gecko-dev/netwerk/protocol/http/nsHttpTransaction.h
Ehsan Akhgari 0fad752fae Bug 1318887 - Remove NS_GetAppInfo; r=mcmanus
This function is now only used to populate some write-only data members.
2016-11-21 15:00:46 -05:00

467 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsHttpTransaction_h__
#define nsHttpTransaction_h__
#include "nsHttp.h"
#include "nsAHttpTransaction.h"
#include "nsAHttpConnection.h"
#include "EventTokenBucket.h"
#include "nsCOMPtr.h"
#include "nsThreadUtils.h"
#include "nsIInterfaceRequestor.h"
#include "TimingStruct.h"
#include "Http2Push.h"
#include "mozilla/net/DNS.h"
#include "ARefBase.h"
#include "AlternateServices.h"
#ifdef MOZ_WIDGET_GONK
#include "nsINetworkInterface.h"
#include "nsProxyRelease.h"
#endif
//-----------------------------------------------------------------------------
class nsIHttpActivityObserver;
class nsIEventTarget;
class nsIInputStream;
class nsIOutputStream;
class nsIRequestContext;
namespace mozilla { namespace net {
class nsHttpChunkedDecoder;
class nsHttpRequestHead;
class nsHttpResponseHead;
//-----------------------------------------------------------------------------
// nsHttpTransaction represents a single HTTP transaction. It is thread-safe,
// intended to run on the socket thread.
//-----------------------------------------------------------------------------
class nsHttpTransaction final : public nsAHttpTransaction
, public ATokenBucketEvent
, public nsIInputStreamCallback
, public nsIOutputStreamCallback
, public ARefBase
{
public:
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSAHTTPTRANSACTION
NS_DECL_NSIINPUTSTREAMCALLBACK
NS_DECL_NSIOUTPUTSTREAMCALLBACK
nsHttpTransaction();
//
// called to initialize the transaction
//
// @param caps
// the transaction capabilities (see nsHttp.h)
// @param connInfo
// the connection type for this transaction.
// @param reqHeaders
// the request header struct
// @param reqBody
// the request body (POST or PUT data stream)
// @param reqBodyIncludesHeaders
// fun stuff to support NPAPI plugins.
// @param target
// the dispatch target were notifications should be sent.
// @param callbacks
// the notification callbacks to be given to PSM.
// @param responseBody
// the input stream that will contain the response data. async
// wait on this input stream for data. on first notification,
// headers should be available (check transaction status).
//
nsresult Init(uint32_t caps,
nsHttpConnectionInfo *connInfo,
nsHttpRequestHead *reqHeaders,
nsIInputStream *reqBody,
bool reqBodyIncludesHeaders,
nsIEventTarget *consumerTarget,
nsIInterfaceRequestor *callbacks,
nsITransportEventSink *eventsink,
nsIAsyncInputStream **responseBody);
// attributes
nsHttpResponseHead *ResponseHead() { return mHaveAllHeaders ? mResponseHead : nullptr; }
nsISupports *SecurityInfo() { return mSecurityInfo; }
nsIEventTarget *ConsumerTarget() { return mConsumerTarget; }
nsISupports *HttpChannel() { return mChannel; }
void SetSecurityCallbacks(nsIInterfaceRequestor* aCallbacks);
// Called to take ownership of the response headers; the transaction
// will drop any reference to the response headers after this call.
nsHttpResponseHead *TakeResponseHead();
// Provides a thread safe reference of the connection
// nsHttpTransaction::Connection should only be used on the socket thread
already_AddRefed<nsAHttpConnection> GetConnectionReference();
// Called to set/find out if the transaction generated a complete response.
bool ResponseIsComplete() { return mResponseIsComplete; }
void SetResponseIsComplete() { mResponseIsComplete = true; }
bool ProxyConnectFailed() { return mProxyConnectFailed; }
void EnableKeepAlive() { mCaps |= NS_HTTP_ALLOW_KEEPALIVE; }
void MakeSticky() { mCaps |= NS_HTTP_STICKY_CONNECTION; }
// SetPriority() may only be used by the connection manager.
void SetPriority(int32_t priority) { mPriority = priority; }
int32_t Priority() { return mPriority; }
enum Classifier Classification() { return mClassification; }
void PrintDiagnostics(nsCString &log);
// Sets mPendingTime to the current time stamp or to a null time stamp (if now is false)
void SetPendingTime(bool now = true) { mPendingTime = now ? TimeStamp::Now() : TimeStamp(); }
const TimeStamp GetPendingTime() { return mPendingTime; }
bool UsesPipelining() const { return mCaps & NS_HTTP_ALLOW_PIPELINING; }
// overload of nsAHttpTransaction::RequestContext()
nsIRequestContext *RequestContext() override { return mRequestContext.get(); }
void SetRequestContext(nsIRequestContext *aRequestContext);
void DispatchedAsBlocking();
void RemoveDispatchedAsBlocking();
nsHttpTransaction *QueryHttpTransaction() override { return this; }
Http2PushedStream *GetPushedStream() { return mPushedStream; }
Http2PushedStream *TakePushedStream()
{
Http2PushedStream *r = mPushedStream;
mPushedStream = nullptr;
return r;
}
void SetPushedStream(Http2PushedStream *push) { mPushedStream = push; }
uint32_t InitialRwin() const { return mInitialRwin; };
bool ChannelPipeFull() { return mWaitingOnPipeOut; }
// Locked methods to get and set timing info
const TimingStruct Timings();
void SetDomainLookupStart(mozilla::TimeStamp timeStamp, bool onlyIfNull = false);
void SetDomainLookupEnd(mozilla::TimeStamp timeStamp, bool onlyIfNull = false);
void SetConnectStart(mozilla::TimeStamp timeStamp, bool onlyIfNull = false);
void SetConnectEnd(mozilla::TimeStamp timeStamp, bool onlyIfNull = false);
void SetRequestStart(mozilla::TimeStamp timeStamp, bool onlyIfNull = false);
void SetResponseStart(mozilla::TimeStamp timeStamp, bool onlyIfNull = false);
void SetResponseEnd(mozilla::TimeStamp timeStamp, bool onlyIfNull = false);
mozilla::TimeStamp GetDomainLookupStart();
mozilla::TimeStamp GetDomainLookupEnd();
mozilla::TimeStamp GetConnectStart();
mozilla::TimeStamp GetConnectEnd();
mozilla::TimeStamp GetRequestStart();
mozilla::TimeStamp GetResponseStart();
mozilla::TimeStamp GetResponseEnd();
int64_t GetTransferSize() { return mTransferSize; }
bool Do0RTT() override;
nsresult Finish0RTT(bool aRestart) override;
private:
friend class DeleteHttpTransaction;
virtual ~nsHttpTransaction();
nsresult Restart();
nsresult RestartInProgress();
char *LocateHttpStart(char *buf, uint32_t len,
bool aAllowPartialMatch);
nsresult ParseLine(nsACString &line);
nsresult ParseLineSegment(char *seg, uint32_t len);
nsresult ParseHead(char *, uint32_t count, uint32_t *countRead);
nsresult HandleContentStart();
nsresult HandleContent(char *, uint32_t count, uint32_t *contentRead, uint32_t *contentRemaining);
nsresult ProcessData(char *, uint32_t, uint32_t *);
void DeleteSelfOnConsumerThread();
void ReleaseBlockingTransaction();
Classifier Classify();
void CancelPipeline(uint32_t reason);
static nsresult ReadRequestSegment(nsIInputStream *, void *, const char *,
uint32_t, uint32_t, uint32_t *);
static nsresult WritePipeSegment(nsIOutputStream *, void *, char *,
uint32_t, uint32_t, uint32_t *);
bool TimingEnabled() const { return mCaps & NS_HTTP_TIMING_ENABLED; }
bool ResponseTimeoutEnabled() const final;
void DisableSpdy() override;
void ReuseConnectionOnRestartOK(bool reuseOk) override { mReuseOnRestart = reuseOk; }
// Called right after we parsed the response head. Checks for connection based
// authentication schemes in reponse headers for WWW and Proxy authentication.
// If such is found in any of them, NS_HTTP_STICKY_CONNECTION is set in mCaps.
// We need the sticky flag be set early to keep the connection from very start
// of the authentication process.
void CheckForStickyAuthScheme();
void CheckForStickyAuthSchemeAt(nsHttpAtom const& header);
private:
class UpdateSecurityCallbacks : public Runnable
{
public:
UpdateSecurityCallbacks(nsHttpTransaction* aTrans,
nsIInterfaceRequestor* aCallbacks)
: mTrans(aTrans), mCallbacks(aCallbacks) {}
NS_IMETHOD Run() override
{
if (mTrans->mConnection)
mTrans->mConnection->SetSecurityCallbacks(mCallbacks);
return NS_OK;
}
private:
RefPtr<nsHttpTransaction> mTrans;
nsCOMPtr<nsIInterfaceRequestor> mCallbacks;
};
Mutex mLock;
nsCOMPtr<nsIInterfaceRequestor> mCallbacks;
nsCOMPtr<nsITransportEventSink> mTransportSink;
nsCOMPtr<nsIEventTarget> mConsumerTarget;
nsCOMPtr<nsISupports> mSecurityInfo;
nsCOMPtr<nsIAsyncInputStream> mPipeIn;
nsCOMPtr<nsIAsyncOutputStream> mPipeOut;
nsCOMPtr<nsIRequestContext> mRequestContext;
nsCOMPtr<nsISupports> mChannel;
nsCOMPtr<nsIHttpActivityObserver> mActivityDistributor;
nsCString mReqHeaderBuf; // flattened request headers
nsCOMPtr<nsIInputStream> mRequestStream;
int64_t mRequestSize;
RefPtr<nsAHttpConnection> mConnection;
RefPtr<nsHttpConnectionInfo> mConnInfo;
nsHttpRequestHead *mRequestHead; // weak ref
nsHttpResponseHead *mResponseHead; // owning pointer
nsAHttpSegmentReader *mReader;
nsAHttpSegmentWriter *mWriter;
nsCString mLineBuf; // may contain a partial line
int64_t mContentLength; // equals -1 if unknown
int64_t mContentRead; // count of consumed content bytes
int64_t mTransferSize; // count of received bytes
// After a 304/204 or other "no-content" style response we will skip over
// up to MAX_INVALID_RESPONSE_BODY_SZ bytes when looking for the next
// response header to deal with servers that actually sent a response
// body where they should not have. This member tracks how many bytes have
// so far been skipped.
uint32_t mInvalidResponseBytesRead;
Http2PushedStream *mPushedStream;
uint32_t mInitialRwin;
nsHttpChunkedDecoder *mChunkedDecoder;
TimingStruct mTimings;
nsresult mStatus;
int16_t mPriority;
uint16_t mRestartCount; // the number of times this transaction has been restarted
uint32_t mCaps;
enum Classifier mClassification;
int32_t mPipelinePosition;
int64_t mMaxPipelineObjectSize;
nsHttpVersion mHttpVersion;
uint16_t mHttpResponseCode;
uint32_t mCurrentHttpResponseHeaderSize;
// mCapsToClear holds flags that should be cleared in mCaps, e.g. unset
// NS_HTTP_REFRESH_DNS when DNS refresh request has completed to avoid
// redundant requests on the network. The member itself is atomic, but
// access to it from the networking thread may happen either before or
// after the main thread modifies it. To deal with raciness, only unsetting
// bitfields should be allowed: 'lost races' will thus err on the
// conservative side, e.g. by going ahead with a 2nd DNS refresh.
Atomic<uint32_t> mCapsToClear;
Atomic<bool, ReleaseAcquire> mResponseIsComplete;
// state flags, all logically boolean, but not packed together into a
// bitfield so as to avoid bitfield-induced races. See bug 560579.
bool mClosed;
bool mConnected;
bool mHaveStatusLine;
bool mHaveAllHeaders;
bool mTransactionDone;
bool mDidContentStart;
bool mNoContent; // expecting an empty entity body
bool mSentData;
bool mReceivedData;
bool mStatusEventPending;
bool mHasRequestBody;
bool mProxyConnectFailed;
bool mHttpResponseMatched;
bool mPreserveStream;
bool mDispatchedAsBlocking;
bool mResponseTimeoutEnabled;
bool mForceRestart;
bool mReuseOnRestart;
bool mContentDecoding;
bool mContentDecodingCheck;
bool mDeferredSendProgress;
bool mWaitingOnPipeOut;
// mClosed := transaction has been explicitly closed
// mTransactionDone := transaction ran to completion or was interrupted
// mResponseComplete := transaction ran to completion
// For Restart-In-Progress Functionality
bool mReportedStart;
bool mReportedResponseHeader;
// protected by nsHttp::GetLock()
nsHttpResponseHead *mForTakeResponseHead;
bool mResponseHeadTaken;
// The time when the transaction was submitted to the Connection Manager
TimeStamp mPendingTime;
class RestartVerifier
{
// When a idemptotent transaction has received part of its response body
// and incurs an error it can be restarted. To do this we mark the place
// where we stopped feeding the body to the consumer and start the
// network call over again. If everything we track (headers, length, etc..)
// matches up to the place where we left off then the consumer starts being
// fed data again with the new information. This can be done N times up
// to the normal restart (i.e. with no response info) limit.
public:
RestartVerifier()
: mContentLength(-1)
, mAlreadyProcessed(0)
, mToReadBeforeRestart(0)
, mSetup(false)
{}
~RestartVerifier() {}
void Set(int64_t contentLength, nsHttpResponseHead *head);
bool Verify(int64_t contentLength, nsHttpResponseHead *head);
bool IsDiscardingContent() { return mToReadBeforeRestart != 0; }
bool IsSetup() { return mSetup; }
int64_t AlreadyProcessed() { return mAlreadyProcessed; }
void SetAlreadyProcessed(int64_t val) {
mAlreadyProcessed = val;
mToReadBeforeRestart = val;
}
int64_t ToReadBeforeRestart() { return mToReadBeforeRestart; }
void HaveReadBeforeRestart(uint32_t amt)
{
MOZ_ASSERT(amt <= mToReadBeforeRestart,
"too large of a HaveReadBeforeRestart deduction");
mToReadBeforeRestart -= amt;
}
private:
// This is the data from the first complete response header
// used to make sure that all subsequent response headers match
int64_t mContentLength;
nsCString mETag;
nsCString mLastModified;
nsCString mContentRange;
nsCString mContentEncoding;
nsCString mTransferEncoding;
// This is the amount of data that has been passed to the channel
// from previous iterations of the transaction and must therefore
// be skipped in the new one.
int64_t mAlreadyProcessed;
// The amount of data that must be discarded in the current iteration
// (where iteration > 0) to reach the mAlreadyProcessed high water
// mark.
int64_t mToReadBeforeRestart;
// true when ::Set has been called with a response header
bool mSetup;
} mRestartInProgressVerifier;
// For Rate Pacing via an EventTokenBucket
public:
// called by the connection manager to run this transaction through the
// token bucket. If the token bucket admits the transaction immediately it
// returns true. The function is called repeatedly until it returns true.
bool TryToRunPacedRequest();
// ATokenBucketEvent pure virtual implementation. Called by the token bucket
// when the transaction is ready to run. If this happens asynchrounously to
// token bucket submission the transaction just posts an event that causes
// the pending transaction queue to be rerun (and TryToRunPacedRequest() to
// be run again.
void OnTokenBucketAdmitted() override; // ATokenBucketEvent
// CancelPacing() can be used to tell the token bucket to remove this
// transaction from the list of pending transactions. This is used when a
// transaction is believed to be HTTP/1 (and thus subject to rate pacing)
// but later can be dispatched via spdy (not subject to rate pacing).
void CancelPacing(nsresult reason);
private:
bool mSubmittedRatePacing;
bool mPassedRatePacing;
bool mSynchronousRatePaceRequest;
nsCOMPtr<nsICancelable> mTokenBucketCancel;
public:
void SetClassOfService(uint32_t cos) { mClassOfService = cos; }
uint32_t ClassOfService() { return mClassOfService; }
private:
uint32_t mClassOfService;
public:
// setting TunnelProvider to non-null means the transaction should only
// be dispatched on a specific ConnectionInfo Hash Key (as opposed to a
// generic wild card one). That means in the specific case of carrying this
// transaction on an HTTP/2 tunnel it will only be dispatched onto an
// existing tunnel instead of triggering creation of a new one.
// The tunnel provider is used for ASpdySession::MaybeReTunnel() checks.
void SetTunnelProvider(ASpdySession *provider) { mTunnelProvider = provider; }
ASpdySession *TunnelProvider() { return mTunnelProvider; }
nsIInterfaceRequestor *SecurityCallbacks() { return mCallbacks; }
private:
RefPtr<ASpdySession> mTunnelProvider;
public:
void SetTransactionObserver(TransactionObserver *arg) { mTransactionObserver = arg; }
private:
RefPtr<TransactionObserver> mTransactionObserver;
public:
void GetNetworkAddresses(NetAddr &self, NetAddr &peer);
private:
NetAddr mSelfAddr;
NetAddr mPeerAddr;
bool m0RTTInProgress;
};
} // namespace net
} // namespace mozilla
#endif // nsHttpTransaction_h__