset(mozilla::dom::FactoryResetReason& aReason)
{
AssertMainThread();
PROXY_IF_SANDBOXED(FactoryReset(aReason));
}
void
StartDiskSpaceWatcher()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(StartDiskSpaceWatcher());
}
void
StopDiskSpaceWatcher()
{
AssertMainProcess();
AssertMainThread();
PROXY_IF_SANDBOXED(StopDiskSpaceWatcher());
}
uint32_t
GetTotalSystemMemory()
{
return hal_impl::GetTotalSystemMemory();
}
uint32_t
GetTotalSystemMemoryLevel()
{
return hal_impl::GetTotalSystemMemoryLevel();
}
bool IsHeadphoneEventFromInputDev()
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(IsHeadphoneEventFromInputDev(), false);
}
nsresult StartSystemService(const char* aSvcName, const char* aArgs)
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(StartSystemService(aSvcName, aArgs), NS_ERROR_FAILURE);
}
void StopSystemService(const char* aSvcName)
{
AssertMainThread();
PROXY_IF_SANDBOXED(StopSystemService(aSvcName));
}
bool SystemServiceIsRunning(const char* aSvcName)
{
AssertMainThread();
RETURN_PROXY_IF_SANDBOXED(SystemServiceIsRunning(aSvcName), false);
}
} // namespace hal
} // namespace mozilla