gecko-dev/gfx/2d/HelpersD2D.h
Andrew Osmond 91b071ed14 Bug 1618345 - Enforce proper color management by splitting gfx::Color into sRGBColor and DeviceColor types. r=jrmuizel
gfx::Color is currently misused in many places. The DrawTargets expect
the color space to be in device space, e.g. what we are actually going
to draw using. Everything sitting above generally deals with sRGB, as
specified in CSS. Sometimes we missed the conversion from sRGB to device
space when issuing draw calls, and similarly sometimes we converted the
color to device space twice.

This patch splits the type in two. sRGBColor and DeviceColor now
represent sRGB and device color spaces respectively. DrawTarget only
accepts DeviceColor, and one can get a DeviceColor from an sRGBColor via
the ToDeviceColor helper API. The reftests now pass with color
management enabled for everything (e.g. CSS) instead of just tagged
raster images.

There will be a follow up patch to enable color management everywhere by
default on all supported platforms.

Differential Revision: https://phabricator.services.mozilla.com/D64771

--HG--
extra : moz-landing-system : lando
2020-03-09 14:16:17 +00:00

971 lines
31 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_HELPERSD2D_H_
#define MOZILLA_GFX_HELPERSD2D_H_
#include <d2d1_1.h>
#include <vector>
#include <dwrite.h>
#include <versionhelpers.h>
#include "2D.h"
#include "Logging.h"
#include "ImageScaling.h"
#include "ScaledFontDWrite.h"
#undef min
#undef max
namespace mozilla {
namespace gfx {
RefPtr<ID2D1Factory1> D2DFactory();
static inline D2D1_POINT_2F D2DPoint(const Point& aPoint) {
return D2D1::Point2F(aPoint.x, aPoint.y);
}
static inline D2D1_SIZE_U D2DIntSize(const IntSize& aSize) {
return D2D1::SizeU(aSize.width, aSize.height);
}
template <typename T>
static inline D2D1_RECT_F D2DRect(const T& aRect) {
return D2D1::RectF(aRect.X(), aRect.Y(), aRect.XMost(), aRect.YMost());
}
static inline D2D1_ROUNDED_RECT D2DRoundedRect(const RoundedRect& aRect) {
return D2D1::RoundedRect(D2DRect(aRect.rect),
aRect.corners.BottomLeft().width,
aRect.corners.BottomLeft().height);
}
static inline D2D1_EXTEND_MODE D2DExtend(ExtendMode aExtendMode, Axis aAxis) {
D2D1_EXTEND_MODE extend;
switch (aExtendMode) {
case ExtendMode::REPEAT:
extend = D2D1_EXTEND_MODE_WRAP;
break;
case ExtendMode::REPEAT_X: {
extend = aAxis == Axis::X_AXIS ? D2D1_EXTEND_MODE_WRAP
: D2D1_EXTEND_MODE_CLAMP;
break;
}
case ExtendMode::REPEAT_Y: {
extend = aAxis == Axis::Y_AXIS ? D2D1_EXTEND_MODE_WRAP
: D2D1_EXTEND_MODE_CLAMP;
break;
}
case ExtendMode::REFLECT:
extend = D2D1_EXTEND_MODE_MIRROR;
break;
default:
extend = D2D1_EXTEND_MODE_CLAMP;
}
return extend;
}
static inline D2D1_BITMAP_INTERPOLATION_MODE D2DFilter(
const SamplingFilter aSamplingFilter) {
switch (aSamplingFilter) {
case SamplingFilter::POINT:
return D2D1_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
default:
return D2D1_BITMAP_INTERPOLATION_MODE_LINEAR;
}
}
static inline D2D1_INTERPOLATION_MODE D2DInterpolationMode(
const SamplingFilter aSamplingFilter) {
switch (aSamplingFilter) {
case SamplingFilter::POINT:
return D2D1_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
default:
return D2D1_INTERPOLATION_MODE_LINEAR;
}
}
static inline D2D1_MATRIX_5X4_F D2DMatrix5x4(const Matrix5x4& aMatrix) {
return D2D1::Matrix5x4F(aMatrix._11, aMatrix._12, aMatrix._13, aMatrix._14,
aMatrix._21, aMatrix._22, aMatrix._23, aMatrix._24,
aMatrix._31, aMatrix._32, aMatrix._33, aMatrix._34,
aMatrix._41, aMatrix._42, aMatrix._43, aMatrix._44,
aMatrix._51, aMatrix._52, aMatrix._53, aMatrix._54);
}
static inline D2D1_VECTOR_3F D2DVector3D(const Point3D& aPoint) {
return D2D1::Vector3F(aPoint.x, aPoint.y, aPoint.z);
}
static inline D2D1_ANTIALIAS_MODE D2DAAMode(AntialiasMode aMode) {
switch (aMode) {
case AntialiasMode::NONE:
return D2D1_ANTIALIAS_MODE_ALIASED;
default:
return D2D1_ANTIALIAS_MODE_PER_PRIMITIVE;
}
}
static inline D2D1_MATRIX_3X2_F D2DMatrix(const Matrix& aTransform) {
return D2D1::Matrix3x2F(aTransform._11, aTransform._12, aTransform._21,
aTransform._22, aTransform._31, aTransform._32);
}
static inline D2D1_COLOR_F D2DColor(const DeviceColor& aColor) {
return D2D1::ColorF(aColor.r, aColor.g, aColor.b, aColor.a);
}
static inline IntSize ToIntSize(const D2D1_SIZE_U& aSize) {
return IntSize(aSize.width, aSize.height);
}
static inline SurfaceFormat ToPixelFormat(const DXGI_FORMAT& aFormat) {
switch (aFormat) {
case DXGI_FORMAT_A8_UNORM:
case DXGI_FORMAT_R8_UNORM:
return SurfaceFormat::A8;
default:
return SurfaceFormat::B8G8R8A8;
}
}
static inline SurfaceFormat ToPixelFormat(const D2D1_PIXEL_FORMAT& aFormat) {
switch (aFormat.format) {
case DXGI_FORMAT_A8_UNORM:
case DXGI_FORMAT_R8_UNORM:
return SurfaceFormat::A8;
case DXGI_FORMAT_B8G8R8A8_UNORM:
if (aFormat.alphaMode == D2D1_ALPHA_MODE_IGNORE) {
return SurfaceFormat::B8G8R8X8;
} else {
return SurfaceFormat::B8G8R8A8;
}
default:
return SurfaceFormat::B8G8R8A8;
}
}
static inline Rect ToRect(const D2D1_RECT_F& aRect) {
return Rect(aRect.left, aRect.top, aRect.right - aRect.left,
aRect.bottom - aRect.top);
}
static inline Matrix ToMatrix(const D2D1_MATRIX_3X2_F& aTransform) {
return Matrix(aTransform._11, aTransform._12, aTransform._21, aTransform._22,
aTransform._31, aTransform._32);
}
static inline Point ToPoint(const D2D1_POINT_2F& aPoint) {
return Point(aPoint.x, aPoint.y);
}
static inline DXGI_FORMAT DXGIFormat(SurfaceFormat aFormat) {
switch (aFormat) {
case SurfaceFormat::B8G8R8A8:
return DXGI_FORMAT_B8G8R8A8_UNORM;
case SurfaceFormat::B8G8R8X8:
return DXGI_FORMAT_B8G8R8A8_UNORM;
case SurfaceFormat::A8:
return DXGI_FORMAT_A8_UNORM;
default:
return DXGI_FORMAT_UNKNOWN;
}
}
static inline D2D1_ALPHA_MODE D2DAlphaModeForFormat(SurfaceFormat aFormat) {
switch (aFormat) {
case SurfaceFormat::B8G8R8X8:
return D2D1_ALPHA_MODE_IGNORE;
default:
return D2D1_ALPHA_MODE_PREMULTIPLIED;
}
}
static inline D2D1_PIXEL_FORMAT D2DPixelFormat(SurfaceFormat aFormat) {
return D2D1::PixelFormat(DXGIFormat(aFormat), D2DAlphaModeForFormat(aFormat));
}
static inline bool D2DSupportsCompositeMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
case CompositionOp::OP_ADD:
case CompositionOp::OP_ATOP:
case CompositionOp::OP_OUT:
case CompositionOp::OP_IN:
case CompositionOp::OP_SOURCE:
case CompositionOp::OP_DEST_IN:
case CompositionOp::OP_DEST_OUT:
case CompositionOp::OP_DEST_OVER:
case CompositionOp::OP_DEST_ATOP:
case CompositionOp::OP_XOR:
return true;
default:
return false;
}
}
static inline D2D1_COMPOSITE_MODE D2DCompositionMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
case CompositionOp::OP_ADD:
return D2D1_COMPOSITE_MODE_PLUS;
case CompositionOp::OP_ATOP:
return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
case CompositionOp::OP_OUT:
return D2D1_COMPOSITE_MODE_SOURCE_OUT;
case CompositionOp::OP_IN:
return D2D1_COMPOSITE_MODE_SOURCE_IN;
case CompositionOp::OP_SOURCE:
return D2D1_COMPOSITE_MODE_SOURCE_COPY;
case CompositionOp::OP_DEST_IN:
return D2D1_COMPOSITE_MODE_DESTINATION_IN;
case CompositionOp::OP_DEST_OUT:
return D2D1_COMPOSITE_MODE_DESTINATION_OUT;
case CompositionOp::OP_DEST_OVER:
return D2D1_COMPOSITE_MODE_DESTINATION_OVER;
case CompositionOp::OP_DEST_ATOP:
return D2D1_COMPOSITE_MODE_DESTINATION_ATOP;
case CompositionOp::OP_XOR:
return D2D1_COMPOSITE_MODE_XOR;
default:
return D2D1_COMPOSITE_MODE_SOURCE_OVER;
}
}
static inline D2D1_BLEND_MODE D2DBlendMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_MULTIPLY:
return D2D1_BLEND_MODE_MULTIPLY;
case CompositionOp::OP_SCREEN:
return D2D1_BLEND_MODE_SCREEN;
case CompositionOp::OP_OVERLAY:
return D2D1_BLEND_MODE_OVERLAY;
case CompositionOp::OP_DARKEN:
return D2D1_BLEND_MODE_DARKEN;
case CompositionOp::OP_LIGHTEN:
return D2D1_BLEND_MODE_LIGHTEN;
case CompositionOp::OP_COLOR_DODGE:
return D2D1_BLEND_MODE_COLOR_DODGE;
case CompositionOp::OP_COLOR_BURN:
return D2D1_BLEND_MODE_COLOR_BURN;
case CompositionOp::OP_HARD_LIGHT:
return D2D1_BLEND_MODE_HARD_LIGHT;
case CompositionOp::OP_SOFT_LIGHT:
return D2D1_BLEND_MODE_SOFT_LIGHT;
case CompositionOp::OP_DIFFERENCE:
return D2D1_BLEND_MODE_DIFFERENCE;
case CompositionOp::OP_EXCLUSION:
return D2D1_BLEND_MODE_EXCLUSION;
case CompositionOp::OP_HUE:
return D2D1_BLEND_MODE_HUE;
case CompositionOp::OP_SATURATION:
return D2D1_BLEND_MODE_SATURATION;
case CompositionOp::OP_COLOR:
return D2D1_BLEND_MODE_COLOR;
case CompositionOp::OP_LUMINOSITY:
return D2D1_BLEND_MODE_LUMINOSITY;
default:
return D2D1_BLEND_MODE_MULTIPLY;
}
}
static inline bool D2DSupportsPrimitiveBlendMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
// case CompositionOp::OP_SOURCE:
return true;
// case CompositionOp::OP_DARKEN:
case CompositionOp::OP_ADD:
return IsWindows8Point1OrGreater();
default:
return false;
}
}
static inline D2D1_PRIMITIVE_BLEND D2DPrimitiveBlendMode(CompositionOp aOp) {
switch (aOp) {
case CompositionOp::OP_OVER:
return D2D1_PRIMITIVE_BLEND_SOURCE_OVER;
// D2D1_PRIMITIVE_BLEND_COPY should leave pixels out of the source's
// bounds unchanged, but doesn't- breaking unbounded ops.
// D2D1_PRIMITIVE_BLEND_MIN doesn't quite work like darken either, as it
// accounts for the source alpha.
//
// case CompositionOp::OP_SOURCE:
// return D2D1_PRIMITIVE_BLEND_COPY;
// case CompositionOp::OP_DARKEN:
// return D2D1_PRIMITIVE_BLEND_MIN;
case CompositionOp::OP_ADD:
return D2D1_PRIMITIVE_BLEND_ADD;
default:
return D2D1_PRIMITIVE_BLEND_SOURCE_OVER;
}
}
static inline bool IsPatternSupportedByD2D(const Pattern& aPattern) {
if (aPattern.GetType() != PatternType::RADIAL_GRADIENT) {
return true;
}
const RadialGradientPattern* pat =
static_cast<const RadialGradientPattern*>(&aPattern);
if (pat->mRadius1 != 0) {
return false;
}
Point diff = pat->mCenter2 - pat->mCenter1;
if (sqrt(diff.x * diff.x + diff.y * diff.y) >= pat->mRadius2) {
// Inner point lies outside the circle.
return false;
}
return true;
}
/**
* This structure is used to pass rectangles to our shader constant. We can use
* this for passing rectangular areas to SetVertexShaderConstant. In the format
* of a 4 component float(x,y,width,height). Our vertex shader can then use
* this to construct rectangular positions from the 0,0-1,1 quad that we source
* it with.
*/
struct ShaderConstantRectD3D10 {
float mX, mY, mWidth, mHeight;
ShaderConstantRectD3D10(float aX, float aY, float aWidth, float aHeight)
: mX(aX), mY(aY), mWidth(aWidth), mHeight(aHeight) {}
// For easy passing to SetVertexShaderConstantF.
operator float*() { return &mX; }
};
static inline DWRITE_MATRIX DWriteMatrixFromMatrix(Matrix& aMatrix) {
DWRITE_MATRIX mat;
mat.m11 = aMatrix._11;
mat.m12 = aMatrix._12;
mat.m21 = aMatrix._21;
mat.m22 = aMatrix._22;
mat.dx = aMatrix._31;
mat.dy = aMatrix._32;
return mat;
}
class AutoDWriteGlyphRun : public DWRITE_GLYPH_RUN {
static const unsigned kNumAutoGlyphs = 256;
public:
AutoDWriteGlyphRun() { glyphCount = 0; }
~AutoDWriteGlyphRun() {
if (glyphCount > kNumAutoGlyphs) {
delete[] glyphIndices;
delete[] glyphAdvances;
delete[] glyphOffsets;
}
}
void allocate(unsigned aNumGlyphs) {
glyphCount = aNumGlyphs;
if (aNumGlyphs <= kNumAutoGlyphs) {
glyphIndices = &mAutoIndices[0];
glyphAdvances = &mAutoAdvances[0];
glyphOffsets = &mAutoOffsets[0];
} else {
glyphIndices = new UINT16[aNumGlyphs];
glyphAdvances = new FLOAT[aNumGlyphs];
glyphOffsets = new DWRITE_GLYPH_OFFSET[aNumGlyphs];
}
}
private:
DWRITE_GLYPH_OFFSET mAutoOffsets[kNumAutoGlyphs];
FLOAT mAutoAdvances[kNumAutoGlyphs];
UINT16 mAutoIndices[kNumAutoGlyphs];
};
static inline void DWriteGlyphRunFromGlyphs(const GlyphBuffer& aGlyphs,
ScaledFontDWrite* aFont,
AutoDWriteGlyphRun* run) {
run->allocate(aGlyphs.mNumGlyphs);
FLOAT* advances = const_cast<FLOAT*>(run->glyphAdvances);
UINT16* indices = const_cast<UINT16*>(run->glyphIndices);
DWRITE_GLYPH_OFFSET* offsets =
const_cast<DWRITE_GLYPH_OFFSET*>(run->glyphOffsets);
memset(advances, 0, sizeof(FLOAT) * aGlyphs.mNumGlyphs);
for (unsigned int i = 0; i < aGlyphs.mNumGlyphs; i++) {
indices[i] = aGlyphs.mGlyphs[i].mIndex;
offsets[i].advanceOffset = aGlyphs.mGlyphs[i].mPosition.x;
offsets[i].ascenderOffset = -aGlyphs.mGlyphs[i].mPosition.y;
}
run->bidiLevel = 0;
run->fontFace = aFont->mFontFace;
run->fontEmSize = aFont->GetSize();
run->glyphCount = aGlyphs.mNumGlyphs;
run->isSideways = FALSE;
}
static inline already_AddRefed<ID2D1Geometry> ConvertRectToGeometry(
const D2D1_RECT_F& aRect) {
RefPtr<ID2D1RectangleGeometry> rectGeom;
D2DFactory()->CreateRectangleGeometry(&aRect, getter_AddRefs(rectGeom));
return rectGeom.forget();
}
static inline already_AddRefed<ID2D1Geometry> GetTransformedGeometry(
ID2D1Geometry* aGeometry, const D2D1_MATRIX_3X2_F& aTransform) {
RefPtr<ID2D1PathGeometry> tmpGeometry;
D2DFactory()->CreatePathGeometry(getter_AddRefs(tmpGeometry));
RefPtr<ID2D1GeometrySink> currentSink;
tmpGeometry->Open(getter_AddRefs(currentSink));
aGeometry->Simplify(D2D1_GEOMETRY_SIMPLIFICATION_OPTION_CUBICS_AND_LINES,
aTransform, currentSink);
currentSink->Close();
return tmpGeometry.forget();
}
static inline already_AddRefed<ID2D1Geometry> IntersectGeometry(
ID2D1Geometry* aGeometryA, ID2D1Geometry* aGeometryB) {
RefPtr<ID2D1PathGeometry> pathGeom;
D2DFactory()->CreatePathGeometry(getter_AddRefs(pathGeom));
RefPtr<ID2D1GeometrySink> sink;
pathGeom->Open(getter_AddRefs(sink));
aGeometryA->CombineWithGeometry(aGeometryB, D2D1_COMBINE_MODE_INTERSECT,
nullptr, sink);
sink->Close();
return pathGeom.forget();
}
static inline already_AddRefed<ID2D1StrokeStyle> CreateStrokeStyleForOptions(
const StrokeOptions& aStrokeOptions) {
RefPtr<ID2D1StrokeStyle> style;
D2D1_CAP_STYLE capStyle;
D2D1_LINE_JOIN joinStyle;
switch (aStrokeOptions.mLineCap) {
case CapStyle::BUTT:
capStyle = D2D1_CAP_STYLE_FLAT;
break;
case CapStyle::ROUND:
capStyle = D2D1_CAP_STYLE_ROUND;
break;
case CapStyle::SQUARE:
capStyle = D2D1_CAP_STYLE_SQUARE;
break;
}
switch (aStrokeOptions.mLineJoin) {
case JoinStyle::MITER:
joinStyle = D2D1_LINE_JOIN_MITER;
break;
case JoinStyle::MITER_OR_BEVEL:
joinStyle = D2D1_LINE_JOIN_MITER_OR_BEVEL;
break;
case JoinStyle::ROUND:
joinStyle = D2D1_LINE_JOIN_ROUND;
break;
case JoinStyle::BEVEL:
joinStyle = D2D1_LINE_JOIN_BEVEL;
break;
}
HRESULT hr;
// We need to check mDashLength in addition to mDashPattern here since if
// mDashPattern is set but mDashLength is zero then the stroke will fail to
// paint.
if (aStrokeOptions.mDashLength > 0 && aStrokeOptions.mDashPattern) {
typedef std::vector<Float> FloatVector;
// D2D "helpfully" multiplies the dash pattern by the line width.
// That's not what cairo does, or is what <canvas>'s dash wants.
// So fix the multiplication in advance.
Float lineWidth = aStrokeOptions.mLineWidth;
FloatVector dash(aStrokeOptions.mDashPattern,
aStrokeOptions.mDashPattern + aStrokeOptions.mDashLength);
for (FloatVector::iterator it = dash.begin(); it != dash.end(); ++it) {
*it /= lineWidth;
}
hr = D2DFactory()->CreateStrokeStyle(
D2D1::StrokeStyleProperties(
capStyle, capStyle, capStyle, joinStyle, aStrokeOptions.mMiterLimit,
D2D1_DASH_STYLE_CUSTOM, aStrokeOptions.mDashOffset / lineWidth),
&dash[0], // data() is not C++98, although it's in recent gcc
// and VC10's STL
dash.size(), getter_AddRefs(style));
} else {
hr = D2DFactory()->CreateStrokeStyle(
D2D1::StrokeStyleProperties(capStyle, capStyle, capStyle, joinStyle,
aStrokeOptions.mMiterLimit),
nullptr, 0, getter_AddRefs(style));
}
if (FAILED(hr)) {
gfxWarning() << "Failed to create Direct2D stroke style.";
}
return style.forget();
}
// This creates a (partially) uploaded bitmap for a DataSourceSurface. It
// uploads the minimum requirement and possibly downscales. It adjusts the
// input Matrix to compensate.
static inline already_AddRefed<ID2D1Bitmap> CreatePartialBitmapForSurface(
DataSourceSurface* aSurface, const Matrix& aDestinationTransform,
const IntSize& aDestinationSize, ExtendMode aExtendMode,
Matrix& aSourceTransform, ID2D1RenderTarget* aRT,
const IntRect* aSourceRect = nullptr) {
RefPtr<ID2D1Bitmap> bitmap;
// This is where things get complicated. The source surface was
// created for a surface that was too large to fit in a texture.
// We'll need to figure out if we can work with a partial upload
// or downsample in software.
Matrix transform = aDestinationTransform;
Matrix invTransform = transform = aSourceTransform * transform;
if (!invTransform.Invert()) {
// Singular transform, nothing to be drawn.
return nullptr;
}
Rect rect(0, 0, Float(aDestinationSize.width),
Float(aDestinationSize.height));
// Calculate the rectangle of the source mapped to our surface.
rect = invTransform.TransformBounds(rect);
rect.RoundOut();
IntSize size = aSurface->GetSize();
Rect uploadRect(0, 0, Float(size.width), Float(size.height));
if (aSourceRect) {
uploadRect = Rect(aSourceRect->X(), aSourceRect->Y(), aSourceRect->Width(),
aSourceRect->Height());
}
// Limit the uploadRect as much as possible without supporting discontiguous
// uploads
//
// clang-format off
// region we will paint from
// uploadRect
// .---------------. .---------------. resulting uploadRect
// | |rect | |
// | .---------. .----. .----. .---------------.
// | | | ----> | | | | ----> | |
// | '---------' '----' '----' '---------------'
// '---------------' '---------------'
// clang-format on
//
//
int Bpp = BytesPerPixel(aSurface->GetFormat());
if (uploadRect.Contains(rect)) {
// Extend mode is irrelevant, the displayed rect is completely contained
// by the source bitmap.
uploadRect = rect;
} else if (aExtendMode == ExtendMode::CLAMP && uploadRect.Intersects(rect)) {
// Calculate the rectangle on the source bitmap that touches our
// surface, and upload that, for ExtendMode::CLAMP we can actually guarantee
// correct behaviour in this case.
uploadRect = uploadRect.Intersect(rect);
// We now proceed to check if we can limit at least one dimension of the
// upload rect safely without looking at extend mode.
} else if (rect.X() >= 0 && rect.XMost() < size.width) {
uploadRect.MoveToX(rect.X());
uploadRect.SetWidth(rect.Width());
} else if (rect.Y() >= 0 && rect.YMost() < size.height) {
uploadRect.MoveToY(rect.Y());
uploadRect.SetHeight(rect.Height());
}
if (uploadRect.IsEmpty()) {
// Nothing to be drawn.
return nullptr;
}
if (uploadRect.Width() <= aRT->GetMaximumBitmapSize() &&
uploadRect.Height() <= aRT->GetMaximumBitmapSize()) {
{
// Scope to auto-Unmap() |mapping|.
DataSourceSurface::ScopedMap mapping(aSurface, DataSourceSurface::READ);
if (MOZ2D_WARN_IF(!mapping.IsMapped())) {
return nullptr;
}
// A partial upload will suffice.
aRT->CreateBitmap(
D2D1::SizeU(uint32_t(uploadRect.Width()),
uint32_t(uploadRect.Height())),
mapping.GetData() + int(uploadRect.X()) * Bpp +
int(uploadRect.Y()) * mapping.GetStride(),
mapping.GetStride(),
D2D1::BitmapProperties(D2DPixelFormat(aSurface->GetFormat())),
getter_AddRefs(bitmap));
}
aSourceTransform.PreTranslate(uploadRect.X(), uploadRect.Y());
return bitmap.forget();
} else {
if (Bpp != 4) {
// This shouldn't actually happen in practice!
MOZ_ASSERT(false);
return nullptr;
}
{
// Scope to auto-Unmap() |mapping|.
DataSourceSurface::ScopedMap mapping(aSurface, DataSourceSurface::READ);
if (MOZ2D_WARN_IF(!mapping.IsMapped())) {
return nullptr;
}
ImageHalfScaler scaler(mapping.GetData(), mapping.GetStride(), size);
// Calculate the maximum width/height of the image post transform.
Point topRight = transform.TransformPoint(Point(Float(size.width), 0));
Point topLeft = transform.TransformPoint(Point(0, 0));
Point bottomRight = transform.TransformPoint(
Point(Float(size.width), Float(size.height)));
Point bottomLeft = transform.TransformPoint(Point(0, Float(size.height)));
IntSize scaleSize;
scaleSize.width = int32_t(std::max(Distance(topRight, topLeft),
Distance(bottomRight, bottomLeft)));
scaleSize.height = int32_t(std::max(Distance(topRight, bottomRight),
Distance(topLeft, bottomLeft)));
if (unsigned(scaleSize.width) > aRT->GetMaximumBitmapSize()) {
// Ok, in this case we'd really want a downscale of a part of the
// bitmap, perhaps we can do this later but for simplicity let's do
// something different here and assume it's good enough, this should be
// rare!
scaleSize.width = 4095;
}
if (unsigned(scaleSize.height) > aRT->GetMaximumBitmapSize()) {
scaleSize.height = 4095;
}
scaler.ScaleForSize(scaleSize);
IntSize newSize = scaler.GetSize();
if (newSize.IsEmpty()) {
return nullptr;
}
aRT->CreateBitmap(
D2D1::SizeU(newSize.width, newSize.height), scaler.GetScaledData(),
scaler.GetStride(),
D2D1::BitmapProperties(D2DPixelFormat(aSurface->GetFormat())),
getter_AddRefs(bitmap));
aSourceTransform.PreScale(Float(size.width) / newSize.width,
Float(size.height) / newSize.height);
}
return bitmap.forget();
}
}
static inline void AddRectToSink(ID2D1GeometrySink* aSink,
const D2D1_RECT_F& aRect) {
aSink->BeginFigure(D2D1::Point2F(aRect.left, aRect.top),
D2D1_FIGURE_BEGIN_FILLED);
aSink->AddLine(D2D1::Point2F(aRect.right, aRect.top));
aSink->AddLine(D2D1::Point2F(aRect.right, aRect.bottom));
aSink->AddLine(D2D1::Point2F(aRect.left, aRect.bottom));
aSink->EndFigure(D2D1_FIGURE_END_CLOSED);
}
class DCCommandSink : public ID2D1CommandSink {
public:
explicit DCCommandSink(ID2D1DeviceContext* aCtx) : mCtx(aCtx) {}
HRESULT STDMETHODCALLTYPE QueryInterface(const IID& aIID, void** aPtr) {
if (!aPtr) {
return E_POINTER;
}
if (aIID == IID_IUnknown) {
*aPtr = static_cast<IUnknown*>(this);
return S_OK;
} else if (aIID == IID_ID2D1CommandSink) {
*aPtr = static_cast<ID2D1CommandSink*>(this);
return S_OK;
}
return E_NOINTERFACE;
}
ULONG STDMETHODCALLTYPE AddRef() { return 1; }
ULONG STDMETHODCALLTYPE Release() { return 1; }
STDMETHODIMP BeginDraw() {
// We don't want to do anything here!
return S_OK;
}
STDMETHODIMP EndDraw() {
// We don't want to do anything here!
return S_OK;
}
STDMETHODIMP SetAntialiasMode(D2D1_ANTIALIAS_MODE antialiasMode) {
mCtx->SetAntialiasMode(antialiasMode);
return S_OK;
}
STDMETHODIMP SetTags(D2D1_TAG tag1, D2D1_TAG tag2) {
mCtx->SetTags(tag1, tag2);
return S_OK;
}
STDMETHODIMP SetTextAntialiasMode(
D2D1_TEXT_ANTIALIAS_MODE textAntialiasMode) {
mCtx->SetTextAntialiasMode(textAntialiasMode);
return S_OK;
}
STDMETHODIMP SetTextRenderingParams(
_In_opt_ IDWriteRenderingParams* textRenderingParams) {
mCtx->SetTextRenderingParams(textRenderingParams);
return S_OK;
}
STDMETHODIMP SetTransform(_In_ CONST D2D1_MATRIX_3X2_F* transform) {
mCtx->SetTransform(transform);
return S_OK;
}
STDMETHODIMP SetPrimitiveBlend(D2D1_PRIMITIVE_BLEND primitiveBlend) {
mCtx->SetPrimitiveBlend(primitiveBlend);
return S_OK;
}
STDMETHODIMP SetUnitMode(D2D1_UNIT_MODE unitMode) {
mCtx->SetUnitMode(unitMode);
return S_OK;
}
STDMETHODIMP Clear(_In_opt_ CONST D2D1_COLOR_F* color) {
mCtx->Clear(color);
return S_OK;
}
STDMETHODIMP DrawGlyphRun(
D2D1_POINT_2F baselineOrigin, _In_ CONST DWRITE_GLYPH_RUN* glyphRun,
_In_opt_ CONST DWRITE_GLYPH_RUN_DESCRIPTION* glyphRunDescription,
_In_ ID2D1Brush* foregroundBrush, DWRITE_MEASURING_MODE measuringMode) {
mCtx->DrawGlyphRun(baselineOrigin, glyphRun, glyphRunDescription,
foregroundBrush, measuringMode);
return S_OK;
}
STDMETHODIMP DrawLine(D2D1_POINT_2F point0, D2D1_POINT_2F point1,
_In_ ID2D1Brush* brush, FLOAT strokeWidth,
_In_opt_ ID2D1StrokeStyle* strokeStyle) {
mCtx->DrawLine(point0, point1, brush, strokeWidth, strokeStyle);
return S_OK;
}
STDMETHODIMP DrawGeometry(_In_ ID2D1Geometry* geometry,
_In_ ID2D1Brush* brush, FLOAT strokeWidth,
_In_opt_ ID2D1StrokeStyle* strokeStyle) {
mCtx->DrawGeometry(geometry, brush, strokeWidth, strokeStyle);
return S_OK;
}
STDMETHODIMP DrawRectangle(_In_ CONST D2D1_RECT_F* rect,
_In_ ID2D1Brush* brush, FLOAT strokeWidth,
_In_opt_ ID2D1StrokeStyle* strokeStyle) {
mCtx->DrawRectangle(rect, brush, strokeWidth, strokeStyle);
return S_OK;
}
STDMETHODIMP DrawBitmap(
_In_ ID2D1Bitmap* bitmap,
_In_opt_ CONST D2D1_RECT_F* destinationRectangle, FLOAT opacity,
D2D1_INTERPOLATION_MODE interpolationMode,
_In_opt_ CONST D2D1_RECT_F* sourceRectangle,
_In_opt_ CONST D2D1_MATRIX_4X4_F* perspectiveTransform) {
mCtx->DrawBitmap(bitmap, destinationRectangle, opacity, interpolationMode,
sourceRectangle, perspectiveTransform);
return S_OK;
}
STDMETHODIMP DrawImage(_In_ ID2D1Image* image,
_In_opt_ CONST D2D1_POINT_2F* targetOffset,
_In_opt_ CONST D2D1_RECT_F* imageRectangle,
D2D1_INTERPOLATION_MODE interpolationMode,
D2D1_COMPOSITE_MODE compositeMode) {
mCtx->DrawImage(image, targetOffset, imageRectangle, interpolationMode,
compositeMode);
return S_OK;
}
STDMETHODIMP DrawGdiMetafile(_In_ ID2D1GdiMetafile* gdiMetafile,
_In_opt_ CONST D2D1_POINT_2F* targetOffset) {
mCtx->DrawGdiMetafile(gdiMetafile, targetOffset);
return S_OK;
}
STDMETHODIMP FillMesh(_In_ ID2D1Mesh* mesh, _In_ ID2D1Brush* brush) {
mCtx->FillMesh(mesh, brush);
return S_OK;
}
STDMETHODIMP FillOpacityMask(_In_ ID2D1Bitmap* opacityMask,
_In_ ID2D1Brush* brush,
_In_opt_ CONST D2D1_RECT_F* destinationRectangle,
_In_opt_ CONST D2D1_RECT_F* sourceRectangle) {
mCtx->FillOpacityMask(opacityMask, brush, destinationRectangle,
sourceRectangle);
return S_OK;
}
STDMETHODIMP FillGeometry(_In_ ID2D1Geometry* geometry,
_In_ ID2D1Brush* brush,
_In_opt_ ID2D1Brush* opacityBrush) {
mCtx->FillGeometry(geometry, brush, opacityBrush);
return S_OK;
}
STDMETHODIMP FillRectangle(_In_ CONST D2D1_RECT_F* rect,
_In_ ID2D1Brush* brush) {
mCtx->FillRectangle(rect, brush);
return S_OK;
}
STDMETHODIMP PushAxisAlignedClip(_In_ CONST D2D1_RECT_F* clipRect,
D2D1_ANTIALIAS_MODE antialiasMode) {
mCtx->PushAxisAlignedClip(clipRect, antialiasMode);
return S_OK;
}
STDMETHODIMP PushLayer(_In_ CONST D2D1_LAYER_PARAMETERS1* layerParameters1,
_In_opt_ ID2D1Layer* layer) {
mCtx->PushLayer(layerParameters1, layer);
return S_OK;
}
STDMETHODIMP PopAxisAlignedClip() {
mCtx->PopAxisAlignedClip();
return S_OK;
}
STDMETHODIMP PopLayer() {
mCtx->PopLayer();
return S_OK;
}
ID2D1DeviceContext* mCtx;
};
class MOZ_STACK_CLASS AutoRestoreFP final {
public:
AutoRestoreFP() {
// save the current floating point control word
_controlfp_s(&savedFPSetting, 0, 0);
UINT unused;
// set the floating point control word to its default value
_controlfp_s(&unused, _CW_DEFAULT, MCW_PC);
}
~AutoRestoreFP() {
UINT unused;
// restore the saved floating point control word
_controlfp_s(&unused, savedFPSetting, MCW_PC);
}
private:
UINT savedFPSetting;
};
// Note that overrides of ID2D1SimplifiedGeometrySink methods in this class may
// get called from D2D with nonstandard floating point settings (see comments in
// bug 1134549) - use AutoRestoreFP to reset the floating point control word to
// what we expect
class StreamingGeometrySink : public ID2D1SimplifiedGeometrySink {
public:
explicit StreamingGeometrySink(PathSink* aSink) : mSink(aSink) {}
HRESULT STDMETHODCALLTYPE QueryInterface(const IID& aIID, void** aPtr) {
if (!aPtr) {
return E_POINTER;
}
if (aIID == IID_IUnknown) {
*aPtr = static_cast<IUnknown*>(this);
return S_OK;
} else if (aIID == IID_ID2D1SimplifiedGeometrySink) {
*aPtr = static_cast<ID2D1SimplifiedGeometrySink*>(this);
return S_OK;
}
return E_NOINTERFACE;
}
ULONG STDMETHODCALLTYPE AddRef() { return 1; }
ULONG STDMETHODCALLTYPE Release() { return 1; }
// We ignore SetFillMode, this depends on the destination sink.
STDMETHOD_(void, SetFillMode)(D2D1_FILL_MODE aMode) { return; }
STDMETHOD_(void, BeginFigure)
(D2D1_POINT_2F aPoint, D2D1_FIGURE_BEGIN aBegin) {
AutoRestoreFP resetFloatingPoint;
mSink->MoveTo(ToPoint(aPoint));
}
STDMETHOD_(void, AddLines)(const D2D1_POINT_2F* aLines, UINT aCount) {
AutoRestoreFP resetFloatingPoint;
for (UINT i = 0; i < aCount; i++) {
mSink->LineTo(ToPoint(aLines[i]));
}
}
STDMETHOD_(void, AddBeziers)
(const D2D1_BEZIER_SEGMENT* aSegments, UINT aCount) {
AutoRestoreFP resetFloatingPoint;
for (UINT i = 0; i < aCount; i++) {
mSink->BezierTo(ToPoint(aSegments[i].point1),
ToPoint(aSegments[i].point2),
ToPoint(aSegments[i].point3));
}
}
STDMETHOD(Close)() { /* Should never be called! */
return S_OK;
}
STDMETHOD_(void, SetSegmentFlags)
(D2D1_PATH_SEGMENT aFlags) { /* Should never be called! */
}
STDMETHOD_(void, EndFigure)(D2D1_FIGURE_END aEnd) {
AutoRestoreFP resetFloatingPoint;
if (aEnd == D2D1_FIGURE_END_CLOSED) {
return mSink->Close();
}
}
private:
PathSink* mSink;
};
} // namespace gfx
} // namespace mozilla
#endif /* MOZILLA_GFX_HELPERSD2D_H_ */