mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-25 22:01:30 +00:00
6e8963d230
Currently the XPCOM thead pool creates one less thread than the number of cores. The JS helper thread pool creates an equal number. I tested increasing the number of threads to match the number of cores and found it resolved this regression. Differential Revision: https://phabricator.services.mozilla.com/D118327
1001 lines
32 KiB
C++
1001 lines
32 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "TaskController.h"
|
|
#include "nsIIdleRunnable.h"
|
|
#include "nsIRunnable.h"
|
|
#include "nsThreadUtils.h"
|
|
#include <algorithm>
|
|
#include <initializer_list>
|
|
#include "GeckoProfiler.h"
|
|
#include "mozilla/EventQueue.h"
|
|
#include "mozilla/BackgroundHangMonitor.h"
|
|
#include "mozilla/InputTaskManager.h"
|
|
#include "mozilla/VsyncTaskManager.h"
|
|
#include "mozilla/IOInterposer.h"
|
|
#include "mozilla/StaticMutex.h"
|
|
#include "mozilla/SchedulerGroup.h"
|
|
#include "mozilla/ScopeExit.h"
|
|
#include "mozilla/Unused.h"
|
|
#include "nsIThreadInternal.h"
|
|
#include "nsQueryObject.h"
|
|
#include "nsThread.h"
|
|
#include "prenv.h"
|
|
#include "prsystem.h"
|
|
#ifdef XP_WIN
|
|
# include "objbase.h"
|
|
#endif
|
|
|
|
#ifdef XP_WIN
|
|
typedef HRESULT(WINAPI* SetThreadDescriptionPtr)(HANDLE hThread,
|
|
PCWSTR lpThreadDescription);
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
|
|
std::unique_ptr<TaskController> TaskController::sSingleton;
|
|
thread_local size_t mThreadPoolIndex = -1;
|
|
std::atomic<uint64_t> Task::sCurrentTaskSeqNo = 0;
|
|
|
|
const int32_t kMinimumPoolThreadCount = 2;
|
|
const int32_t kMaximumPoolThreadCount = 8;
|
|
|
|
/* static */
|
|
int32_t TaskController::GetPoolThreadCount() {
|
|
if (PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT")) {
|
|
return strtol(PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT"), nullptr, 0);
|
|
}
|
|
|
|
int32_t numCores = std::max<int32_t>(1, PR_GetNumberOfProcessors());
|
|
|
|
return std::clamp<int32_t>(numCores, kMinimumPoolThreadCount,
|
|
kMaximumPoolThreadCount);
|
|
}
|
|
|
|
#if defined(MOZ_COLLECTING_RUNNABLE_TELEMETRY)
|
|
# define AUTO_PROFILE_FOLLOWING_TASK(task) \
|
|
nsAutoCString name; \
|
|
(task)->GetName(name); \
|
|
AUTO_PROFILER_LABEL_DYNAMIC_NSCSTRING_NONSENSITIVE("Task", OTHER, name); \
|
|
AUTO_PROFILER_MARKER_TEXT("Runnable", OTHER, {}, name);
|
|
#else
|
|
# define AUTO_PROFILE_FOLLOWING_TASK(task)
|
|
#endif
|
|
|
|
bool TaskManager::
|
|
UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
|
|
const MutexAutoLock& aProofOfLock, IterationType aIterationType) {
|
|
mCurrentSuspended = IsSuspended(aProofOfLock);
|
|
|
|
if (aIterationType == IterationType::EVENT_LOOP_TURN && !mCurrentSuspended) {
|
|
int32_t oldModifier = mCurrentPriorityModifier;
|
|
mCurrentPriorityModifier =
|
|
GetPriorityModifierForEventLoopTurn(aProofOfLock);
|
|
|
|
if (mCurrentPriorityModifier != oldModifier) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Task* Task::GetHighestPriorityDependency() {
|
|
Task* currentTask = this;
|
|
|
|
while (!currentTask->mDependencies.empty()) {
|
|
auto iter = currentTask->mDependencies.begin();
|
|
|
|
while (iter != currentTask->mDependencies.end()) {
|
|
if ((*iter)->mCompleted) {
|
|
auto oldIter = iter;
|
|
iter++;
|
|
// Completed tasks are removed here to prevent needlessly keeping them
|
|
// alive or iterating over them in the future.
|
|
currentTask->mDependencies.erase(oldIter);
|
|
continue;
|
|
}
|
|
|
|
currentTask = iter->get();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return currentTask == this ? nullptr : currentTask;
|
|
}
|
|
|
|
TaskController* TaskController::Get() {
|
|
MOZ_ASSERT(sSingleton.get());
|
|
return sSingleton.get();
|
|
}
|
|
|
|
bool TaskController::Initialize() {
|
|
MOZ_ASSERT(!sSingleton);
|
|
sSingleton = std::make_unique<TaskController>();
|
|
return sSingleton->InitializeInternal();
|
|
}
|
|
|
|
void ThreadFuncPoolThread(void* aIndex) {
|
|
mThreadPoolIndex = *reinterpret_cast<int32_t*>(aIndex);
|
|
delete reinterpret_cast<int32_t*>(aIndex);
|
|
TaskController::Get()->RunPoolThread();
|
|
}
|
|
|
|
#ifdef XP_WIN
|
|
static SetThreadDescriptionPtr sSetThreadDescriptionFunc = nullptr;
|
|
#endif
|
|
|
|
bool TaskController::InitializeInternal() {
|
|
InputTaskManager::Init();
|
|
VsyncTaskManager::Init();
|
|
mMTProcessingRunnable = NS_NewRunnableFunction(
|
|
"TaskController::ExecutePendingMTTasks()",
|
|
[]() { TaskController::Get()->ProcessPendingMTTask(); });
|
|
mMTBlockingProcessingRunnable = NS_NewRunnableFunction(
|
|
"TaskController::ExecutePendingMTTasks()",
|
|
[]() { TaskController::Get()->ProcessPendingMTTask(true); });
|
|
|
|
#ifdef XP_WIN
|
|
sSetThreadDescriptionFunc =
|
|
reinterpret_cast<SetThreadDescriptionPtr>(::GetProcAddress(
|
|
::GetModuleHandle(L"Kernel32.dll"), "SetThreadDescription"));
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
// We want our default stack size limit to be approximately 2MB, to be safe for
|
|
// JS helper tasks that can use a lot of stack, but expect most threads to use
|
|
// much less. On Linux, however, requesting a stack of 2MB or larger risks the
|
|
// kernel allocating an entire 2MB huge page for it on first access, which we do
|
|
// not want. To avoid this possibility, we subtract 2 standard VM page sizes
|
|
// from our default.
|
|
constexpr PRUint32 sBaseStackSize = 2048 * 1024 - 2 * 4096;
|
|
|
|
// TSan enforces a minimum stack size that's just slightly larger than our
|
|
// default helper stack size. It does this to store blobs of TSan-specific data
|
|
// on each thread's stack. Unfortunately, that means that even though we'll
|
|
// actually receive a larger stack than we requested, the effective usable space
|
|
// of that stack is significantly less than what we expect. To offset TSan
|
|
// stealing our stack space from underneath us, double the default.
|
|
//
|
|
// Note that we don't need this for ASan/MOZ_ASAN because ASan doesn't require
|
|
// all the thread-specific state that TSan does.
|
|
#if defined(MOZ_TSAN)
|
|
constexpr PRUint32 sStackSize = 2 * sBaseStackSize;
|
|
#else
|
|
constexpr PRUint32 sStackSize = sBaseStackSize;
|
|
#endif
|
|
|
|
void TaskController::InitializeThreadPool() {
|
|
mPoolInitializationMutex.AssertCurrentThreadOwns();
|
|
MOZ_ASSERT(!mThreadPoolInitialized);
|
|
mThreadPoolInitialized = true;
|
|
|
|
int32_t poolSize = GetPoolThreadCount();
|
|
for (int32_t i = 0; i < poolSize; i++) {
|
|
int32_t* index = new int32_t(i);
|
|
mPoolThreads.push_back(
|
|
{PR_CreateThread(PR_USER_THREAD, ThreadFuncPoolThread, index,
|
|
PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD,
|
|
PR_JOINABLE_THREAD, sStackSize),
|
|
nullptr});
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
size_t TaskController::GetThreadStackSize() { return sStackSize; }
|
|
|
|
void TaskController::SetPerformanceCounterState(
|
|
PerformanceCounterState* aPerformanceCounterState) {
|
|
mPerformanceCounterState = aPerformanceCounterState;
|
|
}
|
|
|
|
/* static */
|
|
void TaskController::Shutdown() {
|
|
InputTaskManager::Cleanup();
|
|
VsyncTaskManager::Cleanup();
|
|
if (sSingleton) {
|
|
sSingleton->ShutdownThreadPoolInternal();
|
|
sSingleton->ShutdownInternal();
|
|
}
|
|
MOZ_ASSERT(!sSingleton);
|
|
}
|
|
|
|
void TaskController::ShutdownThreadPoolInternal() {
|
|
{
|
|
// Prevent racecondition on mShuttingDown and wait.
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
mShuttingDown = true;
|
|
mThreadPoolCV.NotifyAll();
|
|
}
|
|
for (PoolThread& thread : mPoolThreads) {
|
|
PR_JoinThread(thread.mThread);
|
|
}
|
|
}
|
|
|
|
void TaskController::ShutdownInternal() { sSingleton = nullptr; }
|
|
|
|
void TaskController::RunPoolThread() {
|
|
IOInterposer::RegisterCurrentThread();
|
|
|
|
// This is used to hold on to a task to make sure it is released outside the
|
|
// lock. This is required since it's perfectly feasible for task destructors
|
|
// to post events themselves.
|
|
RefPtr<Task> lastTask;
|
|
|
|
#ifdef XP_WIN
|
|
nsAutoString threadWName;
|
|
threadWName.AppendLiteral(u"TaskController Thread #");
|
|
threadWName.AppendInt(static_cast<int64_t>(mThreadPoolIndex));
|
|
|
|
if (sSetThreadDescriptionFunc) {
|
|
sSetThreadDescriptionFunc(
|
|
::GetCurrentThread(),
|
|
reinterpret_cast<const WCHAR*>(threadWName.BeginReading()));
|
|
}
|
|
::CoInitializeEx(nullptr, COINIT_MULTITHREADED);
|
|
#endif
|
|
|
|
nsAutoCString threadName;
|
|
threadName.AppendLiteral("TaskController Thread #");
|
|
threadName.AppendInt(static_cast<int64_t>(mThreadPoolIndex));
|
|
PROFILER_REGISTER_THREAD(threadName.BeginReading());
|
|
|
|
MutexAutoLock lock(mGraphMutex);
|
|
while (true) {
|
|
bool ranTask = false;
|
|
|
|
if (!mThreadableTasks.empty()) {
|
|
for (auto iter = mThreadableTasks.begin(); iter != mThreadableTasks.end();
|
|
++iter) {
|
|
// Search for the highest priority dependency of the highest priority
|
|
// task.
|
|
|
|
// We work with rawptrs to avoid needless refcounting. All our tasks
|
|
// are always kept alive by the graph. If one is removed from the graph
|
|
// it is kept alive by mPoolThreads[mThreadPoolIndex].mCurrentTask.
|
|
Task* task = iter->get();
|
|
|
|
MOZ_ASSERT(!task->mTaskManager);
|
|
|
|
mPoolThreads[mThreadPoolIndex].mEffectiveTaskPriority =
|
|
task->GetPriority();
|
|
|
|
Task* nextTask;
|
|
while ((nextTask = task->GetHighestPriorityDependency())) {
|
|
task = nextTask;
|
|
}
|
|
|
|
if (task->IsMainThreadOnly() || task->mInProgress) {
|
|
continue;
|
|
}
|
|
|
|
mPoolThreads[mThreadPoolIndex].mCurrentTask = task;
|
|
mThreadableTasks.erase(task->mIterator);
|
|
task->mIterator = mThreadableTasks.end();
|
|
task->mInProgress = true;
|
|
|
|
bool taskCompleted = false;
|
|
{
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
lastTask = nullptr;
|
|
AUTO_PROFILE_FOLLOWING_TASK(task);
|
|
taskCompleted = task->Run();
|
|
ranTask = true;
|
|
}
|
|
|
|
task->mInProgress = false;
|
|
|
|
if (!taskCompleted) {
|
|
// Presumably this task was interrupted, leave its dependencies
|
|
// unresolved and reinsert into the queue.
|
|
auto insertion = mThreadableTasks.insert(
|
|
mPoolThreads[mThreadPoolIndex].mCurrentTask);
|
|
MOZ_ASSERT(insertion.second);
|
|
task->mIterator = insertion.first;
|
|
} else {
|
|
task->mCompleted = true;
|
|
#ifdef DEBUG
|
|
task->mIsInGraph = false;
|
|
#endif
|
|
task->mDependencies.clear();
|
|
// This may have unblocked a main thread task. We could do this only
|
|
// if there was a main thread task before this one in the dependency
|
|
// chain.
|
|
mMayHaveMainThreadTask = true;
|
|
// Since this could have multiple dependencies thare are restricted
|
|
// to the main thread. Let's make sure that's awake.
|
|
EnsureMainThreadTasksScheduled();
|
|
|
|
MaybeInterruptTask(GetHighestPriorityMTTask());
|
|
}
|
|
|
|
// Store last task for release next time we release the lock or enter
|
|
// wait state.
|
|
lastTask = mPoolThreads[mThreadPoolIndex].mCurrentTask.forget();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Ensure the last task is released before we enter the wait state.
|
|
if (lastTask) {
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
lastTask = nullptr;
|
|
|
|
// Run another loop iteration, while we were unlocked there was an
|
|
// opportunity for another task to be posted or shutdown to be initiated.
|
|
continue;
|
|
}
|
|
|
|
if (!ranTask) {
|
|
if (mShuttingDown) {
|
|
IOInterposer::UnregisterCurrentThread();
|
|
MOZ_ASSERT(mThreadableTasks.empty());
|
|
return;
|
|
}
|
|
|
|
AUTO_PROFILER_LABEL("TaskController::RunPoolThread", IDLE);
|
|
mThreadPoolCV.Wait();
|
|
}
|
|
}
|
|
|
|
#ifdef XP_WIN
|
|
::CoUninitialize();
|
|
#endif
|
|
}
|
|
|
|
void TaskController::AddTask(already_AddRefed<Task>&& aTask) {
|
|
RefPtr<Task> task(aTask);
|
|
|
|
if (!task->IsMainThreadOnly()) {
|
|
MutexAutoLock lock(mPoolInitializationMutex);
|
|
if (!mThreadPoolInitialized) {
|
|
InitializeThreadPool();
|
|
mThreadPoolInitialized = true;
|
|
}
|
|
}
|
|
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
if (TaskManager* manager = task->GetManager()) {
|
|
if (manager->mTaskCount == 0) {
|
|
mTaskManagers.insert(manager);
|
|
}
|
|
manager->DidQueueTask();
|
|
|
|
// Set this here since if this manager's priority modifier doesn't change
|
|
// we will not reprioritize when iterating over the queue.
|
|
task->mPriorityModifier = manager->mCurrentPriorityModifier;
|
|
}
|
|
|
|
task->mInsertionTime = TimeStamp::Now();
|
|
|
|
#ifdef DEBUG
|
|
task->mIsInGraph = true;
|
|
|
|
for (const RefPtr<Task>& otherTask : task->mDependencies) {
|
|
MOZ_ASSERT(!otherTask->mTaskManager ||
|
|
otherTask->mTaskManager == task->mTaskManager);
|
|
}
|
|
#endif
|
|
|
|
LogTask::LogDispatch(task);
|
|
|
|
std::pair<std::set<RefPtr<Task>, Task::PriorityCompare>::iterator, bool>
|
|
insertion;
|
|
if (task->IsMainThreadOnly()) {
|
|
insertion = mMainThreadTasks.insert(std::move(task));
|
|
} else {
|
|
insertion = mThreadableTasks.insert(std::move(task));
|
|
}
|
|
(*insertion.first)->mIterator = insertion.first;
|
|
MOZ_ASSERT(insertion.second);
|
|
|
|
MaybeInterruptTask(*insertion.first);
|
|
}
|
|
|
|
void TaskController::WaitForTaskOrMessage() {
|
|
MutexAutoLock lock(mGraphMutex);
|
|
while (!mMayHaveMainThreadTask) {
|
|
AUTO_PROFILER_LABEL("TaskController::WaitForTaskOrMessage", IDLE);
|
|
mMainThreadCV.Wait();
|
|
}
|
|
}
|
|
|
|
void TaskController::ExecuteNextTaskOnlyMainThread() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MutexAutoLock lock(mGraphMutex);
|
|
ExecuteNextTaskOnlyMainThreadInternal(lock);
|
|
}
|
|
|
|
void TaskController::ProcessPendingMTTask(bool aMayWait) {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
for (;;) {
|
|
// We only ever process one event here. However we may sometimes
|
|
// not actually process a real event because of suspended tasks.
|
|
// This loop allows us to wait until we've processed something
|
|
// in that scenario.
|
|
|
|
mMTTaskRunnableProcessedTask = ExecuteNextTaskOnlyMainThreadInternal(lock);
|
|
|
|
if (mMTTaskRunnableProcessedTask || !aMayWait) {
|
|
break;
|
|
}
|
|
|
|
BackgroundHangMonitor().NotifyWait();
|
|
|
|
{
|
|
// ProcessNextEvent will also have attempted to wait, however we may have
|
|
// given it a Runnable when all the tasks in our task graph were suspended
|
|
// but we weren't able to cheaply determine that.
|
|
AUTO_PROFILER_LABEL("TaskController::ProcessPendingMTTask", IDLE);
|
|
mMainThreadCV.Wait();
|
|
}
|
|
|
|
BackgroundHangMonitor().NotifyActivity();
|
|
}
|
|
|
|
if (mMayHaveMainThreadTask) {
|
|
EnsureMainThreadTasksScheduled();
|
|
}
|
|
}
|
|
|
|
void TaskController::ReprioritizeTask(Task* aTask, uint32_t aPriority) {
|
|
MutexAutoLock lock(mGraphMutex);
|
|
std::set<RefPtr<Task>, Task::PriorityCompare>* queue = &mMainThreadTasks;
|
|
if (!aTask->IsMainThreadOnly()) {
|
|
queue = &mThreadableTasks;
|
|
}
|
|
|
|
MOZ_ASSERT(aTask->mIterator != queue->end());
|
|
queue->erase(aTask->mIterator);
|
|
|
|
aTask->mPriority = aPriority;
|
|
|
|
auto insertion = queue->insert(aTask);
|
|
MOZ_ASSERT(insertion.second);
|
|
aTask->mIterator = insertion.first;
|
|
|
|
MaybeInterruptTask(aTask);
|
|
}
|
|
|
|
// Code supporting runnable compatibility.
|
|
// Task that wraps a runnable.
|
|
class RunnableTask : public Task {
|
|
public:
|
|
RunnableTask(already_AddRefed<nsIRunnable>&& aRunnable, int32_t aPriority,
|
|
bool aMainThread = true)
|
|
: Task(aMainThread, aPriority), mRunnable(aRunnable) {}
|
|
|
|
virtual bool Run() override {
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
// If we're on the main thread, we want to record our current
|
|
// runnable's name in a static so that BHR can record it.
|
|
Array<char, nsThread::kRunnableNameBufSize> restoreRunnableName;
|
|
restoreRunnableName[0] = '\0';
|
|
auto clear = MakeScopeExit([&] {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
nsThread::sMainThreadRunnableName = restoreRunnableName;
|
|
});
|
|
nsAutoCString name;
|
|
nsThread::GetLabeledRunnableName(mRunnable, name,
|
|
EventQueuePriority(GetPriority()));
|
|
|
|
restoreRunnableName = nsThread::sMainThreadRunnableName;
|
|
|
|
// Copy the name into sMainThreadRunnableName's buffer, and append a
|
|
// terminating null.
|
|
uint32_t length = std::min((uint32_t)nsThread::kRunnableNameBufSize - 1,
|
|
(uint32_t)name.Length());
|
|
memcpy(nsThread::sMainThreadRunnableName.begin(), name.BeginReading(),
|
|
length);
|
|
nsThread::sMainThreadRunnableName[length] = '\0';
|
|
#endif
|
|
|
|
mRunnable->Run();
|
|
mRunnable = nullptr;
|
|
return true;
|
|
}
|
|
|
|
void SetIdleDeadline(TimeStamp aDeadline) override {
|
|
nsCOMPtr<nsIIdleRunnable> idleRunnable = do_QueryInterface(mRunnable);
|
|
if (idleRunnable) {
|
|
idleRunnable->SetDeadline(aDeadline);
|
|
}
|
|
}
|
|
|
|
PerformanceCounter* GetPerformanceCounter() const override {
|
|
return nsThread::GetPerformanceCounterBase(mRunnable);
|
|
}
|
|
|
|
virtual bool GetName(nsACString& aName) override {
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
nsThread::GetLabeledRunnableName(mRunnable, aName,
|
|
EventQueuePriority(GetPriority()));
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
RefPtr<nsIRunnable> mRunnable;
|
|
};
|
|
|
|
void TaskController::DispatchRunnable(already_AddRefed<nsIRunnable>&& aRunnable,
|
|
uint32_t aPriority,
|
|
TaskManager* aManager) {
|
|
RefPtr<RunnableTask> task = new RunnableTask(std::move(aRunnable), aPriority);
|
|
|
|
task->SetManager(aManager);
|
|
TaskController::Get()->AddTask(task.forget());
|
|
}
|
|
|
|
nsIRunnable* TaskController::GetRunnableForMTTask(bool aReallyWait) {
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
while (mMainThreadTasks.empty()) {
|
|
if (!aReallyWait) {
|
|
return nullptr;
|
|
}
|
|
|
|
AUTO_PROFILER_LABEL("TaskController::GetRunnableForMTTask::Wait", IDLE);
|
|
mMainThreadCV.Wait();
|
|
}
|
|
|
|
return aReallyWait ? mMTBlockingProcessingRunnable : mMTProcessingRunnable;
|
|
}
|
|
|
|
bool TaskController::HasMainThreadPendingTasks() {
|
|
auto resetIdleState = MakeScopeExit([&idleManager = mIdleTaskManager] {
|
|
if (idleManager) {
|
|
idleManager->State().ClearCachedIdleDeadline();
|
|
}
|
|
});
|
|
|
|
for (bool considerIdle : {false, true}) {
|
|
if (considerIdle && !mIdleTaskManager) {
|
|
continue;
|
|
}
|
|
|
|
MutexAutoLock lock(mGraphMutex);
|
|
|
|
if (considerIdle) {
|
|
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
|
|
// Temporarily unlock so we can peek our idle deadline.
|
|
// XXX We could do this _before_ we take the lock if the API would let us.
|
|
// We do want to do this before looking at mMainThreadTasks, in case
|
|
// someone adds one while we're unlocked.
|
|
{
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().CachePeekedIdleDeadline(unlock);
|
|
}
|
|
}
|
|
|
|
// Return early if there's no tasks at all.
|
|
if (mMainThreadTasks.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// We can cheaply count how many tasks are suspended.
|
|
uint64_t totalSuspended = 0;
|
|
for (TaskManager* manager : mTaskManagers) {
|
|
DebugOnly<bool> modifierChanged =
|
|
manager
|
|
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
|
|
lock, TaskManager::IterationType::NOT_EVENT_LOOP_TURN);
|
|
MOZ_ASSERT(!modifierChanged);
|
|
|
|
// The idle manager should be suspended unless we're doing the idle pass.
|
|
MOZ_ASSERT(manager != mIdleTaskManager || manager->mCurrentSuspended ||
|
|
considerIdle,
|
|
"Why are idle tasks not suspended here?");
|
|
|
|
if (manager->mCurrentSuspended) {
|
|
// XXX - If managers manage off-main-thread tasks this breaks! This
|
|
// scenario is explicitly not supported.
|
|
//
|
|
// This is only incremented inside the lock -or- decremented on the main
|
|
// thread so this is safe.
|
|
totalSuspended += manager->mTaskCount;
|
|
}
|
|
}
|
|
|
|
// This would break down if we have a non-suspended task depending on a
|
|
// suspended task. This is why for the moment we do not allow tasks
|
|
// to be dependent on tasks managed by another taskmanager.
|
|
if (mMainThreadTasks.size() > totalSuspended) {
|
|
// If mIdleTaskManager->mTaskCount is 0, we never updated the suspended
|
|
// state of mIdleTaskManager above, hence shouldn't even check it here.
|
|
// But in that case idle tasks are not contributing to our suspended task
|
|
// count anyway.
|
|
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
|
|
!mIdleTaskManager->mCurrentSuspended) {
|
|
MOZ_ASSERT(considerIdle, "Why is mIdleTaskManager not suspended?");
|
|
// Check whether the idle tasks were really needed to make our "we have
|
|
// an unsuspended task" decision. If they were, we need to force-enable
|
|
// idle tasks until we run our next task.
|
|
if (mMainThreadTasks.size() - mIdleTaskManager->mTaskCount <=
|
|
totalSuspended) {
|
|
mIdleTaskManager->State().EnforcePendingTaskGuarantee();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TaskController::ExecuteNextTaskOnlyMainThreadInternal(
|
|
const MutexAutoLock& aProofOfLock) {
|
|
// Block to make it easier to jump to our cleanup.
|
|
bool taskRan = false;
|
|
do {
|
|
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
|
|
if (taskRan) {
|
|
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
|
|
mIdleTaskManager->IsSuspended(aProofOfLock)) {
|
|
uint32_t activeTasks = mMainThreadTasks.size();
|
|
for (TaskManager* manager : mTaskManagers) {
|
|
if (manager->IsSuspended(aProofOfLock)) {
|
|
activeTasks -= manager->mTaskCount;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!activeTasks) {
|
|
// We have only idle (and maybe other suspended) tasks left, so need
|
|
// to update the idle state. We need to temporarily release the lock
|
|
// while we do that.
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().RequestIdleDeadlineIfNeeded(unlock);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!mIdleTaskManager) {
|
|
break;
|
|
}
|
|
|
|
if (mIdleTaskManager->mTaskCount) {
|
|
// We have idle tasks that we may not have gotten above because
|
|
// our idle state is not up to date. We need to update the idle state
|
|
// and try again. We need to temporarily release the lock while we do
|
|
// that.
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().UpdateCachedIdleDeadline(unlock);
|
|
} else {
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().RanOutOfTasks(unlock);
|
|
}
|
|
|
|
// When we unlocked, someone may have queued a new task on us. So try to
|
|
// see whether we can run things again.
|
|
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
|
|
} while (false);
|
|
|
|
if (mIdleTaskManager) {
|
|
// The pending task guarantee is not needed anymore, since we just tried
|
|
// running a task
|
|
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
|
|
|
|
if (mMainThreadTasks.empty()) {
|
|
// XXX the IdlePeriodState API demands we have a MutexAutoUnlock for it.
|
|
// Otherwise we could perhaps just do this after we exit the locked block,
|
|
// by pushing the lock down into this method. Though it's not clear that
|
|
// we could check mMainThreadTasks.size() once we unlock, and whether we
|
|
// could maybe substitute mMayHaveMainThreadTask for that check.
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
mIdleTaskManager->State().RanOutOfTasks(unlock);
|
|
}
|
|
}
|
|
|
|
return taskRan;
|
|
}
|
|
|
|
bool TaskController::DoExecuteNextTaskOnlyMainThreadInternal(
|
|
const MutexAutoLock& aProofOfLock) {
|
|
nsCOMPtr<nsIThread> mainIThread;
|
|
NS_GetMainThread(getter_AddRefs(mainIThread));
|
|
|
|
nsThread* mainThread = static_cast<nsThread*>(mainIThread.get());
|
|
if (mainThread) {
|
|
mainThread->SetRunningEventDelay(TimeDuration(), TimeStamp());
|
|
}
|
|
|
|
uint32_t totalSuspended = 0;
|
|
for (TaskManager* manager : mTaskManagers) {
|
|
bool modifierChanged =
|
|
manager
|
|
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
|
|
aProofOfLock, TaskManager::IterationType::EVENT_LOOP_TURN);
|
|
if (modifierChanged) {
|
|
ProcessUpdatedPriorityModifier(manager);
|
|
}
|
|
if (manager->mCurrentSuspended) {
|
|
totalSuspended += manager->mTaskCount;
|
|
}
|
|
}
|
|
|
|
MOZ_ASSERT(mMainThreadTasks.size() >= totalSuspended);
|
|
|
|
// This would break down if we have a non-suspended task depending on a
|
|
// suspended task. This is why for the moment we do not allow tasks
|
|
// to be dependent on tasks managed by another taskmanager.
|
|
if (mMainThreadTasks.size() > totalSuspended) {
|
|
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();
|
|
iter++) {
|
|
Task* task = iter->get();
|
|
|
|
if (task->mTaskManager && task->mTaskManager->mCurrentSuspended) {
|
|
// Even though we may want to run some dependencies of this task, we
|
|
// will run them at their own priority level and not the priority
|
|
// level of their dependents.
|
|
continue;
|
|
}
|
|
|
|
task = GetFinalDependency(task);
|
|
|
|
if (!task->IsMainThreadOnly() || task->mInProgress ||
|
|
(task->mTaskManager && task->mTaskManager->mCurrentSuspended)) {
|
|
continue;
|
|
}
|
|
|
|
mCurrentTasksMT.push(task);
|
|
mMainThreadTasks.erase(task->mIterator);
|
|
task->mIterator = mMainThreadTasks.end();
|
|
task->mInProgress = true;
|
|
TaskManager* manager = task->GetManager();
|
|
bool result = false;
|
|
|
|
{
|
|
MutexAutoUnlock unlock(mGraphMutex);
|
|
if (manager) {
|
|
manager->WillRunTask();
|
|
if (manager != mIdleTaskManager) {
|
|
// Notify the idle period state that we're running a non-idle task.
|
|
// This needs to happen while our mutex is not locked!
|
|
mIdleTaskManager->State().FlagNotIdle();
|
|
} else {
|
|
TimeStamp idleDeadline =
|
|
mIdleTaskManager->State().GetCachedIdleDeadline();
|
|
MOZ_ASSERT(
|
|
idleDeadline,
|
|
"How can we not have a deadline if our manager is enabled?");
|
|
task->SetIdleDeadline(idleDeadline);
|
|
}
|
|
}
|
|
if (mIdleTaskManager) {
|
|
// We found a task to run; we can clear the idle deadline on our idle
|
|
// task manager. This _must_ be done before we actually run the task,
|
|
// because running the task could reenter via spinning the event loop
|
|
// and we want to make sure there's no cached idle deadline at that
|
|
// point. But we have to make sure we do it after out SetIdleDeadline
|
|
// call above, in the case when the task is actually an idle task.
|
|
mIdleTaskManager->State().ClearCachedIdleDeadline();
|
|
}
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
|
|
if (mainThread) {
|
|
if (task->GetPriority() < uint32_t(EventQueuePriority::InputHigh)) {
|
|
mainThread->SetRunningEventDelay(TimeDuration(), now);
|
|
} else {
|
|
mainThread->SetRunningEventDelay(now - task->mInsertionTime, now);
|
|
}
|
|
}
|
|
|
|
PerformanceCounterState::Snapshot snapshot =
|
|
mPerformanceCounterState->RunnableWillRun(
|
|
task->GetPerformanceCounter(), now,
|
|
manager == mIdleTaskManager);
|
|
|
|
{
|
|
LogTask::Run log(task);
|
|
AUTO_PROFILE_FOLLOWING_TASK(task);
|
|
result = task->Run();
|
|
}
|
|
|
|
// Task itself should keep manager alive.
|
|
if (manager) {
|
|
manager->DidRunTask();
|
|
}
|
|
|
|
mPerformanceCounterState->RunnableDidRun(std::move(snapshot));
|
|
}
|
|
|
|
// Task itself should keep manager alive.
|
|
if (manager && result && manager->mTaskCount == 0) {
|
|
mTaskManagers.erase(manager);
|
|
}
|
|
|
|
task->mInProgress = false;
|
|
|
|
if (!result) {
|
|
// Presumably this task was interrupted, leave its dependencies
|
|
// unresolved and reinsert into the queue.
|
|
auto insertion =
|
|
mMainThreadTasks.insert(std::move(mCurrentTasksMT.top()));
|
|
MOZ_ASSERT(insertion.second);
|
|
task->mIterator = insertion.first;
|
|
manager->WillRunTask();
|
|
} else {
|
|
task->mCompleted = true;
|
|
#ifdef DEBUG
|
|
task->mIsInGraph = false;
|
|
#endif
|
|
// Clear dependencies to release references.
|
|
task->mDependencies.clear();
|
|
|
|
if (!mThreadableTasks.empty()) {
|
|
// Since this could have multiple dependencies thare are not
|
|
// restricted to the main thread. Let's wake up our thread pool.
|
|
// There is a cost to this, it's possible we will want to wake up
|
|
// only as many threads as we have unblocked tasks, but we currently
|
|
// have no way to determine that easily.
|
|
mThreadPoolCV.NotifyAll();
|
|
}
|
|
}
|
|
|
|
mCurrentTasksMT.pop();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
mMayHaveMainThreadTask = false;
|
|
if (mIdleTaskManager) {
|
|
// We did not find a task to run. We still need to clear the cached idle
|
|
// deadline on our idle state, because that deadline was only relevant to
|
|
// the execution of this function. Had we found a task, we would have
|
|
// cleared the deadline before running that task.
|
|
mIdleTaskManager->State().ClearCachedIdleDeadline();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Task* TaskController::GetFinalDependency(Task* aTask) {
|
|
Task* nextTask;
|
|
|
|
while ((nextTask = aTask->GetHighestPriorityDependency())) {
|
|
aTask = nextTask;
|
|
}
|
|
|
|
return aTask;
|
|
}
|
|
|
|
void TaskController::MaybeInterruptTask(Task* aTask) {
|
|
mGraphMutex.AssertCurrentThreadOwns();
|
|
|
|
if (!aTask) {
|
|
return;
|
|
}
|
|
|
|
// This optimization prevents many slow lookups in long chains of similar
|
|
// priority.
|
|
if (!aTask->mDependencies.empty()) {
|
|
Task* firstDependency = aTask->mDependencies.begin()->get();
|
|
if (aTask->GetPriority() <= firstDependency->GetPriority() &&
|
|
!firstDependency->mCompleted &&
|
|
aTask->IsMainThreadOnly() == firstDependency->IsMainThreadOnly()) {
|
|
// This task has the same or a higher priority as one of its dependencies,
|
|
// never any need to interrupt.
|
|
return;
|
|
}
|
|
}
|
|
|
|
Task* finalDependency = GetFinalDependency(aTask);
|
|
|
|
if (finalDependency->mInProgress) {
|
|
// No need to wake anything, we can't schedule this task right now anyway.
|
|
return;
|
|
}
|
|
|
|
if (aTask->IsMainThreadOnly()) {
|
|
mMayHaveMainThreadTask = true;
|
|
|
|
EnsureMainThreadTasksScheduled();
|
|
|
|
if (mCurrentTasksMT.empty()) {
|
|
return;
|
|
}
|
|
|
|
// We could go through the steps above here and interrupt an off main
|
|
// thread task in case it has a lower priority.
|
|
if (!finalDependency->IsMainThreadOnly()) {
|
|
return;
|
|
}
|
|
|
|
if (mCurrentTasksMT.top()->GetPriority() < aTask->GetPriority()) {
|
|
mCurrentTasksMT.top()->RequestInterrupt(aTask->GetPriority());
|
|
}
|
|
} else {
|
|
Task* lowestPriorityTask = nullptr;
|
|
for (PoolThread& thread : mPoolThreads) {
|
|
if (!thread.mCurrentTask) {
|
|
mThreadPoolCV.Notify();
|
|
// There's a free thread, no need to interrupt anything.
|
|
return;
|
|
}
|
|
|
|
if (!lowestPriorityTask) {
|
|
lowestPriorityTask = thread.mCurrentTask.get();
|
|
continue;
|
|
}
|
|
|
|
// This should possibly select the lowest priority task which was started
|
|
// the latest. But for now we ignore that optimization.
|
|
// This also doesn't guarantee a task is interruptable, so that's an
|
|
// avenue for improvements as well.
|
|
if (lowestPriorityTask->GetPriority() > thread.mEffectiveTaskPriority) {
|
|
lowestPriorityTask = thread.mCurrentTask.get();
|
|
}
|
|
}
|
|
|
|
if (lowestPriorityTask->GetPriority() < aTask->GetPriority()) {
|
|
lowestPriorityTask->RequestInterrupt(aTask->GetPriority());
|
|
}
|
|
|
|
// We choose not to interrupt main thread tasks for tasks which may be
|
|
// executed off the main thread.
|
|
}
|
|
}
|
|
|
|
Task* TaskController::GetHighestPriorityMTTask() {
|
|
mGraphMutex.AssertCurrentThreadOwns();
|
|
|
|
if (!mMainThreadTasks.empty()) {
|
|
return mMainThreadTasks.begin()->get();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void TaskController::EnsureMainThreadTasksScheduled() {
|
|
if (mObserver) {
|
|
mObserver->OnDispatchedEvent();
|
|
}
|
|
if (mExternalCondVar) {
|
|
mExternalCondVar->Notify();
|
|
}
|
|
mMainThreadCV.Notify();
|
|
}
|
|
|
|
void TaskController::ProcessUpdatedPriorityModifier(TaskManager* aManager) {
|
|
mGraphMutex.AssertCurrentThreadOwns();
|
|
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
int32_t modifier = aManager->mCurrentPriorityModifier;
|
|
|
|
std::vector<RefPtr<Task>> storedTasks;
|
|
// Find all relevant tasks.
|
|
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();) {
|
|
if ((*iter)->mTaskManager == aManager) {
|
|
storedTasks.push_back(*iter);
|
|
iter = mMainThreadTasks.erase(iter);
|
|
} else {
|
|
iter++;
|
|
}
|
|
}
|
|
|
|
// Reinsert found tasks with their new priorities.
|
|
for (RefPtr<Task>& ref : storedTasks) {
|
|
// Kept alive at first by the vector and then by mMainThreadTasks.
|
|
Task* task = ref;
|
|
task->mPriorityModifier = modifier;
|
|
auto insertion = mMainThreadTasks.insert(std::move(ref));
|
|
MOZ_ASSERT(insertion.second);
|
|
task->mIterator = insertion.first;
|
|
}
|
|
}
|
|
|
|
} // namespace mozilla
|