mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-25 22:01:30 +00:00
2416d881e2
There are no code changes, only #include changes. It was a fairly mechanical process: Search for all "AUTO_PROFILER_LABEL", and in each file, if only labels are used, convert "GeckoProfiler.h" into "ProfilerLabels.h" (or just add that last one where needed). In some files, there were also some marker calls but no other profiler-related calls, in these cases "GeckoProfiler.h" was replaced with both "ProfilerLabels.h" and "ProfilerMarkers.h", which still helps in reducing the use of the all-encompassing "GeckoProfiler.h". Differential Revision: https://phabricator.services.mozilla.com/D104588
630 lines
19 KiB
C++
630 lines
19 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsCOMArray.h"
|
|
#include "ThreadDelay.h"
|
|
#include "nsThreadPool.h"
|
|
#include "nsThreadManager.h"
|
|
#include "nsThread.h"
|
|
#include "nsMemory.h"
|
|
#include "prinrval.h"
|
|
#include "mozilla/Logging.h"
|
|
#include "mozilla/ProfilerLabels.h"
|
|
#include "mozilla/SchedulerGroup.h"
|
|
#include "mozilla/ScopeExit.h"
|
|
#include "mozilla/SpinEventLoopUntil.h"
|
|
#include "nsThreadSyncDispatch.h"
|
|
|
|
#include <mutex>
|
|
|
|
using namespace mozilla;
|
|
|
|
static LazyLogModule sThreadPoolLog("nsThreadPool");
|
|
#ifdef LOG
|
|
# undef LOG
|
|
#endif
|
|
#define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args)
|
|
|
|
static MOZ_THREAD_LOCAL(nsThreadPool*) gCurrentThreadPool;
|
|
|
|
// DESIGN:
|
|
// o Allocate anonymous threads.
|
|
// o Use nsThreadPool::Run as the main routine for each thread.
|
|
// o Each thread waits on the event queue's monitor, checking for
|
|
// pending events and rescheduling itself as an idle thread.
|
|
|
|
#define DEFAULT_THREAD_LIMIT 4
|
|
#define DEFAULT_IDLE_THREAD_LIMIT 1
|
|
#define DEFAULT_IDLE_THREAD_TIMEOUT PR_SecondsToInterval(60)
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(nsThreadPool, Runnable, nsIThreadPool,
|
|
nsIEventTarget)
|
|
|
|
nsThreadPool::nsThreadPool()
|
|
: Runnable("nsThreadPool"),
|
|
mMutex("[nsThreadPool.mMutex]"),
|
|
mEventsAvailable(mMutex, "[nsThreadPool.mEventsAvailable]"),
|
|
mThreadLimit(DEFAULT_THREAD_LIMIT),
|
|
mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT),
|
|
mIdleThreadTimeout(DEFAULT_IDLE_THREAD_TIMEOUT),
|
|
mIdleCount(0),
|
|
mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE),
|
|
mShutdown(false),
|
|
mRegressiveMaxIdleTime(false),
|
|
mIsAPoolThreadFree(true) {
|
|
static std::once_flag flag;
|
|
std::call_once(flag, [] { gCurrentThreadPool.infallibleInit(); });
|
|
|
|
LOG(("THRD-P(%p) constructor!!!\n", this));
|
|
}
|
|
|
|
nsThreadPool::~nsThreadPool() {
|
|
// Threads keep a reference to the nsThreadPool until they return from Run()
|
|
// after removing themselves from mThreads.
|
|
MOZ_ASSERT(mThreads.IsEmpty());
|
|
}
|
|
|
|
nsresult nsThreadPool::PutEvent(nsIRunnable* aEvent) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return PutEvent(event.forget(), 0);
|
|
}
|
|
|
|
nsresult nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent,
|
|
uint32_t aFlags) {
|
|
// Avoid spawning a new thread while holding the event queue lock...
|
|
|
|
bool spawnThread = false;
|
|
uint32_t stackSize = 0;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
|
|
if (NS_WARN_IF(mShutdown)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
LOG(("THRD-P(%p) put [%d %d %d]\n", this, mIdleCount, mThreads.Count(),
|
|
mThreadLimit));
|
|
MOZ_ASSERT(mIdleCount <= (uint32_t)mThreads.Count(), "oops");
|
|
|
|
// Make sure we have a thread to service this event.
|
|
if (mThreads.Count() < (int32_t)mThreadLimit &&
|
|
!(aFlags & NS_DISPATCH_AT_END) &&
|
|
// Spawn a new thread if we don't have enough idle threads to serve
|
|
// pending events immediately.
|
|
mEvents.Count(lock) >= mIdleCount) {
|
|
spawnThread = true;
|
|
}
|
|
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
LogRunnable::LogDispatch(event);
|
|
mEvents.PutEvent(event.forget(), EventQueuePriority::Normal, lock);
|
|
mEventsAvailable.Notify();
|
|
stackSize = mStackSize;
|
|
}
|
|
|
|
auto delay = MakeScopeExit([&]() {
|
|
// Delay to encourage the receiving task to run before we do work.
|
|
DelayForChaosMode(ChaosFeature::TaskDispatching, 1000);
|
|
});
|
|
|
|
LOG(("THRD-P(%p) put [spawn=%d]\n", this, spawnThread));
|
|
if (!spawnThread) {
|
|
return NS_OK;
|
|
}
|
|
|
|
nsCOMPtr<nsIThread> thread;
|
|
nsresult rv = NS_NewNamedThread(mThreadNaming.GetNextThreadName(mName),
|
|
getter_AddRefs(thread), nullptr, stackSize);
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
bool killThread = false;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
if (mShutdown) {
|
|
killThread = true;
|
|
} else if (mThreads.Count() < (int32_t)mThreadLimit) {
|
|
mThreads.AppendObject(thread);
|
|
if (mThreads.Count() >= (int32_t)mThreadLimit) {
|
|
mIsAPoolThreadFree = false;
|
|
}
|
|
} else {
|
|
// Someone else may have also been starting a thread
|
|
killThread = true; // okay, we don't need this thread anymore
|
|
}
|
|
}
|
|
LOG(("THRD-P(%p) put [%p kill=%d]\n", this, thread.get(), killThread));
|
|
if (killThread) {
|
|
// We never dispatched any events to the thread, so we can shut it down
|
|
// asynchronously without worrying about anything.
|
|
ShutdownThread(thread);
|
|
} else {
|
|
thread->Dispatch(this, NS_DISPATCH_NORMAL);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void nsThreadPool::ShutdownThread(nsIThread* aThread) {
|
|
LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread));
|
|
|
|
// This is either called by a threadpool thread that is out of work, or
|
|
// a thread that attempted to create a threadpool thread and raced in
|
|
// such a way that the newly created thread is no longer necessary.
|
|
// In the first case, we must go to another thread to shut aThread down
|
|
// (because it is the current thread). In the second case, we cannot
|
|
// synchronously shut down the current thread (because then Dispatch() would
|
|
// spin the event loop, and that could blow up the world), and asynchronous
|
|
// shutdown requires this thread have an event loop (and it may not, see bug
|
|
// 10204784). The simplest way to cover all cases is to asynchronously
|
|
// shutdown aThread from the main thread.
|
|
SchedulerGroup::Dispatch(
|
|
TaskCategory::Other,
|
|
NewRunnableMethod("nsIThread::AsyncShutdown", aThread,
|
|
&nsIThread::AsyncShutdown));
|
|
}
|
|
|
|
// This event 'runs' for the lifetime of the worker thread. The actual
|
|
// eventqueue is mEvents, and is shared by all the worker threads. This
|
|
// means that the set of threads together define the delay seen by a new
|
|
// event sent to the pool.
|
|
//
|
|
// To model the delay experienced by the pool, we can have each thread in
|
|
// the pool report 0 if it's idle OR if the pool is below the threadlimit;
|
|
// or otherwise the current event's queuing delay plus current running
|
|
// time.
|
|
//
|
|
// To reconstruct the delays for the pool, the profiler can look at all the
|
|
// threads that are part of a pool (pools have defined naming patterns that
|
|
// can be user to connect them). If all threads have delays at time X,
|
|
// that means that all threads saturated at that point and any event
|
|
// dispatched to the pool would get a delay.
|
|
//
|
|
// The delay experienced by an event dispatched when all pool threads are
|
|
// busy is based on the calculations shown in platform.cpp. Run that
|
|
// algorithm for each thread in the pool, and the delay at time X is the
|
|
// longest value for time X of any of the threads, OR the time from X until
|
|
// any one of the threads reports 0 (i.e. it's not busy), whichever is
|
|
// shorter.
|
|
|
|
// In order to record this when the profiler samples threads in the pool,
|
|
// each thread must (effectively) override GetRunnningEventDelay, by
|
|
// resetting the mLastEventDelay/Start values in the nsThread when we start
|
|
// to run an event (or when we run out of events to run). Note that handling
|
|
// the shutdown of a thread may be a little tricky.
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::Run() {
|
|
LOG(("THRD-P(%p) enter %s\n", this, mName.BeginReading()));
|
|
|
|
nsCOMPtr<nsIThread> current;
|
|
nsThreadManager::get().GetCurrentThread(getter_AddRefs(current));
|
|
|
|
bool shutdownThreadOnExit = false;
|
|
bool exitThread = false;
|
|
bool wasIdle = false;
|
|
TimeStamp idleSince;
|
|
|
|
// This thread is an nsThread created below with NS_NewNamedThread()
|
|
static_cast<nsThread*>(current.get())
|
|
->SetPoolThreadFreePtr(&mIsAPoolThreadFree);
|
|
|
|
nsCOMPtr<nsIThreadPoolListener> listener;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
listener = mListener;
|
|
}
|
|
|
|
if (listener) {
|
|
listener->OnThreadCreated();
|
|
}
|
|
|
|
MOZ_ASSERT(!gCurrentThreadPool.get());
|
|
gCurrentThreadPool.set(this);
|
|
|
|
do {
|
|
nsCOMPtr<nsIRunnable> event;
|
|
TimeDuration delay;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
|
|
event = mEvents.GetEvent(lock, &delay);
|
|
if (!event) {
|
|
TimeStamp now = TimeStamp::Now();
|
|
uint32_t idleTimeoutDivider =
|
|
(mIdleCount && mRegressiveMaxIdleTime) ? mIdleCount : 1;
|
|
TimeDuration timeout = TimeDuration::FromMilliseconds(
|
|
static_cast<double>(mIdleThreadTimeout) / idleTimeoutDivider);
|
|
|
|
// If we are shutting down, then don't keep any idle threads
|
|
if (mShutdown) {
|
|
exitThread = true;
|
|
} else {
|
|
if (wasIdle) {
|
|
// if too many idle threads or idle for too long, then bail.
|
|
if (mIdleCount > mIdleThreadLimit ||
|
|
(mIdleThreadTimeout != UINT32_MAX &&
|
|
(now - idleSince) >= timeout)) {
|
|
exitThread = true;
|
|
}
|
|
} else {
|
|
// if would be too many idle threads...
|
|
if (mIdleCount == mIdleThreadLimit) {
|
|
exitThread = true;
|
|
} else {
|
|
++mIdleCount;
|
|
idleSince = now;
|
|
wasIdle = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (exitThread) {
|
|
if (wasIdle) {
|
|
--mIdleCount;
|
|
}
|
|
shutdownThreadOnExit = mThreads.RemoveObject(current);
|
|
|
|
// keep track if there are threads available to start
|
|
mIsAPoolThreadFree = (mThreads.Count() < (int32_t)mThreadLimit);
|
|
} else {
|
|
current->SetRunningEventDelay(TimeDuration(), TimeStamp());
|
|
|
|
AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE);
|
|
|
|
TimeDuration delta = timeout - (now - idleSince);
|
|
LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.BeginReading(),
|
|
delta.ToMilliseconds()));
|
|
mEventsAvailable.Wait(delta);
|
|
LOG(("THRD-P(%p) done waiting\n", this));
|
|
}
|
|
} else if (wasIdle) {
|
|
wasIdle = false;
|
|
--mIdleCount;
|
|
}
|
|
}
|
|
if (event) {
|
|
LOG(("THRD-P(%p) %s running [%p]\n", this, mName.BeginReading(),
|
|
event.get()));
|
|
|
|
// Delay event processing to encourage whoever dispatched this event
|
|
// to run.
|
|
DelayForChaosMode(ChaosFeature::TaskRunning, 1000);
|
|
|
|
// We'll handle the case of unstarted threads available
|
|
// when we sample.
|
|
current->SetRunningEventDelay(delay, TimeStamp::Now());
|
|
|
|
LogRunnable::Run log(event);
|
|
AUTO_PROFILE_FOLLOWING_RUNNABLE(event);
|
|
event->Run();
|
|
// To cover the event's destructor code in the LogRunnable span
|
|
event = nullptr;
|
|
}
|
|
} while (!exitThread);
|
|
|
|
if (listener) {
|
|
listener->OnThreadShuttingDown();
|
|
}
|
|
|
|
MOZ_ASSERT(gCurrentThreadPool.get() == this);
|
|
gCurrentThreadPool.set(nullptr);
|
|
|
|
if (shutdownThreadOnExit) {
|
|
ShutdownThread(current);
|
|
}
|
|
|
|
LOG(("THRD-P(%p) leave\n", this));
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return Dispatch(event.forget(), aFlags);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
|
|
LOG(("THRD-P(%p) dispatch [%p %x]\n", this, /* XXX aEvent*/ nullptr, aFlags));
|
|
|
|
if (NS_WARN_IF(mShutdown)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
if (aFlags & DISPATCH_SYNC) {
|
|
nsCOMPtr<nsIThread> thread;
|
|
nsThreadManager::get().GetCurrentThread(getter_AddRefs(thread));
|
|
if (NS_WARN_IF(!thread)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
RefPtr<nsThreadSyncDispatch> wrapper =
|
|
new nsThreadSyncDispatch(thread.forget(), std::move(aEvent));
|
|
PutEvent(wrapper);
|
|
|
|
SpinEventLoopUntil(
|
|
[&, wrapper]() -> bool { return !wrapper->IsPending(); });
|
|
} else {
|
|
NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL || aFlags == NS_DISPATCH_AT_END,
|
|
"unexpected dispatch flags");
|
|
PutEvent(std::move(aEvent), aFlags);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
|
|
return NS_ERROR_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
NS_IMETHODIMP_(bool)
|
|
nsThreadPool::IsOnCurrentThreadInfallible() {
|
|
return gCurrentThreadPool.get() == this;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::IsOnCurrentThread(bool* aResult) {
|
|
MutexAutoLock lock(mMutex);
|
|
if (NS_WARN_IF(mShutdown)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
*aResult = IsOnCurrentThreadInfallible();
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::Shutdown() {
|
|
nsCOMArray<nsIThread> threads;
|
|
nsCOMPtr<nsIThreadPoolListener> listener;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
mShutdown = true;
|
|
mEventsAvailable.NotifyAll();
|
|
|
|
threads.AppendObjects(mThreads);
|
|
mThreads.Clear();
|
|
|
|
// Swap in a null listener so that we release the listener at the end of
|
|
// this method. The listener will be kept alive as long as the other threads
|
|
// that were created when it was set.
|
|
mListener.swap(listener);
|
|
}
|
|
|
|
// It's important that we shutdown the threads while outside the event queue
|
|
// monitor. Otherwise, we could end up dead-locking.
|
|
|
|
for (int32_t i = 0; i < threads.Count(); ++i) {
|
|
threads[i]->Shutdown();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
template <typename Pred>
|
|
static void SpinMTEventLoopUntil(Pred&& aPredicate, nsIThread* aThread,
|
|
TimeDuration aTimeout) {
|
|
MOZ_ASSERT(NS_IsMainThread(), "Must be run on the main thread");
|
|
|
|
// From a latency perspective, spinning the event loop is like leaving script
|
|
// and returning to the event loop. Tell the watchdog we stopped running
|
|
// script (until we return).
|
|
mozilla::Maybe<xpc::AutoScriptActivity> asa;
|
|
asa.emplace(false);
|
|
|
|
TimeStamp deadline = TimeStamp::Now() + aTimeout;
|
|
while (!aPredicate() && TimeStamp::Now() < deadline) {
|
|
if (!NS_ProcessNextEvent(aThread, false)) {
|
|
PR_Sleep(PR_MillisecondsToInterval(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::ShutdownWithTimeout(int32_t aTimeoutMs) {
|
|
if (!NS_IsMainThread()) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
nsCOMArray<nsIThread> threads;
|
|
nsCOMPtr<nsIThreadPoolListener> listener;
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
mShutdown = true;
|
|
mEventsAvailable.NotifyAll();
|
|
|
|
threads.AppendObjects(mThreads);
|
|
mThreads.Clear();
|
|
|
|
// Swap in a null listener so that we release the listener at the end of
|
|
// this method. The listener will be kept alive as long as the other threads
|
|
// that were created when it was set.
|
|
mListener.swap(listener);
|
|
}
|
|
|
|
// IMPORTANT! Never dereference these pointers, as the objects may go away at
|
|
// any time. We just use the pointers values for comparison, to check if the
|
|
// thread has been shut down or not.
|
|
nsTArray<nsThreadShutdownContext*> contexts;
|
|
|
|
// It's important that we shutdown the threads while outside the event queue
|
|
// monitor. Otherwise, we could end up dead-locking.
|
|
for (int32_t i = 0; i < threads.Count(); ++i) {
|
|
// Shutdown async
|
|
nsThreadShutdownContext* maybeContext =
|
|
static_cast<nsThread*>(threads[i])->ShutdownInternal(false);
|
|
contexts.AppendElement(maybeContext);
|
|
}
|
|
|
|
NotNull<nsThread*> currentThread =
|
|
WrapNotNull(nsThreadManager::get().GetCurrentThread());
|
|
|
|
// We spin the event loop until all of the threads in the thread pool
|
|
// have shut down, or the timeout expires.
|
|
SpinMTEventLoopUntil(
|
|
[&]() {
|
|
for (nsIThread* thread : threads) {
|
|
if (static_cast<nsThread*>(thread)->mThread) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
},
|
|
currentThread, TimeDuration::FromMilliseconds(aTimeoutMs));
|
|
|
|
// For any threads that have not shutdown yet, we need to remove them from
|
|
// mRequestedShutdownContexts so the thread manager does not wait for them
|
|
// at shutdown.
|
|
static const nsThread::ShutdownContextsComp comparator{};
|
|
for (int32_t i = 0; i < threads.Count(); ++i) {
|
|
nsThread* thread = static_cast<nsThread*>(threads[i]);
|
|
// If mThread is not null on the thread it means that it hasn't shutdown
|
|
// context[i] corresponds to thread[i]
|
|
if (thread->mThread && contexts[i]) {
|
|
auto index = currentThread->mRequestedShutdownContexts.IndexOf(
|
|
contexts[i], 0, comparator);
|
|
if (index != nsThread::ShutdownContexts::NoIndex) {
|
|
// We must leak the shutdown context just in case the leaked thread
|
|
// does get unstuck and completes before the main thread is done.
|
|
Unused << currentThread->mRequestedShutdownContexts[index].release();
|
|
currentThread->mRequestedShutdownContexts.RemoveElementAt(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetThreadLimit(uint32_t* aValue) {
|
|
*aValue = mThreadLimit;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetThreadLimit(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue));
|
|
mThreadLimit = aValue;
|
|
if (mIdleThreadLimit > mThreadLimit) {
|
|
mIdleThreadLimit = mThreadLimit;
|
|
}
|
|
|
|
if (static_cast<uint32_t>(mThreads.Count()) > mThreadLimit) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) {
|
|
*aValue = mIdleThreadLimit;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetIdleThreadLimit(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue));
|
|
mIdleThreadLimit = aValue;
|
|
if (mIdleThreadLimit > mThreadLimit) {
|
|
mIdleThreadLimit = mThreadLimit;
|
|
}
|
|
|
|
// Do we need to kill some idle threads?
|
|
if (mIdleCount > mIdleThreadLimit) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetIdleThreadTimeout(uint32_t* aValue) {
|
|
*aValue = mIdleThreadTimeout;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetIdleThreadTimeout(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
uint32_t oldTimeout = mIdleThreadTimeout;
|
|
mIdleThreadTimeout = aValue;
|
|
|
|
// Do we need to notify any idle threads that their sleep time has shortened?
|
|
if (mIdleThreadTimeout < oldTimeout && mIdleCount > 0) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetIdleThreadTimeoutRegressive(bool* aValue) {
|
|
*aValue = mRegressiveMaxIdleTime;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetIdleThreadTimeoutRegressive(bool aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
bool oldRegressive = mRegressiveMaxIdleTime;
|
|
mRegressiveMaxIdleTime = aValue;
|
|
|
|
// Would setting regressive timeout effect idle threads?
|
|
if (mRegressiveMaxIdleTime > oldRegressive && mIdleCount > 1) {
|
|
mEventsAvailable
|
|
.NotifyAll(); // wake up threads so they observe this change
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetThreadStackSize(uint32_t* aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
*aValue = mStackSize;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetThreadStackSize(uint32_t aValue) {
|
|
MutexAutoLock lock(mMutex);
|
|
mStackSize = aValue;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::GetListener(nsIThreadPoolListener** aListener) {
|
|
MutexAutoLock lock(mMutex);
|
|
NS_IF_ADDREF(*aListener = mListener);
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetListener(nsIThreadPoolListener* aListener) {
|
|
nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener);
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
mListener.swap(swappedListener);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsThreadPool::SetName(const nsACString& aName) {
|
|
{
|
|
MutexAutoLock lock(mMutex);
|
|
if (mThreads.Count()) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
mName = aName;
|
|
return NS_OK;
|
|
}
|