gecko-dev/gfx/layers/ImageContainer.h
Phil Ringnalda d381b4bca6 Back out 7 changesets (bug 1235261) for cpptest failures in TestTArray
CLOSED TREE

Backed out changeset d66c3f19a210 (bug 1235261)
Backed out changeset 467d945426bb (bug 1235261)
Backed out changeset 32b61df13142 (bug 1235261)
Backed out changeset c50bb8ed4196 (bug 1235261)
Backed out changeset 0ff0fa6fe81f (bug 1235261)
Backed out changeset df70e89669da (bug 1235261)
Backed out changeset 064969357fc9 (bug 1235261)
2016-01-31 10:10:57 -08:00

887 lines
28 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef GFX_IMAGECONTAINER_H
#define GFX_IMAGECONTAINER_H
#include <stdint.h> // for uint32_t, uint8_t, uint64_t
#include <sys/types.h> // for int32_t
#include "gfxTypes.h"
#include "ImageTypes.h" // for ImageFormat, etc
#include "mozilla/Assertions.h" // for MOZ_ASSERT_HELPER2
#include "mozilla/Mutex.h" // for Mutex
#include "mozilla/ReentrantMonitor.h" // for ReentrantMonitorAutoEnter, etc
#include "mozilla/TimeStamp.h" // for TimeStamp
#include "mozilla/gfx/Point.h" // For IntSize
#include "mozilla/layers/GonkNativeHandle.h"
#include "mozilla/layers/LayersTypes.h" // for LayersBackend, etc
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "nsAutoPtr.h" // for nsRefPtr, nsAutoArrayPtr, etc
#include "nsAutoRef.h" // for nsCountedRef
#include "nsCOMPtr.h" // for already_AddRefed
#include "nsDebug.h" // for NS_ASSERTION
#include "nsISupportsImpl.h" // for Image::Release, etc
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsTArray.h" // for nsTArray
#include "mozilla/Atomics.h"
#include "mozilla/WeakPtr.h"
#include "nsThreadUtils.h"
#include "mozilla/gfx/2D.h"
#include "nsDataHashtable.h"
#include "mozilla/EnumeratedArray.h"
#include "mozilla/UniquePtr.h"
#ifndef XPCOM_GLUE_AVOID_NSPR
/**
* We need to be able to hold a reference to a Moz2D SourceSurface from Image
* subclasses. This is potentially a problem since Images can be addrefed
* or released off the main thread. We can ensure that we never AddRef
* a SourceSurface off the main thread, but we might want to Release due
* to an Image being destroyed off the main thread.
*
* We use nsCountedRef<nsMainThreadSourceSurfaceRef> to reference the
* SourceSurface. When AddRefing, we assert that we're on the main thread.
* When Releasing, if we're not on the main thread, we post an event to
* the main thread to do the actual release.
*/
class nsMainThreadSourceSurfaceRef;
template <>
class nsAutoRefTraits<nsMainThreadSourceSurfaceRef> {
public:
typedef mozilla::gfx::SourceSurface* RawRef;
/**
* The XPCOM event that will do the actual release on the main thread.
*/
class SurfaceReleaser : public nsRunnable {
public:
explicit SurfaceReleaser(RawRef aRef) : mRef(aRef) {}
NS_IMETHOD Run() {
mRef->Release();
return NS_OK;
}
RawRef mRef;
};
static RawRef Void() { return nullptr; }
static void Release(RawRef aRawRef)
{
if (NS_IsMainThread()) {
aRawRef->Release();
return;
}
nsCOMPtr<nsIRunnable> runnable = new SurfaceReleaser(aRawRef);
NS_DispatchToMainThread(runnable);
}
static void AddRef(RawRef aRawRef)
{
NS_ASSERTION(NS_IsMainThread(),
"Can only add a reference on the main thread");
aRawRef->AddRef();
}
};
class nsOwningThreadSourceSurfaceRef;
template <>
class nsAutoRefTraits<nsOwningThreadSourceSurfaceRef> {
public:
typedef mozilla::gfx::SourceSurface* RawRef;
/**
* The XPCOM event that will do the actual release on the creation thread.
*/
class SurfaceReleaser : public nsRunnable {
public:
explicit SurfaceReleaser(RawRef aRef) : mRef(aRef) {}
NS_IMETHOD Run() {
mRef->Release();
return NS_OK;
}
RawRef mRef;
};
static RawRef Void() { return nullptr; }
void Release(RawRef aRawRef)
{
MOZ_ASSERT(mOwningThread);
bool current;
mOwningThread->IsOnCurrentThread(&current);
if (current) {
aRawRef->Release();
return;
}
nsCOMPtr<nsIRunnable> runnable = new SurfaceReleaser(aRawRef);
mOwningThread->Dispatch(runnable, nsIThread::DISPATCH_NORMAL);
}
void AddRef(RawRef aRawRef)
{
MOZ_ASSERT(!mOwningThread);
NS_GetCurrentThread(getter_AddRefs(mOwningThread));
aRawRef->AddRef();
}
private:
nsCOMPtr<nsIThread> mOwningThread;
};
#endif
#ifdef XP_WIN
struct ID3D10Texture2D;
struct ID3D10Device;
struct ID3D10ShaderResourceView;
#endif
typedef void* HANDLE;
namespace mozilla {
namespace layers {
class ImageClient;
class ImageCompositeNotification;
class ImageContainerChild;
class PImageContainerChild;
class SharedPlanarYCbCrImage;
class PlanarYCbCrImage;
class TextureClient;
class CompositableClient;
class GrallocImage;
struct ImageBackendData
{
virtual ~ImageBackendData() {}
protected:
ImageBackendData() {}
};
/* Forward declarations for Image derivatives. */
class EGLImageImage;
class SharedRGBImage;
#ifdef MOZ_WIDGET_ANDROID
class SurfaceTextureImage;
#elif defined(XP_MACOSX)
class MacIOSurfaceImage;
#elif defined(MOZ_WIDGET_GONK)
class OverlayImage;
#endif
/**
* A class representing a buffer of pixel data. The data can be in one
* of various formats including YCbCr.
*
* Create an image using an ImageContainer. Fill the image with data, and
* then call ImageContainer::SetImage to display it. An image must not be
* modified after calling SetImage. Image implementations do not need to
* perform locking; when filling an Image, the Image client is responsible
* for ensuring only one thread accesses the Image at a time, and after
* SetImage the image is immutable.
*
* When resampling an Image, only pixels within the buffer should be
* sampled. For example, cairo images should be sampled in EXTEND_PAD mode.
*/
class Image {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(Image)
public:
ImageFormat GetFormat() { return mFormat; }
void* GetImplData() { return mImplData; }
virtual gfx::IntSize GetSize() = 0;
virtual gfx::IntRect GetPictureRect()
{
return gfx::IntRect(0, 0, GetSize().width, GetSize().height);
}
ImageBackendData* GetBackendData(LayersBackend aBackend)
{ return mBackendData[aBackend]; }
void SetBackendData(LayersBackend aBackend, ImageBackendData* aData)
{ mBackendData[aBackend] = aData; }
int32_t GetSerial() { return mSerial; }
virtual already_AddRefed<gfx::SourceSurface> GetAsSourceSurface() = 0;
virtual GrallocImage* AsGrallocImage()
{
return nullptr;
}
virtual bool IsValid() { return true; }
virtual uint8_t* GetBuffer() { return nullptr; }
/**
* For use with the CompositableClient only (so that the later can
* synchronize the TextureClient with the TextureHost).
*/
virtual TextureClient* GetTextureClient(CompositableClient* aClient) { return nullptr; }
/* Access to derived classes. */
virtual EGLImageImage* AsEGLImageImage() { return nullptr; }
#ifdef MOZ_WIDGET_ANDROID
virtual SurfaceTextureImage* AsSurfaceTextureImage() { return nullptr; }
#endif
#ifdef XP_MACOSX
virtual MacIOSurfaceImage* AsMacIOSurfaceImage() { return nullptr; }
#endif
virtual PlanarYCbCrImage* AsPlanarYCbCrImage() { return nullptr; }
protected:
Image(void* aImplData, ImageFormat aFormat) :
mImplData(aImplData),
mSerial(++sSerialCounter),
mFormat(aFormat)
{}
// Protected destructor, to discourage deletion outside of Release():
virtual ~Image() {}
mozilla::EnumeratedArray<mozilla::layers::LayersBackend,
mozilla::layers::LayersBackend::LAYERS_LAST,
nsAutoPtr<ImageBackendData>>
mBackendData;
void* mImplData;
int32_t mSerial;
ImageFormat mFormat;
static mozilla::Atomic<int32_t> sSerialCounter;
};
/**
* A RecycleBin is owned by an ImageContainer. We store buffers in it that we
* want to recycle from one image to the next.It's a separate object from
* ImageContainer because images need to store a strong ref to their RecycleBin
* and we must avoid creating a reference loop between an ImageContainer and
* its active image.
*/
class BufferRecycleBin final {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(BufferRecycleBin)
//typedef mozilla::gl::GLContext GLContext;
public:
BufferRecycleBin();
void RecycleBuffer(mozilla::UniquePtr<uint8_t[]> aBuffer, uint32_t aSize);
// Returns a recycled buffer of the right size, or allocates a new buffer.
mozilla::UniquePtr<uint8_t[]> GetBuffer(uint32_t aSize);
private:
typedef mozilla::Mutex Mutex;
// Private destructor, to discourage deletion outside of Release():
~BufferRecycleBin()
{
}
// This protects mRecycledBuffers, mRecycledBufferSize, mRecycledTextures
// and mRecycledTextureSizes
Mutex mLock;
// We should probably do something to prune this list on a timer so we don't
// eat excess memory while video is paused...
nsTArray<mozilla::UniquePtr<uint8_t[]>> mRecycledBuffers;
// This is only valid if mRecycledBuffers is non-empty
uint32_t mRecycledBufferSize;
};
/**
* A class that manages Image creation for a LayerManager. The only reason
* we need a separate class here is that LayerManagers aren't threadsafe
* (because layers can only be used on the main thread) and we want to
* be able to create images from any thread, to facilitate video playback
* without involving the main thread, for example.
* Different layer managers can implement child classes of this making it
* possible to create layer manager specific images.
* This class is not meant to be used directly but rather can be set on an
* image container. This is usually done by the layer system internally and
* not explicitly by users. For PlanarYCbCr or Cairo images the default
* implementation will creates images whose data lives in system memory, for
* MacIOSurfaces the default implementation will be a simple MacIOSurface
* wrapper.
*/
class ImageFactory
{
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageFactory)
protected:
friend class ImageContainer;
ImageFactory() {}
virtual ~ImageFactory() {}
virtual RefPtr<PlanarYCbCrImage> CreatePlanarYCbCrImage(
const gfx::IntSize& aScaleHint,
BufferRecycleBin *aRecycleBin);
};
/**
* A class that manages Images for an ImageLayer. The only reason
* we need a separate class here is that ImageLayers aren't threadsafe
* (because layers can only be used on the main thread) and we want to
* be able to set the current Image from any thread, to facilitate
* video playback without involving the main thread, for example.
*
* An ImageContainer can operate in one of these modes:
* 1) Normal. Triggered by constructing the ImageContainer with
* DISABLE_ASYNC or when compositing is happening on the main thread.
* SetCurrentImages changes ImageContainer state but nothing is sent to the
* compositor until the next layer transaction.
* 2) Asynchronous. Initiated by constructing the ImageContainer with
* ENABLE_ASYNC when compositing is happening on the main thread.
* SetCurrentImages sends a message through the ImageBridge to the compositor
* thread to update the image, without going through the main thread or
* a layer transaction.
* The ImageContainer uses a shared memory block containing a cross-process mutex
* to communicate with the compositor thread. SetCurrentImage synchronously
* updates the shared state to point to the new image and the old image
* is immediately released (not true in Normal or Asynchronous modes).
*/
class ImageContainer final : public SupportsWeakPtr<ImageContainer> {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageContainer)
public:
MOZ_DECLARE_WEAKREFERENCE_TYPENAME(ImageContainer)
enum Mode { SYNCHRONOUS = 0x0, ASYNCHRONOUS = 0x01 };
explicit ImageContainer(ImageContainer::Mode flag = SYNCHRONOUS);
typedef uint32_t FrameID;
typedef uint32_t ProducerID;
RefPtr<PlanarYCbCrImage> CreatePlanarYCbCrImage();
// Factory methods for shared image types.
RefPtr<SharedRGBImage> CreateSharedRGBImage();
#ifdef MOZ_WIDGET_GONK
RefPtr<OverlayImage> CreateOverlayImage();
#endif
struct NonOwningImage {
explicit NonOwningImage(Image* aImage = nullptr,
TimeStamp aTimeStamp = TimeStamp(),
FrameID aFrameID = 0,
ProducerID aProducerID = 0)
: mImage(aImage), mTimeStamp(aTimeStamp), mFrameID(aFrameID),
mProducerID(aProducerID) {}
Image* mImage;
TimeStamp mTimeStamp;
FrameID mFrameID;
ProducerID mProducerID;
};
/**
* Set aImages as the list of timestamped to display. The Images must have
* been created by this ImageContainer.
* Can be called on any thread. This method takes mReentrantMonitor
* when accessing thread-shared state.
* aImages must be non-empty. The first timestamp in the list may be
* null but the others must not be, and the timestamps must increase.
* Every element of aImages must have non-null mImage.
* mFrameID can be zero, in which case you won't get meaningful
* painted/dropped frame counts. Otherwise you should use a unique and
* increasing ID for each decoded and submitted frame (but it's OK to
* pass the same frame to SetCurrentImages).
* mProducerID is a unique ID for the stream of images. A change in the
* mProducerID means changing to a new mFrameID namespace. All frames in
* aImages must have the same mProducerID.
*
* The Image data must not be modified after this method is called!
* Note that this must not be called if ENABLE_ASYNC has not been set.
*
* The implementation calls CurrentImageChanged() while holding
* mReentrantMonitor.
*
* If this ImageContainer has an ImageClient for async video:
* Schedule a task to send the image to the compositor using the
* PImageBridge protcol without using the main thread.
*/
void SetCurrentImages(const nsTArray<NonOwningImage>& aImages);
/**
* Clear all images. Let ImageClient release all TextureClients.
*/
void ClearAllImages();
/**
* Clear the current images.
* This function is expect to be called only from a CompositableClient
* that belongs to ImageBridgeChild. Created to prevent dead lock.
* See Bug 901224.
*/
void ClearImagesFromImageBridge();
/**
* Set an Image as the current image to display. The Image must have
* been created by this ImageContainer.
* Must be called on the main thread, within a layers transaction.
*
* This method takes mReentrantMonitor
* when accessing thread-shared state.
* aImage can be null. While it's null, nothing will be painted.
*
* The Image data must not be modified after this method is called!
* Note that this must not be called if ENABLE_ASYNC been set.
*
* You won't get meaningful painted/dropped counts when using this method.
*/
void SetCurrentImageInTransaction(Image* aImage);
/**
* Returns true if this ImageContainer uses the ImageBridge IPDL protocol.
*
* Can be called from any thread.
*/
bool IsAsync() const;
/**
* If this ImageContainer uses ImageBridge, returns the ID associated to
* this container, for use in the ImageBridge protocol.
* Returns 0 if this ImageContainer does not use ImageBridge. Note that
* 0 is always an invalid ID for asynchronous image containers.
*
* Can be called from any thread.
*/
uint64_t GetAsyncContainerID() const;
/**
* Returns if the container currently has an image.
* Can be called on any thread. This method takes mReentrantMonitor
* when accessing thread-shared state.
*/
bool HasCurrentImage();
struct OwningImage {
OwningImage() : mFrameID(0), mProducerID(0), mComposited(false) {}
RefPtr<Image> mImage;
TimeStamp mTimeStamp;
FrameID mFrameID;
ProducerID mProducerID;
bool mComposited;
};
/**
* Copy the current Image list to aImages.
* This has to add references since otherwise there are race conditions
* where the current image is destroyed before the caller can add
* a reference.
* Can be called on any thread.
* May return an empty list to indicate there is no current image.
* If aGenerationCounter is non-null, sets *aGenerationCounter to a value
* that's unique for this ImageContainer state.
*/
void GetCurrentImages(nsTArray<OwningImage>* aImages,
uint32_t* aGenerationCounter = nullptr);
/**
* Returns the size of the image in pixels.
* Can be called on any thread. This method takes mReentrantMonitor when accessing
* thread-shared state.
*/
gfx::IntSize GetCurrentSize();
/**
* Sets a size that the image is expected to be rendered at.
* This is a hint for image backends to optimize scaling.
* Default implementation in this class is to ignore the hint.
* Can be called on any thread. This method takes mReentrantMonitor
* when accessing thread-shared state.
*/
void SetScaleHint(const gfx::IntSize& aScaleHint)
{ mScaleHint = aScaleHint; }
void SetImageFactory(ImageFactory *aFactory)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
mImageFactory = aFactory ? aFactory : new ImageFactory();
}
ImageFactory* GetImageFactory() const
{
return mImageFactory;
}
/**
* Returns the delay between the last composited image's presentation
* timestamp and when it was first composited. It's possible for the delay
* to be negative if the first image in the list passed to SetCurrentImages
* has a presentation timestamp greater than "now".
* Returns 0 if the composited image had a null timestamp, or if no
* image has been composited yet.
*/
TimeDuration GetPaintDelay()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
return mPaintDelay;
}
/**
* Returns the number of images which have been contained in this container
* and painted at least once. Can be called from any thread.
*/
uint32_t GetPaintCount() {
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
return mPaintCount;
}
/**
* An entry in the current image list "expires" when the entry has an
* non-null timestamp, and in a SetCurrentImages call the new image list is
* non-empty, the timestamp of the first new image is non-null and greater
* than the timestamp associated with the image, and the first new image's
* frameID is not the same as the entry's.
* Every expired image that is never composited is counted as dropped.
*/
uint32_t GetDroppedImageCount()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
return mDroppedImageCount;
}
PImageContainerChild* GetPImageContainerChild();
static void NotifyComposite(const ImageCompositeNotification& aNotification);
/**
* Main thread only.
*/
static ProducerID AllocateProducerID();
private:
typedef mozilla::ReentrantMonitor ReentrantMonitor;
// Private destructor, to discourage deletion outside of Release():
B2G_ACL_EXPORT ~ImageContainer();
void SetCurrentImageInternal(const nsTArray<NonOwningImage>& aImages);
// This is called to ensure we have an active image, this may not be true
// when we're storing image information in a RemoteImageData structure.
// NOTE: If we have remote data mRemoteDataMutex should be locked when
// calling this function!
void EnsureActiveImage();
void NotifyCompositeInternal(const ImageCompositeNotification& aNotification);
// ReentrantMonitor to protect thread safe access to the "current
// image", and any other state which is shared between threads.
ReentrantMonitor mReentrantMonitor;
nsTArray<OwningImage> mCurrentImages;
// Updates every time mActiveImage changes
uint32_t mGenerationCounter;
// Number of contained images that have been painted at least once. It's up
// to the ImageContainer implementation to ensure accesses to this are
// threadsafe.
uint32_t mPaintCount;
// See GetPaintDelay. Accessed only with mReentrantMonitor held.
TimeDuration mPaintDelay;
// See GetDroppedImageCount. Accessed only with mReentrantMonitor held.
uint32_t mDroppedImageCount;
// This is the image factory used by this container, layer managers using
// this container can set an alternative image factory that will be used to
// create images for this container.
RefPtr<ImageFactory> mImageFactory;
gfx::IntSize mScaleHint;
RefPtr<BufferRecycleBin> mRecycleBin;
// This member points to an ImageClient if this ImageContainer was
// sucessfully created with ENABLE_ASYNC, or points to null otherwise.
// 'unsuccessful' in this case only means that the ImageClient could not
// be created, most likely because off-main-thread compositing is not enabled.
// In this case the ImageContainer is perfectly usable, but it will forward
// frames to the compositor through transactions in the main thread rather than
// asynchronusly using the ImageBridge IPDL protocol.
ImageClient* mImageClient;
nsTArray<FrameID> mFrameIDsNotYetComposited;
// ProducerID for last current image(s), including the frames in
// mFrameIDsNotYetComposited
ProducerID mCurrentProducerID;
// Object must be released on the ImageBridge thread. Field is immutable
// after creation of the ImageContainer.
ImageContainerChild* mIPDLChild;
static mozilla::Atomic<uint32_t> sGenerationCounter;
};
class AutoLockImage
{
public:
explicit AutoLockImage(ImageContainer *aContainer)
{
aContainer->GetCurrentImages(&mImages);
}
bool HasImage() const { return !mImages.IsEmpty(); }
Image* GetImage() const
{
return mImages.IsEmpty() ? nullptr : mImages[0].mImage.get();
}
private:
nsAutoTArray<ImageContainer::OwningImage,4> mImages;
};
struct PlanarYCbCrData {
// Luminance buffer
uint8_t* mYChannel;
int32_t mYStride;
gfx::IntSize mYSize;
int32_t mYSkip;
// Chroma buffers
uint8_t* mCbChannel;
uint8_t* mCrChannel;
int32_t mCbCrStride;
gfx::IntSize mCbCrSize;
int32_t mCbSkip;
int32_t mCrSkip;
// Picture region
uint32_t mPicX;
uint32_t mPicY;
gfx::IntSize mPicSize;
StereoMode mStereoMode;
gfx::IntRect GetPictureRect() const {
return gfx::IntRect(mPicX, mPicY,
mPicSize.width,
mPicSize.height);
}
PlanarYCbCrData()
: mYChannel(nullptr), mYStride(0), mYSize(0, 0), mYSkip(0)
, mCbChannel(nullptr), mCrChannel(nullptr)
, mCbCrStride(0), mCbCrSize(0, 0) , mCbSkip(0), mCrSkip(0)
, mPicX(0), mPicY(0), mPicSize(0, 0), mStereoMode(StereoMode::MONO)
{}
};
/****** Image subtypes for the different formats ******/
/**
* We assume that the image data is in the REC 470M color space (see
* Theora specification, section 4.3.1).
*
* The YCbCr format can be:
*
* 4:4:4 - CbCr width/height are the same as Y.
* 4:2:2 - CbCr width is half that of Y. Height is the same.
* 4:2:0 - CbCr width and height is half that of Y.
*
* The color format is detected based on the height/width ratios
* defined above.
*
* The Image that is rendered is the picture region defined by
* mPicX, mPicY and mPicSize. The size of the rendered image is
* mPicSize, not mYSize or mCbCrSize.
*
* mYSkip, mCbSkip, mCrSkip are added to support various output
* formats from hardware decoder. They are per-pixel skips in the
* source image.
*
* For example when image width is 640, mYStride is 670, mYSkip is 3,
* the mYChannel buffer looks like:
*
* |<----------------------- mYStride ----------------------------->|
* |<----------------- mYSize.width --------------->|
* 0 3 6 9 12 15 18 21 659 669
* |----------------------------------------------------------------|
* |Y___Y___Y___Y___Y___Y___Y___Y... |%%%%%%%%%|
* |Y___Y___Y___Y___Y___Y___Y___Y... |%%%%%%%%%|
* |Y___Y___Y___Y___Y___Y___Y___Y... |%%%%%%%%%|
* | |<->|
* mYSkip
*/
class PlanarYCbCrImage : public Image {
public:
typedef PlanarYCbCrData Data;
enum {
MAX_DIMENSION = 16384
};
virtual ~PlanarYCbCrImage() {}
/**
* This makes a copy of the data buffers, in order to support functioning
* in all different layer managers.
*/
virtual bool SetData(const Data& aData) = 0;
/**
* This doesn't make a copy of the data buffers. Can be used when mBuffer is
* pre allocated with AllocateAndGetNewBuffer(size) and then SetDataNoCopy is
* called to only update the picture size, planes etc. fields in mData.
* The GStreamer media backend uses this to decode into PlanarYCbCrImage(s)
* directly.
*/
virtual bool SetDataNoCopy(const Data &aData);
/**
* This allocates and returns a new buffer
*/
virtual uint8_t* AllocateAndGetNewBuffer(uint32_t aSize) = 0;
/**
* Ask this Image to not convert YUV to RGB during SetData, and make
* the original data available through GetData. This is optional,
* and not all PlanarYCbCrImages will support it.
*/
virtual void SetDelayedConversion(bool aDelayed) { }
/**
* Grab the original YUV data. This is optional.
*/
virtual const Data* GetData() { return &mData; }
/**
* Return the number of bytes of heap memory used to store this image.
*/
virtual uint32_t GetDataSize() { return mBufferSize; }
virtual bool IsValid() { return !!mBufferSize; }
virtual gfx::IntSize GetSize() { return mSize; }
explicit PlanarYCbCrImage();
virtual SharedPlanarYCbCrImage *AsSharedPlanarYCbCrImage() { return nullptr; }
virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const = 0;
PlanarYCbCrImage* AsPlanarYCbCrImage() { return this; }
protected:
already_AddRefed<gfx::SourceSurface> GetAsSourceSurface();
void SetOffscreenFormat(gfxImageFormat aFormat) { mOffscreenFormat = aFormat; }
gfxImageFormat GetOffscreenFormat();
Data mData;
gfx::IntSize mSize;
gfxImageFormat mOffscreenFormat;
nsCountedRef<nsMainThreadSourceSurfaceRef> mSourceSurface;
uint32_t mBufferSize;
};
class RecyclingPlanarYCbCrImage: public PlanarYCbCrImage {
public:
explicit RecyclingPlanarYCbCrImage(BufferRecycleBin *aRecycleBin) : mRecycleBin(aRecycleBin) {}
virtual ~RecyclingPlanarYCbCrImage() override;
virtual bool SetData(const Data& aData) override;
virtual uint8_t* AllocateAndGetNewBuffer(uint32_t aSize) override;
virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override;
protected:
/**
* Make a copy of the YCbCr data into local storage.
*
* @param aData Input image data.
*/
bool CopyData(const Data& aData);
/**
* Return a buffer to store image data in.
*/
mozilla::UniquePtr<uint8_t[]> AllocateBuffer(uint32_t aSize);
RefPtr<BufferRecycleBin> mRecycleBin;
mozilla::UniquePtr<uint8_t[]> mBuffer;
};
/**
* Currently, the data in a SourceSurfaceImage surface is treated as being in the
* device output color space. This class is very simple as all backends
* have to know about how to deal with drawing a cairo image.
*/
class SourceSurfaceImage final : public Image {
public:
virtual already_AddRefed<gfx::SourceSurface> GetAsSourceSurface() override
{
RefPtr<gfx::SourceSurface> surface(mSourceSurface);
return surface.forget();
}
virtual TextureClient* GetTextureClient(CompositableClient* aClient) override;
virtual gfx::IntSize GetSize() override { return mSize; }
SourceSurfaceImage(const gfx::IntSize& aSize, gfx::SourceSurface* aSourceSurface);
~SourceSurfaceImage();
private:
gfx::IntSize mSize;
nsCountedRef<nsOwningThreadSourceSurfaceRef> mSourceSurface;
nsDataHashtable<nsUint32HashKey, RefPtr<TextureClient> > mTextureClients;
};
#ifdef MOZ_WIDGET_GONK
class OverlayImage : public Image {
/**
* OverlayImage is a special Image type that does not hold any buffer.
* It only hold an Id as identifier to the real content of the Image.
* Therefore, OverlayImage must be handled by some specialized hardware(e.g. HWC)
* to show its content.
*/
public:
struct Data {
int32_t mOverlayId;
gfx::IntSize mSize;
};
struct SidebandStreamData {
GonkNativeHandle mStream;
gfx::IntSize mSize;
};
OverlayImage() : Image(nullptr, ImageFormat::OVERLAY_IMAGE) { mOverlayId = INVALID_OVERLAY; }
void SetData(const Data& aData)
{
mOverlayId = aData.mOverlayId;
mSize = aData.mSize;
mSidebandStream = GonkNativeHandle();
}
void SetData(const SidebandStreamData& aData)
{
mSidebandStream = aData.mStream;
mSize = aData.mSize;
mOverlayId = INVALID_OVERLAY;
}
already_AddRefed<gfx::SourceSurface> GetAsSourceSurface() { return nullptr; } ;
int32_t GetOverlayId() { return mOverlayId; }
GonkNativeHandle& GetSidebandStream() { return mSidebandStream; }
gfx::IntSize GetSize() { return mSize; }
private:
int32_t mOverlayId;
GonkNativeHandle mSidebandStream;
gfx::IntSize mSize;
};
#endif
} // namespace layers
} // namespace mozilla
#endif