gecko-dev/xpcom/base/nsAutoPtr.h
Emilio Cobos Álvarez 1e9c395548 Bug 1466168: Remove mozilla::Forward in favor of std::forward. r=froydnj
Same approach as the other bug, mostly replacing automatically by removing
'using mozilla::Forward;' and then:

  s/mozilla::Forward/std::forward/
  s/Forward</std::forward</

The only file that required manual fixup was TestTreeTraversal.cpp, which had
a class called TestNodeForward with template parameters :)

MozReview-Commit-ID: A88qFG5AccP
2018-06-02 09:33:26 +02:00

455 lines
9.5 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsAutoPtr_h
#define nsAutoPtr_h
#include "nsCOMPtr.h"
#include "mozilla/RefPtr.h"
#include "mozilla/TypeTraits.h"
#include "nsCycleCollectionNoteChild.h"
#include "mozilla/MemoryReporting.h"
/*****************************************************************************/
// template <class T> class nsAutoPtrGetterTransfers;
template <class T>
class nsAutoPtr
{
private:
static_assert(!mozilla::IsScalar<T>::value, "If you are using "
"nsAutoPtr to hold an array, use UniquePtr<T[]> instead");
void**
begin_assignment()
{
assign(0);
return reinterpret_cast<void**>(&mRawPtr);
}
void
assign(T* aNewPtr)
{
T* oldPtr = mRawPtr;
if (aNewPtr && aNewPtr == oldPtr) {
MOZ_CRASH("Logic flaw in the caller");
}
mRawPtr = aNewPtr;
delete oldPtr;
}
// |class Ptr| helps us prevent implicit "copy construction"
// through |operator T*() const| from a |const nsAutoPtr<T>|
// because two implicit conversions in a row aren't allowed.
// It still allows assignment from T* through implicit conversion
// from |T*| to |nsAutoPtr<T>::Ptr|
class Ptr
{
public:
MOZ_IMPLICIT Ptr(T* aPtr)
: mPtr(aPtr)
{
}
operator T*() const
{
return mPtr;
}
private:
T* MOZ_NON_OWNING_REF mPtr;
};
private:
T* MOZ_OWNING_REF mRawPtr;
public:
typedef T element_type;
~nsAutoPtr()
{
delete mRawPtr;
}
// Constructors
nsAutoPtr()
: mRawPtr(0)
// default constructor
{
}
MOZ_IMPLICIT nsAutoPtr(Ptr aRawPtr)
: mRawPtr(aRawPtr)
// construct from a raw pointer (of the right type)
{
}
// This constructor shouldn't exist; we should just use the &&
// constructor.
nsAutoPtr(nsAutoPtr<T>& aSmartPtr)
: mRawPtr(aSmartPtr.forget())
// Construct by transferring ownership from another smart pointer.
{
}
template <typename I>
MOZ_IMPLICIT nsAutoPtr(nsAutoPtr<I>& aSmartPtr)
: mRawPtr(aSmartPtr.forget())
// Construct by transferring ownership from another smart pointer.
{
}
nsAutoPtr(nsAutoPtr<T>&& aSmartPtr)
: mRawPtr(aSmartPtr.forget())
// Construct by transferring ownership from another smart pointer.
{
}
template <typename I>
MOZ_IMPLICIT nsAutoPtr(nsAutoPtr<I>&& aSmartPtr)
: mRawPtr(aSmartPtr.forget())
// Construct by transferring ownership from another smart pointer.
{
}
// Assignment operators
nsAutoPtr<T>&
operator=(T* aRhs)
// assign from a raw pointer (of the right type)
{
assign(aRhs);
return *this;
}
nsAutoPtr<T>& operator=(nsAutoPtr<T>& aRhs)
// assign by transferring ownership from another smart pointer.
{
assign(aRhs.forget());
return *this;
}
template <typename I>
nsAutoPtr<T>& operator=(nsAutoPtr<I>& aRhs)
// assign by transferring ownership from another smart pointer.
{
assign(aRhs.forget());
return *this;
}
nsAutoPtr<T>& operator=(nsAutoPtr<T>&& aRhs)
{
assign(aRhs.forget());
return *this;
}
template <typename I>
nsAutoPtr<T>& operator=(nsAutoPtr<I>&& aRhs)
{
assign(aRhs.forget());
return *this;
}
// Other pointer operators
T*
get() const
/*
Prefer the implicit conversion provided automatically by
|operator T*() const|. Use |get()| _only_ to resolve
ambiguity.
*/
{
return mRawPtr;
}
operator T*() const
/*
...makes an |nsAutoPtr| act like its underlying raw pointer
type whenever it is used in a context where a raw pointer
is expected. It is this operator that makes an |nsAutoPtr|
substitutable for a raw pointer.
Prefer the implicit use of this operator to calling |get()|,
except where necessary to resolve ambiguity.
*/
{
return get();
}
T*
forget()
{
T* temp = mRawPtr;
mRawPtr = 0;
return temp;
}
T*
operator->() const
{
MOZ_ASSERT(mRawPtr != 0,
"You can't dereference a NULL nsAutoPtr with operator->().");
return get();
}
template <typename R, typename... Args>
class Proxy
{
typedef R (T::*member_function)(Args...);
T* mRawPtr;
member_function mFunction;
public:
Proxy(T* aRawPtr, member_function aFunction)
: mRawPtr(aRawPtr),
mFunction(aFunction)
{
}
template<typename... ActualArgs>
R operator()(ActualArgs&&... aArgs)
{
return ((*mRawPtr).*mFunction)(std::forward<ActualArgs>(aArgs)...);
}
};
template <typename R, typename C, typename... Args>
Proxy<R, Args...> operator->*(R (C::*aFptr)(Args...)) const
{
MOZ_ASSERT(mRawPtr != 0,
"You can't dereference a NULL nsAutoPtr with operator->*().");
return Proxy<R, Args...>(get(), aFptr);
}
nsAutoPtr<T>*
get_address()
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
const nsAutoPtr<T>*
get_address() const
// This is not intended to be used by clients. See |address_of|
// below.
{
return this;
}
public:
T&
operator*() const
{
MOZ_ASSERT(mRawPtr != 0,
"You can't dereference a NULL nsAutoPtr with operator*().");
return *get();
}
T**
StartAssignment()
{
#ifndef NSCAP_FEATURE_INLINE_STARTASSIGNMENT
return reinterpret_cast<T**>(begin_assignment());
#else
assign(0);
return reinterpret_cast<T**>(&mRawPtr);
#endif
}
};
template <class T>
inline nsAutoPtr<T>*
address_of(nsAutoPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
inline const nsAutoPtr<T>*
address_of(const nsAutoPtr<T>& aPtr)
{
return aPtr.get_address();
}
template <class T>
class nsAutoPtrGetterTransfers
/*
...
This class is designed to be used for anonymous temporary objects in the
argument list of calls that return COM interface pointers, e.g.,
nsAutoPtr<IFoo> fooP;
...->GetTransferedPointer(getter_Transfers(fooP))
DO NOT USE THIS TYPE DIRECTLY IN YOUR CODE. Use |getter_Transfers()| instead.
When initialized with a |nsAutoPtr|, as in the example above, it returns
a |void**|, a |T**|, or an |nsISupports**| as needed, that the
outer call (|GetTransferedPointer| in this case) can fill in.
This type should be a nested class inside |nsAutoPtr<T>|.
*/
{
public:
explicit
nsAutoPtrGetterTransfers(nsAutoPtr<T>& aSmartPtr)
: mTargetSmartPtr(aSmartPtr)
{
// nothing else to do
}
operator void**()
{
return reinterpret_cast<void**>(mTargetSmartPtr.StartAssignment());
}
operator T**()
{
return mTargetSmartPtr.StartAssignment();
}
T*&
operator*()
{
return *(mTargetSmartPtr.StartAssignment());
}
private:
nsAutoPtr<T>& mTargetSmartPtr;
};
template <class T>
inline nsAutoPtrGetterTransfers<T>
getter_Transfers(nsAutoPtr<T>& aSmartPtr)
/*
Used around a |nsAutoPtr| when
...makes the class |nsAutoPtrGetterTransfers<T>| invisible.
*/
{
return nsAutoPtrGetterTransfers<T>(aSmartPtr);
}
// Comparing two |nsAutoPtr|s
template <class T, class U>
inline bool
operator==(const nsAutoPtr<T>& aLhs, const nsAutoPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, const nsAutoPtr<U>& aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs.get());
}
// Comparing an |nsAutoPtr| to a raw pointer
template <class T, class U>
inline bool
operator==(const nsAutoPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(const U* aLhs, const nsAutoPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, const U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != static_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(const U* aLhs, const nsAutoPtr<T>& aRhs)
{
return static_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator==(const nsAutoPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) == const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator==(U* aLhs, const nsAutoPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) == static_cast<const T*>(aRhs.get());
}
template <class T, class U>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, U* aRhs)
{
return static_cast<const T*>(aLhs.get()) != const_cast<const U*>(aRhs);
}
template <class T, class U>
inline bool
operator!=(U* aLhs, const nsAutoPtr<T>& aRhs)
{
return const_cast<const U*>(aLhs) != static_cast<const T*>(aRhs.get());
}
// Comparing an |nsAutoPtr| to |nullptr|
template <class T>
inline bool
operator==(const nsAutoPtr<T>& aLhs, decltype(nullptr))
{
return aLhs.get() == nullptr;
}
template <class T>
inline bool
operator==(decltype(nullptr), const nsAutoPtr<T>& aRhs)
{
return nullptr == aRhs.get();
}
template <class T>
inline bool
operator!=(const nsAutoPtr<T>& aLhs, decltype(nullptr))
{
return aLhs.get() != nullptr;
}
template <class T>
inline bool
operator!=(decltype(nullptr), const nsAutoPtr<T>& aRhs)
{
return nullptr != aRhs.get();
}
/*****************************************************************************/
#endif // !defined(nsAutoPtr_h)