mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-27 14:52:16 +00:00
7743d4fd62
There weren't that many uses of the existing typedef, so it seemed like it might be worthwhile to just replace all uses of the previous typedef with the stl-like one. Differential Revision: https://phabricator.services.mozilla.com/D142705
692 lines
26 KiB
C++
692 lines
26 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef nsTArray_h__
|
|
# error "Don't include this file directly"
|
|
#endif
|
|
|
|
// NOTE: We don't use MOZ_COUNT_CTOR/MOZ_COUNT_DTOR to perform leak checking of
|
|
// nsTArray_base objects intentionally for the following reasons:
|
|
// * The leak logging isn't as useful as other types of logging, as
|
|
// nsTArray_base is frequently relocated without invoking a constructor, such
|
|
// as when stored within another nsTArray. This means that
|
|
// XPCOM_MEM_LOG_CLASSES cannot be used to identify specific leaks of nsTArray
|
|
// objects.
|
|
// * The nsTArray type is layout compatible with the ThinVec crate with the
|
|
// correct flags, and ThinVec does not currently perform leak logging.
|
|
// This means that if a large number of arrays are transferred between Rust
|
|
// and C++ code using ThinVec, for example within another ThinVec, they
|
|
// will not be logged correctly and might appear as e.g. negative leaks.
|
|
// * Leaks which have been found thanks to the leak logging added by this
|
|
// type have often not been significant, and/or have needed to be
|
|
// circumvented using some other mechanism. Most leaks found with this type
|
|
// in them also include other types which will continue to be tracked.
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
nsTArray_base<Alloc, RelocationStrategy>::nsTArray_base() : mHdr(EmptyHdr()) {}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
nsTArray_base<Alloc, RelocationStrategy>::~nsTArray_base() {
|
|
if (!HasEmptyHeader() && !UsesAutoArrayBuffer()) {
|
|
Alloc::Free(mHdr);
|
|
}
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
nsTArray_base<Alloc, RelocationStrategy>::nsTArray_base(const nsTArray_base&)
|
|
: mHdr(EmptyHdr()) {
|
|
// Actual copying happens through nsTArray_CopyEnabler, we just need to do the
|
|
// initialization of mHdr.
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
nsTArray_base<Alloc, RelocationStrategy>&
|
|
nsTArray_base<Alloc, RelocationStrategy>::operator=(const nsTArray_base&) {
|
|
// Actual copying happens through nsTArray_CopyEnabler, so do nothing here (do
|
|
// not copy mHdr).
|
|
return *this;
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
const nsTArrayHeader*
|
|
nsTArray_base<Alloc, RelocationStrategy>::GetAutoArrayBufferUnsafe(
|
|
size_t aElemAlign) const {
|
|
// Assuming |this| points to an nsAutoArray, we want to get a pointer to
|
|
// mAutoBuf. So just cast |this| to nsAutoArray* and read &mAutoBuf!
|
|
|
|
const void* autoBuf =
|
|
&reinterpret_cast<const AutoTArray<nsTArray<uint32_t>, 1>*>(this)
|
|
->mAutoBuf;
|
|
|
|
// If we're on a 32-bit system and aElemAlign is 8, we need to adjust our
|
|
// pointer to take into account the extra alignment in the auto array.
|
|
|
|
static_assert(
|
|
sizeof(void*) != 4 || (MOZ_ALIGNOF(mozilla::AlignedElem<8>) == 8 &&
|
|
sizeof(AutoTArray<mozilla::AlignedElem<8>, 1>) ==
|
|
sizeof(void*) + sizeof(nsTArrayHeader) + 4 +
|
|
sizeof(mozilla::AlignedElem<8>)),
|
|
"auto array padding wasn't what we expected");
|
|
|
|
// We don't support alignments greater than 8 bytes.
|
|
MOZ_ASSERT(aElemAlign <= 4 || aElemAlign == 8, "unsupported alignment.");
|
|
if (sizeof(void*) == 4 && aElemAlign == 8) {
|
|
autoBuf = reinterpret_cast<const char*>(autoBuf) + 4;
|
|
}
|
|
|
|
return reinterpret_cast<const Header*>(autoBuf);
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
bool nsTArray_base<Alloc, RelocationStrategy>::UsesAutoArrayBuffer() const {
|
|
if (!mHdr->mIsAutoArray) {
|
|
return false;
|
|
}
|
|
|
|
// This is nuts. If we were sane, we'd pass aElemAlign as a parameter to
|
|
// this function. Unfortunately this function is called in nsTArray_base's
|
|
// destructor, at which point we don't know value_type's alignment.
|
|
//
|
|
// We'll fall on our face and return true when we should say false if
|
|
//
|
|
// * we're not using our auto buffer,
|
|
// * aElemAlign == 4, and
|
|
// * mHdr == GetAutoArrayBuffer(8).
|
|
//
|
|
// This could happen if |*this| lives on the heap and malloc allocated our
|
|
// buffer on the heap adjacent to |*this|.
|
|
//
|
|
// However, we can show that this can't happen. If |this| is an auto array
|
|
// (as we ensured at the beginning of the method), GetAutoArrayBuffer(8)
|
|
// always points to memory owned by |*this|, because (as we assert below)
|
|
//
|
|
// * GetAutoArrayBuffer(8) is at most 4 bytes past GetAutoArrayBuffer(4),
|
|
// and
|
|
// * sizeof(nsTArrayHeader) > 4.
|
|
//
|
|
// Since AutoTArray always contains an nsTArrayHeader,
|
|
// GetAutoArrayBuffer(8) will always point inside the auto array object,
|
|
// even if it doesn't point at the beginning of the header.
|
|
//
|
|
// Note that this means that we can't store elements with alignment 16 in an
|
|
// nsTArray, because GetAutoArrayBuffer(16) could lie outside the memory
|
|
// owned by this AutoTArray. We statically assert that value_type's
|
|
// alignment is 8 bytes or less in AutoTArray.
|
|
|
|
static_assert(sizeof(nsTArrayHeader) > 4, "see comment above");
|
|
|
|
#ifdef DEBUG
|
|
ptrdiff_t diff = reinterpret_cast<const char*>(GetAutoArrayBuffer(8)) -
|
|
reinterpret_cast<const char*>(GetAutoArrayBuffer(4));
|
|
MOZ_ASSERT(diff >= 0 && diff <= 4,
|
|
"GetAutoArrayBuffer doesn't do what we expect.");
|
|
#endif
|
|
|
|
return mHdr == GetAutoArrayBuffer(4) || mHdr == GetAutoArrayBuffer(8);
|
|
}
|
|
|
|
// defined in nsTArray.cpp
|
|
bool IsTwiceTheRequiredBytesRepresentableAsUint32(size_t aCapacity,
|
|
size_t aElemSize);
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <typename ActualAlloc>
|
|
typename ActualAlloc::ResultTypeProxy
|
|
nsTArray_base<Alloc, RelocationStrategy>::ExtendCapacity(size_type aLength,
|
|
size_type aCount,
|
|
size_type aElemSize) {
|
|
mozilla::CheckedInt<size_type> newLength = aLength;
|
|
newLength += aCount;
|
|
|
|
if (!newLength.isValid()) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
return this->EnsureCapacity<ActualAlloc>(newLength.value(), aElemSize);
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <typename ActualAlloc>
|
|
typename ActualAlloc::ResultTypeProxy
|
|
nsTArray_base<Alloc, RelocationStrategy>::EnsureCapacity(size_type aCapacity,
|
|
size_type aElemSize) {
|
|
// This should be the most common case so test this first
|
|
if (aCapacity <= mHdr->mCapacity) {
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// If the requested memory allocation exceeds size_type(-1)/2, then
|
|
// our doubling algorithm may not be able to allocate it.
|
|
// Additionally, if it exceeds uint32_t(-1) then we couldn't fit in the
|
|
// Header::mCapacity member. Just bail out in cases like that. We don't want
|
|
// to be allocating 2 GB+ arrays anyway.
|
|
if (!IsTwiceTheRequiredBytesRepresentableAsUint32(aCapacity, aElemSize)) {
|
|
ActualAlloc::SizeTooBig((size_t)aCapacity * aElemSize);
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
size_t reqSize = sizeof(Header) + aCapacity * aElemSize;
|
|
|
|
if (HasEmptyHeader()) {
|
|
// Malloc() new data
|
|
Header* header = static_cast<Header*>(ActualAlloc::Malloc(reqSize));
|
|
if (!header) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
header->mLength = 0;
|
|
header->mCapacity = aCapacity;
|
|
header->mIsAutoArray = 0;
|
|
mHdr = header;
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// We increase our capacity so that the allocated buffer grows exponentially,
|
|
// which gives us amortized O(1) appending. Below the threshold, we use
|
|
// powers-of-two. Above the threshold, we grow by at least 1.125, rounding up
|
|
// to the nearest MiB.
|
|
const size_t slowGrowthThreshold = 8 * 1024 * 1024;
|
|
|
|
size_t bytesToAlloc;
|
|
if (reqSize >= slowGrowthThreshold) {
|
|
size_t currSize = sizeof(Header) + Capacity() * aElemSize;
|
|
size_t minNewSize = currSize + (currSize >> 3); // multiply by 1.125
|
|
bytesToAlloc = reqSize > minNewSize ? reqSize : minNewSize;
|
|
|
|
// Round up to the next multiple of MiB.
|
|
const size_t MiB = 1 << 20;
|
|
bytesToAlloc = MiB * ((bytesToAlloc + MiB - 1) / MiB);
|
|
} else {
|
|
// Round up to the next power of two.
|
|
bytesToAlloc = mozilla::RoundUpPow2(reqSize);
|
|
}
|
|
|
|
Header* header;
|
|
if (UsesAutoArrayBuffer() || !RelocationStrategy::allowRealloc) {
|
|
// Malloc() and copy
|
|
header = static_cast<Header*>(ActualAlloc::Malloc(bytesToAlloc));
|
|
if (!header) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
RelocationStrategy::RelocateNonOverlappingRegionWithHeader(
|
|
header, mHdr, Length(), aElemSize);
|
|
|
|
if (!UsesAutoArrayBuffer()) {
|
|
ActualAlloc::Free(mHdr);
|
|
}
|
|
} else {
|
|
// Realloc() existing data
|
|
header = static_cast<Header*>(ActualAlloc::Realloc(mHdr, bytesToAlloc));
|
|
if (!header) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
}
|
|
|
|
// How many elements can we fit in bytesToAlloc?
|
|
size_t newCapacity = (bytesToAlloc - sizeof(Header)) / aElemSize;
|
|
MOZ_ASSERT(newCapacity >= aCapacity, "Didn't enlarge the array enough!");
|
|
header->mCapacity = newCapacity;
|
|
|
|
mHdr = header;
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// We don't need use Alloc template parameter specified here because failure to
|
|
// shrink the capacity will leave the array unchanged.
|
|
template <class Alloc, class RelocationStrategy>
|
|
void nsTArray_base<Alloc, RelocationStrategy>::ShrinkCapacity(
|
|
size_type aElemSize, size_t aElemAlign) {
|
|
if (HasEmptyHeader() || UsesAutoArrayBuffer()) {
|
|
return;
|
|
}
|
|
|
|
if (mHdr->mLength >= mHdr->mCapacity) { // should never be greater than...
|
|
return;
|
|
}
|
|
|
|
size_type length = Length();
|
|
|
|
if (IsAutoArray() && GetAutoArrayBuffer(aElemAlign)->mCapacity >= length) {
|
|
Header* header = GetAutoArrayBuffer(aElemAlign);
|
|
|
|
// Move the data, but don't copy the header to avoid overwriting mCapacity.
|
|
header->mLength = length;
|
|
RelocationStrategy::RelocateNonOverlappingRegion(header + 1, mHdr + 1,
|
|
length, aElemSize);
|
|
|
|
nsTArrayFallibleAllocator::Free(mHdr);
|
|
mHdr = header;
|
|
return;
|
|
}
|
|
|
|
if (length == 0) {
|
|
MOZ_ASSERT(!IsAutoArray(), "autoarray should have fit 0 elements");
|
|
nsTArrayFallibleAllocator::Free(mHdr);
|
|
mHdr = EmptyHdr();
|
|
return;
|
|
}
|
|
|
|
size_type newSize = sizeof(Header) + length * aElemSize;
|
|
|
|
Header* newHeader;
|
|
if (!RelocationStrategy::allowRealloc) {
|
|
// Malloc() and copy.
|
|
newHeader =
|
|
static_cast<Header*>(nsTArrayFallibleAllocator::Malloc(newSize));
|
|
if (!newHeader) {
|
|
return;
|
|
}
|
|
|
|
RelocationStrategy::RelocateNonOverlappingRegionWithHeader(
|
|
newHeader, mHdr, Length(), aElemSize);
|
|
|
|
nsTArrayFallibleAllocator::Free(mHdr);
|
|
} else {
|
|
// Realloc() existing data.
|
|
newHeader =
|
|
static_cast<Header*>(nsTArrayFallibleAllocator::Realloc(mHdr, newSize));
|
|
if (!newHeader) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
mHdr = newHeader;
|
|
mHdr->mCapacity = length;
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
void nsTArray_base<Alloc, RelocationStrategy>::ShrinkCapacityToZero(
|
|
size_type aElemSize, size_t aElemAlign) {
|
|
MOZ_ASSERT(mHdr->mLength == 0);
|
|
|
|
if (HasEmptyHeader() || UsesAutoArrayBuffer()) {
|
|
return;
|
|
}
|
|
|
|
const bool isAutoArray = IsAutoArray();
|
|
|
|
nsTArrayFallibleAllocator::Free(mHdr);
|
|
|
|
if (isAutoArray) {
|
|
mHdr = GetAutoArrayBufferUnsafe(aElemAlign);
|
|
mHdr->mLength = 0;
|
|
} else {
|
|
mHdr = EmptyHdr();
|
|
}
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <typename ActualAlloc>
|
|
void nsTArray_base<Alloc, RelocationStrategy>::ShiftData(index_type aStart,
|
|
size_type aOldLen,
|
|
size_type aNewLen,
|
|
size_type aElemSize,
|
|
size_t aElemAlign) {
|
|
if (aOldLen == aNewLen) {
|
|
return;
|
|
}
|
|
|
|
// Determine how many elements need to be shifted
|
|
size_type num = mHdr->mLength - (aStart + aOldLen);
|
|
|
|
// Compute the resulting length of the array
|
|
mHdr->mLength += aNewLen - aOldLen;
|
|
if (mHdr->mLength == 0) {
|
|
ShrinkCapacityToZero(aElemSize, aElemAlign);
|
|
} else {
|
|
// Maybe nothing needs to be shifted
|
|
if (num == 0) {
|
|
return;
|
|
}
|
|
// Perform shift (change units to bytes first)
|
|
aStart *= aElemSize;
|
|
aNewLen *= aElemSize;
|
|
aOldLen *= aElemSize;
|
|
char* baseAddr = reinterpret_cast<char*>(mHdr + 1) + aStart;
|
|
RelocationStrategy::RelocateOverlappingRegion(
|
|
baseAddr + aNewLen, baseAddr + aOldLen, num, aElemSize);
|
|
}
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <typename ActualAlloc>
|
|
void nsTArray_base<Alloc, RelocationStrategy>::SwapFromEnd(index_type aStart,
|
|
size_type aCount,
|
|
size_type aElemSize,
|
|
size_t aElemAlign) {
|
|
// This method is part of the implementation of
|
|
// nsTArray::SwapRemoveElement{s,}At. For more information, read the
|
|
// documentation on that method.
|
|
if (aCount == 0) {
|
|
return;
|
|
}
|
|
|
|
// We are going to be removing aCount elements. Update our length to point to
|
|
// the new end of the array.
|
|
size_type oldLength = mHdr->mLength;
|
|
mHdr->mLength -= aCount;
|
|
|
|
if (mHdr->mLength == 0) {
|
|
// If we have no elements remaining in the array, we can free our buffer.
|
|
ShrinkCapacityToZero(aElemSize, aElemAlign);
|
|
return;
|
|
}
|
|
|
|
// Determine how many elements we need to move from the end of the array into
|
|
// the now-removed section. This will either be the number of elements which
|
|
// were removed (if there are more elements in the tail of the array), or the
|
|
// entire tail of the array, whichever is smaller.
|
|
size_type relocCount = std::min(aCount, mHdr->mLength - aStart);
|
|
if (relocCount == 0) {
|
|
return;
|
|
}
|
|
|
|
// Move the elements which are now stranded after the end of the array back
|
|
// into the now-vacated memory.
|
|
index_type sourceBytes = (oldLength - relocCount) * aElemSize;
|
|
index_type destBytes = aStart * aElemSize;
|
|
|
|
// Perform the final copy. This is guaranteed to be a non-overlapping copy
|
|
// as our source contains only still-valid entries, and the destination
|
|
// contains only invalid entries which need to be overwritten.
|
|
MOZ_ASSERT(sourceBytes >= destBytes,
|
|
"The source should be after the destination.");
|
|
MOZ_ASSERT(sourceBytes - destBytes >= relocCount * aElemSize,
|
|
"The range should be nonoverlapping");
|
|
|
|
char* baseAddr = reinterpret_cast<char*>(mHdr + 1);
|
|
RelocationStrategy::RelocateNonOverlappingRegion(
|
|
baseAddr + destBytes, baseAddr + sourceBytes, relocCount, aElemSize);
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <typename ActualAlloc>
|
|
typename ActualAlloc::ResultTypeProxy
|
|
nsTArray_base<Alloc, RelocationStrategy>::InsertSlotsAt(index_type aIndex,
|
|
size_type aCount,
|
|
size_type aElemSize,
|
|
size_t aElemAlign) {
|
|
if (MOZ_UNLIKELY(aIndex > Length())) {
|
|
mozilla::detail::InvalidArrayIndex_CRASH(aIndex, Length());
|
|
}
|
|
|
|
if (!ActualAlloc::Successful(
|
|
this->ExtendCapacity<ActualAlloc>(Length(), aCount, aElemSize))) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
// Move the existing elements as needed. Note that this will
|
|
// change our mLength, so no need to call IncrementLength.
|
|
ShiftData<ActualAlloc>(aIndex, 0, aCount, aElemSize, aElemAlign);
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// nsTArray_base::IsAutoArrayRestorer is an RAII class which takes
|
|
// |nsTArray_base &array| in its constructor. When it's destructed, it ensures
|
|
// that
|
|
//
|
|
// * array.mIsAutoArray has the same value as it did when we started, and
|
|
// * if array has an auto buffer and mHdr would otherwise point to
|
|
// sEmptyTArrayHeader, array.mHdr points to array's auto buffer.
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
nsTArray_base<Alloc, RelocationStrategy>::IsAutoArrayRestorer::
|
|
IsAutoArrayRestorer(nsTArray_base<Alloc, RelocationStrategy>& aArray,
|
|
size_t aElemAlign)
|
|
: mArray(aArray), mElemAlign(aElemAlign), mIsAuto(aArray.IsAutoArray()) {}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
nsTArray_base<Alloc,
|
|
RelocationStrategy>::IsAutoArrayRestorer::~IsAutoArrayRestorer() {
|
|
// Careful: We don't want to set mIsAutoArray = 1 on sEmptyTArrayHeader.
|
|
if (mIsAuto && mArray.HasEmptyHeader()) {
|
|
// Call GetAutoArrayBufferUnsafe() because GetAutoArrayBuffer() asserts
|
|
// that mHdr->mIsAutoArray is true, which surely isn't the case here.
|
|
mArray.mHdr = mArray.GetAutoArrayBufferUnsafe(mElemAlign);
|
|
mArray.mHdr->mLength = 0;
|
|
} else if (!mArray.HasEmptyHeader()) {
|
|
mArray.mHdr->mIsAutoArray = mIsAuto;
|
|
}
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <typename ActualAlloc, class Allocator>
|
|
typename ActualAlloc::ResultTypeProxy
|
|
nsTArray_base<Alloc, RelocationStrategy>::SwapArrayElements(
|
|
nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
|
|
size_t aElemAlign) {
|
|
// EnsureNotUsingAutoArrayBuffer will set mHdr = sEmptyTArrayHeader even if we
|
|
// have an auto buffer. We need to point mHdr back to our auto buffer before
|
|
// we return, otherwise we'll forget that we have an auto buffer at all!
|
|
// IsAutoArrayRestorer takes care of this for us.
|
|
|
|
IsAutoArrayRestorer ourAutoRestorer(*this, aElemAlign);
|
|
typename nsTArray_base<Allocator, RelocationStrategy>::IsAutoArrayRestorer
|
|
otherAutoRestorer(aOther, aElemAlign);
|
|
|
|
// If neither array uses an auto buffer which is big enough to store the
|
|
// other array's elements, then ensure that both arrays use malloc'ed storage
|
|
// and swap their mHdr pointers.
|
|
if ((!UsesAutoArrayBuffer() || Capacity() < aOther.Length()) &&
|
|
(!aOther.UsesAutoArrayBuffer() || aOther.Capacity() < Length())) {
|
|
if (!EnsureNotUsingAutoArrayBuffer<ActualAlloc>(aElemSize) ||
|
|
!aOther.template EnsureNotUsingAutoArrayBuffer<ActualAlloc>(
|
|
aElemSize)) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
Header* temp = mHdr;
|
|
mHdr = aOther.mHdr;
|
|
aOther.mHdr = temp;
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
// Swap the two arrays by copying, since at least one is using an auto
|
|
// buffer which is large enough to hold all of the aOther's elements. We'll
|
|
// copy the shorter array into temporary storage.
|
|
//
|
|
// (We could do better than this in some circumstances. Suppose we're
|
|
// swapping arrays X and Y. X has space for 2 elements in its auto buffer,
|
|
// but currently has length 4, so it's using malloc'ed storage. Y has length
|
|
// 2. When we swap X and Y, we don't need to use a temporary buffer; we can
|
|
// write Y straight into X's auto buffer, write X's malloc'ed buffer on top
|
|
// of Y, and then switch X to using its auto buffer.)
|
|
|
|
if (!ActualAlloc::Successful(
|
|
EnsureCapacity<ActualAlloc>(aOther.Length(), aElemSize)) ||
|
|
!Allocator::Successful(
|
|
aOther.template EnsureCapacity<Allocator>(Length(), aElemSize))) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
// The EnsureCapacity calls above shouldn't have caused *both* arrays to
|
|
// switch from their auto buffers to malloc'ed space.
|
|
MOZ_ASSERT(UsesAutoArrayBuffer() || aOther.UsesAutoArrayBuffer(),
|
|
"One of the arrays should be using its auto buffer.");
|
|
|
|
size_type smallerLength = XPCOM_MIN(Length(), aOther.Length());
|
|
size_type largerLength = XPCOM_MAX(Length(), aOther.Length());
|
|
void* smallerElements;
|
|
void* largerElements;
|
|
if (Length() <= aOther.Length()) {
|
|
smallerElements = Hdr() + 1;
|
|
largerElements = aOther.Hdr() + 1;
|
|
} else {
|
|
smallerElements = aOther.Hdr() + 1;
|
|
largerElements = Hdr() + 1;
|
|
}
|
|
|
|
// Allocate temporary storage for the smaller of the two arrays. We want to
|
|
// allocate this space on the stack, if it's not too large. Sounds like a
|
|
// job for AutoTArray! (One of the two arrays we're swapping is using an
|
|
// auto buffer, so we're likely not allocating a lot of space here. But one
|
|
// could, in theory, allocate a huge AutoTArray on the heap.)
|
|
AutoTArray<uint8_t, 64 * sizeof(void*)> temp;
|
|
if (!ActualAlloc::Successful(temp.template EnsureCapacity<ActualAlloc>(
|
|
smallerLength * aElemSize, sizeof(uint8_t)))) {
|
|
return ActualAlloc::FailureResult();
|
|
}
|
|
|
|
RelocationStrategy::RelocateNonOverlappingRegion(
|
|
temp.Elements(), smallerElements, smallerLength, aElemSize);
|
|
RelocationStrategy::RelocateNonOverlappingRegion(
|
|
smallerElements, largerElements, largerLength, aElemSize);
|
|
RelocationStrategy::RelocateNonOverlappingRegion(
|
|
largerElements, temp.Elements(), smallerLength, aElemSize);
|
|
|
|
// Swap the arrays' lengths.
|
|
MOZ_ASSERT((aOther.Length() == 0 || !HasEmptyHeader()) &&
|
|
(Length() == 0 || !aOther.HasEmptyHeader()),
|
|
"Don't set sEmptyTArrayHeader's length.");
|
|
size_type tempLength = Length();
|
|
|
|
// Avoid writing to EmptyHdr, since it can trigger false
|
|
// positives with TSan.
|
|
if (!HasEmptyHeader()) {
|
|
mHdr->mLength = aOther.Length();
|
|
}
|
|
if (!aOther.HasEmptyHeader()) {
|
|
aOther.mHdr->mLength = tempLength;
|
|
}
|
|
|
|
return ActualAlloc::SuccessResult();
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <class Allocator>
|
|
void nsTArray_base<Alloc, RelocationStrategy>::MoveInit(
|
|
nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
|
|
size_t aElemAlign) {
|
|
// This method is similar to SwapArrayElements, but specialized for the case
|
|
// where the target array is empty with no allocated heap storage. It is
|
|
// provided and used to simplify template instantiation and enable better code
|
|
// generation.
|
|
|
|
MOZ_ASSERT(Length() == 0);
|
|
MOZ_ASSERT(Capacity() == 0 || (IsAutoArray() && UsesAutoArrayBuffer()));
|
|
|
|
// EnsureNotUsingAutoArrayBuffer will set mHdr = sEmptyTArrayHeader even if we
|
|
// have an auto buffer. We need to point mHdr back to our auto buffer before
|
|
// we return, otherwise we'll forget that we have an auto buffer at all!
|
|
// IsAutoArrayRestorer takes care of this for us.
|
|
|
|
IsAutoArrayRestorer ourAutoRestorer(*this, aElemAlign);
|
|
typename nsTArray_base<Allocator, RelocationStrategy>::IsAutoArrayRestorer
|
|
otherAutoRestorer(aOther, aElemAlign);
|
|
|
|
// If neither array uses an auto buffer which is big enough to store the
|
|
// other array's elements, then ensure that both arrays use malloc'ed storage
|
|
// and swap their mHdr pointers.
|
|
if ((!IsAutoArray() || Capacity() < aOther.Length()) &&
|
|
!aOther.UsesAutoArrayBuffer()) {
|
|
mHdr = aOther.mHdr;
|
|
|
|
aOther.mHdr = EmptyHdr();
|
|
|
|
return;
|
|
}
|
|
|
|
// Move the data by copying, since at least one has an auto
|
|
// buffer which is large enough to hold all of the aOther's elements.
|
|
|
|
EnsureCapacity<nsTArrayInfallibleAllocator>(aOther.Length(), aElemSize);
|
|
|
|
// The EnsureCapacity calls above shouldn't have caused *both* arrays to
|
|
// switch from their auto buffers to malloc'ed space.
|
|
MOZ_ASSERT(UsesAutoArrayBuffer() || aOther.UsesAutoArrayBuffer(),
|
|
"One of the arrays should be using its auto buffer.");
|
|
|
|
RelocationStrategy::RelocateNonOverlappingRegion(Hdr() + 1, aOther.Hdr() + 1,
|
|
aOther.Length(), aElemSize);
|
|
|
|
// Swap the arrays' lengths.
|
|
MOZ_ASSERT((aOther.Length() == 0 || !HasEmptyHeader()) &&
|
|
(Length() == 0 || !aOther.HasEmptyHeader()),
|
|
"Don't set sEmptyTArrayHeader's length.");
|
|
|
|
// Avoid writing to EmptyHdr, since it can trigger false
|
|
// positives with TSan.
|
|
if (!HasEmptyHeader()) {
|
|
mHdr->mLength = aOther.Length();
|
|
}
|
|
if (!aOther.HasEmptyHeader()) {
|
|
aOther.mHdr->mLength = 0;
|
|
}
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <class Allocator>
|
|
void nsTArray_base<Alloc, RelocationStrategy>::MoveConstructNonAutoArray(
|
|
nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
|
|
size_t aElemAlign) {
|
|
// We know that we are not an (Copyable)AutoTArray and we know that we are
|
|
// empty, so don't use SwapArrayElements which doesn't know either of these
|
|
// facts and is very complex.
|
|
|
|
if (aOther.IsEmpty()) {
|
|
return;
|
|
}
|
|
|
|
// aOther might be an (Copyable)AutoTArray though, and it might use its inline
|
|
// buffer.
|
|
const bool otherUsesAutoArrayBuffer = aOther.UsesAutoArrayBuffer();
|
|
if (otherUsesAutoArrayBuffer) {
|
|
// Use nsTArrayInfallibleAllocator regardless of Alloc because this is
|
|
// called from a move constructor, which cannot report an error to the
|
|
// caller.
|
|
aOther.template EnsureNotUsingAutoArrayBuffer<nsTArrayInfallibleAllocator>(
|
|
aElemSize);
|
|
}
|
|
|
|
const bool otherIsAuto = otherUsesAutoArrayBuffer || aOther.IsAutoArray();
|
|
mHdr = aOther.mHdr;
|
|
// We might write to mHdr, so ensure it's not the static empty header. aOther
|
|
// shouldn't have been empty if we get here anyway.
|
|
MOZ_ASSERT(!HasEmptyHeader());
|
|
|
|
if (otherIsAuto) {
|
|
mHdr->mIsAutoArray = false;
|
|
aOther.mHdr = aOther.GetAutoArrayBufferUnsafe(aElemAlign);
|
|
aOther.mHdr->mLength = 0;
|
|
} else {
|
|
aOther.mHdr = aOther.EmptyHdr();
|
|
}
|
|
}
|
|
|
|
template <class Alloc, class RelocationStrategy>
|
|
template <typename ActualAlloc>
|
|
bool nsTArray_base<Alloc, RelocationStrategy>::EnsureNotUsingAutoArrayBuffer(
|
|
size_type aElemSize) {
|
|
if (UsesAutoArrayBuffer()) {
|
|
// If you call this on a 0-length array, we'll set that array's mHdr to
|
|
// sEmptyTArrayHeader, in flagrant violation of the AutoTArray invariants.
|
|
// It's up to you to set it back! (If you don't, the AutoTArray will
|
|
// forget that it has an auto buffer.)
|
|
if (Length() == 0) {
|
|
mHdr = EmptyHdr();
|
|
return true;
|
|
}
|
|
|
|
size_type size = sizeof(Header) + Length() * aElemSize;
|
|
|
|
Header* header = static_cast<Header*>(ActualAlloc::Malloc(size));
|
|
if (!header) {
|
|
return false;
|
|
}
|
|
|
|
RelocationStrategy::RelocateNonOverlappingRegionWithHeader(
|
|
header, mHdr, Length(), aElemSize);
|
|
header->mCapacity = Length();
|
|
mHdr = header;
|
|
}
|
|
|
|
return true;
|
|
}
|