gecko-dev/image/decoders/nsBMPDecoder.cpp
Timothy Nikkel d4c4df334e Bug 1240629. Don't buffer image file data that we are never going to look at in the gap between the header and the pixel data for BMP files. r=njn
The length of the gap is computed from the BMP file header, so in a malformed BMP we could needlessly make our input file buffer huge for no reason.
2016-02-12 16:58:34 -06:00

1065 lines
34 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// This is a cross-platform BMP Decoder, which should work everywhere,
// including big-endian machines like the PowerPC.
//
// BMP is a format that has been extended multiple times. To understand the
// decoder you need to understand this history. The summary of the history
// below was determined from the following documents.
//
// - http://www.fileformat.info/format/bmp/egff.htm
// - http://www.fileformat.info/format/os2bmp/egff.htm
// - http://fileformats.archiveteam.org/wiki/BMP
// - http://fileformats.archiveteam.org/wiki/OS/2_BMP
// - https://en.wikipedia.org/wiki/BMP_file_format
// - https://upload.wikimedia.org/wikipedia/commons/c/c4/BMPfileFormat.png
//
// WINDOWS VERSIONS OF THE BMP FORMAT
// ----------------------------------
// WinBMPv1.
// - This version is no longer used and can be ignored.
//
// WinBMPv2.
// - First is a 14 byte file header that includes: the magic number ("BM"),
// file size, and offset to the pixel data (|mDataOffset|).
// - Next is a 12 byte info header which includes: the info header size
// (mBIHSize), width, height, number of color planes, and bits-per-pixel
// (|mBpp|) which must be 1, 4, 8 or 24.
// - Next is the semi-optional color table, which has length 2^|mBpp| and has 3
// bytes per value (BGR). The color table is required if |mBpp| is 1, 4, or 8.
// - Next is an optional gap.
// - Next is the pixel data, which is pointed to by |mDataOffset|.
//
// WinBMPv3. This is the most widely used version.
// - It changed the info header to 40 bytes by taking the WinBMPv2 info
// header, enlargening its width and height fields, and adding more fields
// including: a compression type (|mCompression|) and number of colors
// (|mNumColors|).
// - The semi-optional color table is now 4 bytes per value (BGR0), and its
// length is |mNumColors|, or 2^|mBpp| if |mNumColors| is zero.
// - |mCompression| can be RGB (i.e. no compression), RLE4 (if |mBpp|==4) or
// RLE8 (if |mBpp|==8) values.
//
// WinBMPv3-NT. A variant of WinBMPv3.
// - It did not change the info header layout from WinBMPv3.
// - |mBpp| can now be 16 or 32, in which case |mCompression| can be RGB or the
// new BITFIELDS value; in the latter case an additional 12 bytes of color
// bitfields follow the info header.
//
// WinBMPv4.
// - It extended the info header to 108 bytes, including the 12 bytes of color
// mask data from WinBMPv3-NT, plus alpha mask data, and also color-space and
// gamma correction fields.
//
// WinBMPv5.
// - It extended the info header to 124 bytes, adding color profile data.
// - It also added an optional color profile table after the pixel data (and
// another optional gap).
//
// WinBMPv3-ICO. This is a variant of WinBMPv3.
// - It's the BMP format used for BMP images within ICO files.
// - The only difference with WinBMPv3 is that if an image is 32bpp and has no
// compression, then instead of treating the pixel data as 0RGB it is treated
// as ARGB, but only if one or more of the A values are non-zero.
//
// OS/2 VERSIONS OF THE BMP FORMAT
// -------------------------------
// OS2-BMPv1.
// - Almost identical to WinBMPv2; the differences are basically ignorable.
//
// OS2-BMPv2.
// - Similar to WinBMPv3.
// - The info header is 64 bytes but can be reduced to as little as 16; any
// omitted fields are treated as zero. The first 40 bytes of these fields are
// nearly identical to the WinBMPv3 info header; the remaining 24 bytes are
// different.
// - Also adds compression types "Huffman 1D" and "RLE24", which we don't
// support.
// - We treat OS2-BMPv2 files as if they are WinBMPv3 (i.e. ignore the extra 24
// bytes in the info header), which in practice is good enough.
#include <stdlib.h>
#include "ImageLogging.h"
#include "mozilla/Attributes.h"
#include "mozilla/Endian.h"
#include "mozilla/Likely.h"
#include "nsBMPDecoder.h"
#include "nsIInputStream.h"
#include "RasterImage.h"
#include <algorithm>
using namespace mozilla::gfx;
namespace mozilla {
namespace image {
namespace bmp {
struct Compression {
enum {
RGB = 0,
RLE8 = 1,
RLE4 = 2,
BITFIELDS = 3
};
};
// RLE escape codes and constants.
struct RLE {
enum {
ESCAPE = 0,
ESCAPE_EOL = 0,
ESCAPE_EOF = 1,
ESCAPE_DELTA = 2,
SEGMENT_LENGTH = 2,
DELTA_LENGTH = 2
};
};
} // namespace bmp
using namespace bmp;
/// Sets the pixel data in aDecoded to the given values.
/// @param aDecoded pointer to pixel to be set, will be incremented to point to
/// the next pixel.
static void
SetPixel(uint32_t*& aDecoded, uint8_t aRed, uint8_t aGreen,
uint8_t aBlue, uint8_t aAlpha = 0xFF)
{
*aDecoded++ = gfxPackedPixel(aAlpha, aRed, aGreen, aBlue);
}
static void
SetPixel(uint32_t*& aDecoded, uint8_t idx,
const UniquePtr<ColorTableEntry[]>& aColors)
{
SetPixel(aDecoded,
aColors[idx].mRed, aColors[idx].mGreen, aColors[idx].mBlue);
}
/// Sets two (or one if aCount = 1) pixels
/// @param aDecoded where the data is stored. Will be moved 4 resp 8 bytes
/// depending on whether one or two pixels are written.
/// @param aData The values for the two pixels
/// @param aCount Current count. Is decremented by one or two.
static void
Set4BitPixel(uint32_t*& aDecoded, uint8_t aData, uint32_t& aCount,
const UniquePtr<ColorTableEntry[]>& aColors)
{
uint8_t idx = aData >> 4;
SetPixel(aDecoded, idx, aColors);
if (--aCount > 0) {
idx = aData & 0xF;
SetPixel(aDecoded, idx, aColors);
--aCount;
}
}
static mozilla::LazyLogModule sBMPLog("BMPDecoder");
// The length of the mBIHSize field in the info header.
static const uint32_t BIHSIZE_FIELD_LENGTH = 4;
nsBMPDecoder::nsBMPDecoder(RasterImage* aImage, State aState, size_t aLength)
: Decoder(aImage)
, mLexer(Transition::To(aState, aLength))
, mIsWithinICO(false)
, mMayHaveTransparency(false)
, mDoesHaveTransparency(false)
, mNumColors(0)
, mColors(nullptr)
, mBytesPerColor(0)
, mPreGapLength(0)
, mCurrentRow(0)
, mCurrentPos(0)
, mAbsoluteModeNumPixels(0)
{
}
// Constructor for normal BMP files.
nsBMPDecoder::nsBMPDecoder(RasterImage* aImage)
: nsBMPDecoder(aImage, State::FILE_HEADER, FILE_HEADER_LENGTH)
{
}
// Constructor used for WinBMPv3-ICO files, which lack a file header.
nsBMPDecoder::nsBMPDecoder(RasterImage* aImage, uint32_t aDataOffset)
: nsBMPDecoder(aImage, State::INFO_HEADER_SIZE, BIHSIZE_FIELD_LENGTH)
{
SetIsWithinICO();
// Even though the file header isn't present in this case, the dataOffset
// field is set as if it is, and so we must increment mPreGapLength
// accordingly.
mPreGapLength += FILE_HEADER_LENGTH;
// This is the one piece of data we normally get from a BMP file header, so
// it must be provided via an argument.
mH.mDataOffset = aDataOffset;
}
nsBMPDecoder::~nsBMPDecoder()
{
}
// Obtains the size of the compressed image resource.
int32_t
nsBMPDecoder::GetCompressedImageSize() const
{
// In the RGB case mImageSize might not be set, so compute it manually.
MOZ_ASSERT(mPixelRowSize != 0);
return mH.mCompression == Compression::RGB
? mPixelRowSize * AbsoluteHeight()
: mH.mImageSize;
}
void
nsBMPDecoder::BeforeFinishInternal()
{
if (!IsMetadataDecode() && !mImageData) {
PostDataError();
}
}
void
nsBMPDecoder::FinishInternal()
{
// We shouldn't be called in error cases.
MOZ_ASSERT(!HasError(), "Can't call FinishInternal on error!");
// We should never make multiple frames.
MOZ_ASSERT(GetFrameCount() <= 1, "Multiple BMP frames?");
// Send notifications if appropriate.
if (!IsMetadataDecode() && HasSize()) {
// We should have image data.
MOZ_ASSERT(mImageData);
// If it was truncated, fill in the missing pixels as black.
while (mCurrentRow > 0) {
uint32_t* dst = RowBuffer();
while (mCurrentPos < mH.mWidth) {
SetPixel(dst, 0, 0, 0);
mCurrentPos++;
}
mCurrentPos = 0;
FinishRow();
}
// Invalidate.
nsIntRect r(0, 0, mH.mWidth, AbsoluteHeight());
PostInvalidation(r);
if (mDoesHaveTransparency) {
MOZ_ASSERT(mMayHaveTransparency);
PostFrameStop(Opacity::SOME_TRANSPARENCY);
} else {
PostFrameStop(Opacity::OPAQUE);
}
PostDecodeDone();
}
}
// ----------------------------------------
// Actual Data Processing
// ----------------------------------------
void
BitFields::Value::Set(uint32_t aMask)
{
mMask = aMask;
// Handle this exceptional case first. The chosen values don't matter
// (because a mask of zero will always give a value of zero) except that
// mBitWidth:
// - shouldn't be zero, because that would cause an infinite loop in Get();
// - shouldn't be 5 or 8, because that could cause a false positive match in
// IsR5G5B5() or IsR8G8B8().
if (mMask == 0x0) {
mRightShift = 0;
mBitWidth = 1;
return;
}
// Find the rightmost 1.
uint8_t i;
for (i = 0; i < 32; i++) {
if (mMask & (1 << i)) {
break;
}
}
mRightShift = i;
// Now find the leftmost 1 in the same run of 1s. (If there are multiple runs
// of 1s -- which isn't valid -- we'll behave as if only the lowest run was
// present, which seems reasonable.)
for (i = i + 1; i < 32; i++) {
if (!(mMask & (1 << i))) {
break;
}
}
mBitWidth = i - mRightShift;
}
MOZ_ALWAYS_INLINE uint8_t
BitFields::Value::Get(uint32_t aValue) const
{
// Extract the unscaled value.
uint32_t v = (aValue & mMask) >> mRightShift;
// Idea: to upscale v precisely we need to duplicate its bits, possibly
// repeatedly, possibly partially in the last case, from bit 7 down to bit 0
// in v2. For example:
//
// - mBitWidth=1: v2 = v<<7 | v<<6 | ... | v<<1 | v>>0 k -> kkkkkkkk
// - mBitWidth=2: v2 = v<<6 | v<<4 | v<<2 | v>>0 jk -> jkjkjkjk
// - mBitWidth=3: v2 = v<<5 | v<<2 | v>>1 ijk -> ijkijkij
// - mBitWidth=4: v2 = v<<4 | v>>0 hijk -> hijkhijk
// - mBitWidth=5: v2 = v<<3 | v>>2 ghijk -> ghijkghi
// - mBitWidth=6: v2 = v<<2 | v>>4 fghijk -> fghijkfg
// - mBitWidth=7: v2 = v<<1 | v>>6 efghijk -> efghijke
// - mBitWidth=8: v2 = v>>0 defghijk -> defghijk
// - mBitWidth=9: v2 = v>>1 cdefghijk -> cdefghij
// - mBitWidth=10: v2 = v>>2 bcdefghijk -> bcdefghi
// - mBitWidth=11: v2 = v>>3 abcdefghijk -> abcdefgh
// - etc.
//
uint8_t v2 = 0;
int32_t i; // must be a signed integer
for (i = 8 - mBitWidth; i > 0; i -= mBitWidth) {
v2 |= v << uint32_t(i);
}
v2 |= v >> uint32_t(-i);
return v2;
}
MOZ_ALWAYS_INLINE uint8_t
BitFields::Value::GetAlpha(uint32_t aValue, bool& aHasAlphaOut) const
{
if (mMask == 0x0) {
return 0xff;
}
aHasAlphaOut = true;
return Get(aValue);
}
MOZ_ALWAYS_INLINE uint8_t
BitFields::Value::Get5(uint32_t aValue) const
{
MOZ_ASSERT(mBitWidth == 5);
uint32_t v = (aValue & mMask) >> mRightShift;
return (v << 3u) | (v >> 2u);
}
MOZ_ALWAYS_INLINE uint8_t
BitFields::Value::Get8(uint32_t aValue) const
{
MOZ_ASSERT(mBitWidth == 8);
uint32_t v = (aValue & mMask) >> mRightShift;
return v;
}
void
BitFields::SetR5G5B5()
{
mRed.Set(0x7c00);
mGreen.Set(0x03e0);
mBlue.Set(0x001f);
}
void
BitFields::SetR8G8B8()
{
mRed.Set(0xff0000);
mGreen.Set(0xff00);
mBlue.Set(0x00ff);
}
bool
BitFields::IsR5G5B5() const
{
return mRed.mBitWidth == 5 &&
mGreen.mBitWidth == 5 &&
mBlue.mBitWidth == 5 &&
mAlpha.mMask == 0x0;
}
bool
BitFields::IsR8G8B8() const
{
return mRed.mBitWidth == 8 &&
mGreen.mBitWidth == 8 &&
mBlue.mBitWidth == 8 &&
mAlpha.mMask == 0x0;
}
uint32_t*
nsBMPDecoder::RowBuffer()
{
if (mDownscaler) {
return reinterpret_cast<uint32_t*>(mDownscaler->RowBuffer()) + mCurrentPos;
}
// Convert from row (1..mHeight) to absolute line (0..mHeight-1).
int32_t line = (mH.mHeight < 0)
? -mH.mHeight - mCurrentRow
: mCurrentRow - 1;
int32_t offset = line * mH.mWidth + mCurrentPos;
return reinterpret_cast<uint32_t*>(mImageData) + offset;
}
void
nsBMPDecoder::FinishRow()
{
if (mDownscaler) {
mDownscaler->CommitRow();
if (mDownscaler->HasInvalidation()) {
DownscalerInvalidRect invalidRect = mDownscaler->TakeInvalidRect();
PostInvalidation(invalidRect.mOriginalSizeRect,
Some(invalidRect.mTargetSizeRect));
}
} else {
PostInvalidation(IntRect(0, mCurrentRow, mH.mWidth, 1));
}
mCurrentRow--;
}
void
nsBMPDecoder::WriteInternal(const char* aBuffer, uint32_t aCount)
{
MOZ_ASSERT(!HasError(), "Shouldn't call WriteInternal after error!");
MOZ_ASSERT(aBuffer);
MOZ_ASSERT(aCount > 0);
Maybe<TerminalState> terminalState =
mLexer.Lex(aBuffer, aCount, [=](State aState,
const char* aData, size_t aLength) {
switch (aState) {
case State::FILE_HEADER: return ReadFileHeader(aData, aLength);
case State::INFO_HEADER_SIZE: return ReadInfoHeaderSize(aData, aLength);
case State::INFO_HEADER_REST: return ReadInfoHeaderRest(aData, aLength);
case State::BITFIELDS: return ReadBitfields(aData, aLength);
case State::COLOR_TABLE: return ReadColorTable(aData, aLength);
case State::GAP: return SkipGap();
case State::AFTER_GAP: return AfterGap();
case State::PIXEL_ROW: return ReadPixelRow(aData);
case State::RLE_SEGMENT: return ReadRLESegment(aData);
case State::RLE_DELTA: return ReadRLEDelta(aData);
case State::RLE_ABSOLUTE: return ReadRLEAbsolute(aData, aLength);
default:
MOZ_CRASH("Unknown State");
}
});
if (terminalState == Some(TerminalState::FAILURE)) {
PostDataError();
}
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadFileHeader(const char* aData, size_t aLength)
{
mPreGapLength += aLength;
bool signatureOk = aData[0] == 'B' && aData[1] == 'M';
if (!signatureOk) {
PostDataError();
return Transition::TerminateFailure();
}
// We ignore the filesize (aData + 2) and reserved (aData + 6) fields.
mH.mDataOffset = LittleEndian::readUint32(aData + 10);
return Transition::To(State::INFO_HEADER_SIZE, BIHSIZE_FIELD_LENGTH);
}
// We read the info header in two steps: (a) read the mBIHSize field to
// determine how long the header is; (b) read the rest of the header.
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadInfoHeaderSize(const char* aData, size_t aLength)
{
mPreGapLength += aLength;
mH.mBIHSize = LittleEndian::readUint32(aData);
bool bihSizeOk = mH.mBIHSize == InfoHeaderLength::WIN_V2 ||
mH.mBIHSize == InfoHeaderLength::WIN_V3 ||
mH.mBIHSize == InfoHeaderLength::WIN_V4 ||
mH.mBIHSize == InfoHeaderLength::WIN_V5 ||
(mH.mBIHSize >= InfoHeaderLength::OS2_V2_MIN &&
mH.mBIHSize <= InfoHeaderLength::OS2_V2_MAX);
if (!bihSizeOk) {
PostDataError();
return Transition::TerminateFailure();
}
// ICO BMPs must have a WinBMPv3 header. nsICODecoder should have already
// terminated decoding if this isn't the case.
MOZ_ASSERT_IF(mIsWithinICO, mH.mBIHSize == InfoHeaderLength::WIN_V3);
return Transition::To(State::INFO_HEADER_REST,
mH.mBIHSize - BIHSIZE_FIELD_LENGTH);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadInfoHeaderRest(const char* aData, size_t aLength)
{
mPreGapLength += aLength;
// |mWidth| and |mHeight| may be signed (Windows) or unsigned (OS/2). We just
// read as unsigned because in practice that's good enough.
if (mH.mBIHSize == InfoHeaderLength::WIN_V2) {
mH.mWidth = LittleEndian::readUint16(aData + 0);
mH.mHeight = LittleEndian::readUint16(aData + 2);
// We ignore the planes (aData + 4) field; it should always be 1.
mH.mBpp = LittleEndian::readUint16(aData + 6);
} else {
mH.mWidth = LittleEndian::readUint32(aData + 0);
mH.mHeight = LittleEndian::readUint32(aData + 4);
// We ignore the planes (aData + 4) field; it should always be 1.
mH.mBpp = LittleEndian::readUint16(aData + 10);
// For OS2-BMPv2 the info header may be as little as 16 bytes, so be
// careful for these fields.
mH.mCompression = aLength >= 16 ? LittleEndian::readUint32(aData + 12) : 0;
mH.mImageSize = aLength >= 20 ? LittleEndian::readUint32(aData + 16) : 0;
// We ignore the xppm (aData + 20) and yppm (aData + 24) fields.
mH.mNumColors = aLength >= 32 ? LittleEndian::readUint32(aData + 28) : 0;
// We ignore the important_colors (aData + 36) field.
// For WinBMPv4, WinBMPv5 and (possibly) OS2-BMPv2 there are additional
// fields in the info header which we ignore, with the possible exception
// of the color bitfields (see below).
}
// Run with NSPR_LOG_MODULES=BMPDecoder:4 set to see this output.
MOZ_LOG(sBMPLog, LogLevel::Debug,
("BMP: bihsize=%u, %d x %d, bpp=%u, compression=%u, colors=%u\n",
mH.mBIHSize, mH.mWidth, mH.mHeight, uint32_t(mH.mBpp),
mH.mCompression, mH.mNumColors));
// BMPs with negative width are invalid. Also, reject extremely wide images
// to keep the math sane. And reject INT_MIN as a height because you can't
// get its absolute value (because -INT_MIN is one more than INT_MAX).
const int32_t k64KWidth = 0x0000FFFF;
bool sizeOk = 0 <= mH.mWidth && mH.mWidth <= k64KWidth &&
mH.mHeight != INT_MIN;
if (!sizeOk) {
PostDataError();
return Transition::TerminateFailure();
}
// Check mBpp and mCompression.
bool bppCompressionOk =
(mH.mCompression == Compression::RGB &&
(mH.mBpp == 1 || mH.mBpp == 4 || mH.mBpp == 8 ||
mH.mBpp == 16 || mH.mBpp == 24 || mH.mBpp == 32)) ||
(mH.mCompression == Compression::RLE8 && mH.mBpp == 8) ||
(mH.mCompression == Compression::RLE4 && mH.mBpp == 4) ||
(mH.mCompression == Compression::BITFIELDS &&
// For BITFIELDS compression we require an exact match for one of the
// WinBMP BIH sizes; this clearly isn't an OS2 BMP.
(mH.mBIHSize == InfoHeaderLength::WIN_V3 ||
mH.mBIHSize == InfoHeaderLength::WIN_V4 ||
mH.mBIHSize == InfoHeaderLength::WIN_V5) &&
(mH.mBpp == 16 || mH.mBpp == 32));
if (!bppCompressionOk) {
PostDataError();
return Transition::TerminateFailure();
}
// Post our size to the superclass.
uint32_t absHeight = AbsoluteHeight();
PostSize(mH.mWidth, absHeight);
mCurrentRow = absHeight;
// Round it up to the nearest byte count, then pad to 4-byte boundary.
// Compute this even for a metadate decode because GetCompressedImageSize()
// relies on it.
mPixelRowSize = (mH.mBpp * mH.mWidth + 7) / 8;
uint32_t surplus = mPixelRowSize % 4;
if (surplus != 0) {
mPixelRowSize += 4 - surplus;
}
size_t bitFieldsLengthStillToRead = 0;
if (mH.mCompression == Compression::BITFIELDS) {
// Need to read bitfields.
if (mH.mBIHSize >= InfoHeaderLength::WIN_V4) {
// Bitfields are present in the info header, so we can read them
// immediately.
mBitFields.ReadFromHeader(aData + 36, /* aReadAlpha = */ true);
} else {
// Bitfields are present after the info header, so we will read them in
// ReadBitfields().
bitFieldsLengthStillToRead = BitFields::LENGTH;
}
} else if (mH.mBpp == 16) {
// No bitfields specified; use the default 5-5-5 values.
mBitFields.SetR5G5B5();
} else if (mH.mBpp == 32) {
// No bitfields specified; use the default 8-8-8 values.
mBitFields.SetR8G8B8();
}
return Transition::To(State::BITFIELDS, bitFieldsLengthStillToRead);
}
void
BitFields::ReadFromHeader(const char* aData, bool aReadAlpha)
{
mRed.Set (LittleEndian::readUint32(aData + 0));
mGreen.Set(LittleEndian::readUint32(aData + 4));
mBlue.Set (LittleEndian::readUint32(aData + 8));
if (aReadAlpha) {
mAlpha.Set(LittleEndian::readUint32(aData + 12));
}
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadBitfields(const char* aData, size_t aLength)
{
mPreGapLength += aLength;
// If aLength is zero there are no bitfields to read, or we already read them
// in ReadInfoHeader().
if (aLength != 0) {
mBitFields.ReadFromHeader(aData, /* aReadAlpha = */ false);
}
// Note that RLE-encoded BMPs might be transparent because the 'delta' mode
// can skip pixels and cause implicit transparency.
mMayHaveTransparency =
(mH.mCompression == Compression::RGB && mIsWithinICO && mH.mBpp == 32) ||
mH.mCompression == Compression::RLE8 ||
mH.mCompression == Compression::RLE4 ||
(mH.mCompression == Compression::BITFIELDS &&
mBitFields.mAlpha.IsPresent());
if (mMayHaveTransparency) {
PostHasTransparency();
}
// We've now read all the headers. If we're doing a metadata decode, we're
// done.
if (IsMetadataDecode()) {
return Transition::TerminateSuccess();
}
// Set up the color table, if present; it'll be filled in by ReadColorTable().
if (mH.mBpp <= 8) {
mNumColors = 1 << mH.mBpp;
if (0 < mH.mNumColors && mH.mNumColors < mNumColors) {
mNumColors = mH.mNumColors;
}
// Always allocate and zero 256 entries, even though mNumColors might be
// smaller, because the file might erroneously index past mNumColors.
mColors = MakeUnique<ColorTableEntry[]>(256);
memset(mColors.get(), 0, 256 * sizeof(ColorTableEntry));
// OS/2 Bitmaps have no padding byte.
mBytesPerColor = (mH.mBIHSize == InfoHeaderLength::WIN_V2) ? 3 : 4;
}
MOZ_ASSERT(!mImageData, "Already have a buffer allocated?");
IntSize targetSize = mDownscaler ? mDownscaler->TargetSize() : GetSize();
nsresult rv = AllocateFrame(/* aFrameNum = */ 0, targetSize,
IntRect(IntPoint(), targetSize),
SurfaceFormat::B8G8R8A8);
if (NS_FAILED(rv)) {
return Transition::TerminateFailure();
}
MOZ_ASSERT(mImageData, "Should have a buffer now");
if (mDownscaler) {
// BMPs store their rows in reverse order, so the downscaler needs to
// reverse them again when writing its output.
rv = mDownscaler->BeginFrame(GetSize(), Nothing(),
mImageData, mMayHaveTransparency,
/* aFlipVertically = */ true);
if (NS_FAILED(rv)) {
return Transition::TerminateFailure();
}
}
return Transition::To(State::COLOR_TABLE, mNumColors * mBytesPerColor);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadColorTable(const char* aData, size_t aLength)
{
MOZ_ASSERT_IF(aLength != 0, mNumColors > 0 && mColors);
mPreGapLength += aLength;
for (uint32_t i = 0; i < mNumColors; i++) {
// The format is BGR or BGR0.
mColors[i].mBlue = uint8_t(aData[0]);
mColors[i].mGreen = uint8_t(aData[1]);
mColors[i].mRed = uint8_t(aData[2]);
aData += mBytesPerColor;
}
// We know how many bytes we've read so far (mPreGapLength) and we know the
// offset of the pixel data (mH.mDataOffset), so we can determine the length
// of the gap (possibly zero) between the color table and the pixel data.
//
// If the gap is negative the file must be malformed (e.g. mH.mDataOffset
// points into the middle of the color palette instead of past the end) and
// we give up.
if (mPreGapLength > mH.mDataOffset) {
PostDataError();
return Transition::TerminateFailure();
}
uint32_t gapLength = mH.mDataOffset - mPreGapLength;
return Transition::ToUnbuffered(State::AFTER_GAP, State::GAP, gapLength);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::SkipGap()
{
return Transition::ContinueUnbuffered(State::GAP);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::AfterGap()
{
// If there are no pixels we can stop.
//
// XXX: normally, if there are no pixels we will have stopped decoding before
// now, outside of this decoder. However, if the BMP is within an ICO file,
// it's possible that the ICO claimed the image had a non-zero size while the
// BMP claims otherwise. This test is to catch that awkward case. If we ever
// come up with a more general solution to this ICO-and-BMP-disagree-on-size
// problem, this test can be removed.
if (mH.mWidth == 0 || mH.mHeight == 0) {
return Transition::TerminateSuccess();
}
bool hasRLE = mH.mCompression == Compression::RLE8 ||
mH.mCompression == Compression::RLE4;
return hasRLE
? Transition::To(State::RLE_SEGMENT, RLE::SEGMENT_LENGTH)
: Transition::To(State::PIXEL_ROW, mPixelRowSize);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadPixelRow(const char* aData)
{
MOZ_ASSERT(mCurrentRow > 0);
MOZ_ASSERT(mCurrentPos == 0);
const uint8_t* src = reinterpret_cast<const uint8_t*>(aData);
uint32_t* dst = RowBuffer();
uint32_t lpos = mH.mWidth;
switch (mH.mBpp) {
case 1:
while (lpos > 0) {
int8_t bit;
uint8_t idx;
for (bit = 7; bit >= 0 && lpos > 0; bit--) {
idx = (*src >> bit) & 1;
SetPixel(dst, idx, mColors);
--lpos;
}
++src;
}
break;
case 4:
while (lpos > 0) {
Set4BitPixel(dst, *src, lpos, mColors);
++src;
}
break;
case 8:
while (lpos > 0) {
SetPixel(dst, *src, mColors);
--lpos;
++src;
}
break;
case 16:
if (mBitFields.IsR5G5B5()) {
// Specialize this common case.
while (lpos > 0) {
uint16_t val = LittleEndian::readUint16(src);
SetPixel(dst, mBitFields.mRed.Get5(val),
mBitFields.mGreen.Get5(val),
mBitFields.mBlue.Get5(val));
--lpos;
src += 2;
}
} else {
bool anyHasAlpha = false;
while (lpos > 0) {
uint16_t val = LittleEndian::readUint16(src);
SetPixel(dst, mBitFields.mRed.Get(val),
mBitFields.mGreen.Get(val),
mBitFields.mBlue.Get(val),
mBitFields.mAlpha.GetAlpha(val, anyHasAlpha));
--lpos;
src += 2;
}
if (anyHasAlpha) {
MOZ_ASSERT(mMayHaveTransparency);
mDoesHaveTransparency = true;
}
}
break;
case 24:
while (lpos > 0) {
SetPixel(dst, src[2], src[1], src[0]);
--lpos;
src += 3;
}
break;
case 32:
if (mH.mCompression == Compression::RGB && mIsWithinICO &&
mH.mBpp == 32) {
// This is a special case only used for 32bpp WinBMPv3-ICO files, which
// could be in either 0RGB or ARGB format. We start by assuming it's
// an 0RGB image. If we hit a non-zero alpha value, then we know it's
// actually an ARGB image, and change tack accordingly.
// (Note: a fully-transparent ARGB image is indistinguishable from a
// 0RGB image, and we will render such an image as a 0RGB image, i.e.
// opaquely. This is unlikely to be a problem in practice.)
while (lpos > 0) {
if (!mDoesHaveTransparency && src[3] != 0) {
// Up until now this looked like an 0RGB image, but we now know
// it's actually an ARGB image. Which means every pixel we've seen
// so far has been fully transparent. So we go back and redo them.
// Tell the Downscaler to go back to the start.
if (mDownscaler) {
mDownscaler->ResetForNextProgressivePass();
}
// Redo the complete rows we've already done.
MOZ_ASSERT(mCurrentPos == 0);
int32_t currentRow = mCurrentRow;
mCurrentRow = AbsoluteHeight();
while (mCurrentRow > currentRow) {
dst = RowBuffer();
for (int32_t i = 0; i < mH.mWidth; i++) {
SetPixel(dst, 0, 0, 0, 0);
}
FinishRow();
}
// Redo the part of this row we've already done.
dst = RowBuffer();
int32_t n = mH.mWidth - lpos;
for (int32_t i = 0; i < n; i++) {
SetPixel(dst, 0, 0, 0, 0);
}
MOZ_ASSERT(mMayHaveTransparency);
mDoesHaveTransparency = true;
}
// If mDoesHaveTransparency is false, treat this as an 0RGB image.
// Otherwise, treat this as an ARGB image.
SetPixel(dst, src[2], src[1], src[0],
mDoesHaveTransparency ? src[3] : 0xff);
src += 4;
--lpos;
}
} else if (mBitFields.IsR8G8B8()) {
// Specialize this common case.
while (lpos > 0) {
uint32_t val = LittleEndian::readUint32(src);
SetPixel(dst, mBitFields.mRed.Get8(val),
mBitFields.mGreen.Get8(val),
mBitFields.mBlue.Get8(val));
--lpos;
src += 4;
}
} else {
bool anyHasAlpha = false;
while (lpos > 0) {
uint32_t val = LittleEndian::readUint32(src);
SetPixel(dst, mBitFields.mRed.Get(val),
mBitFields.mGreen.Get(val),
mBitFields.mBlue.Get(val),
mBitFields.mAlpha.GetAlpha(val, anyHasAlpha));
--lpos;
src += 4;
}
if (anyHasAlpha) {
MOZ_ASSERT(mMayHaveTransparency);
mDoesHaveTransparency = true;
}
}
break;
default:
MOZ_CRASH("Unsupported color depth; earlier check didn't catch it?");
}
FinishRow();
return mCurrentRow == 0
? Transition::TerminateSuccess()
: Transition::To(State::PIXEL_ROW, mPixelRowSize);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadRLESegment(const char* aData)
{
if (mCurrentRow == 0) {
return Transition::TerminateSuccess();
}
uint8_t byte1 = uint8_t(aData[0]);
uint8_t byte2 = uint8_t(aData[1]);
if (byte1 != RLE::ESCAPE) {
// Encoded mode consists of two bytes: byte1 specifies the number of
// consecutive pixels to be drawn using the color index contained in
// byte2.
//
// Work around bitmaps that specify too many pixels.
uint32_t pixelsNeeded =
std::min<uint32_t>(mH.mWidth - mCurrentPos, byte1);
if (pixelsNeeded) {
uint32_t* dst = RowBuffer();
mCurrentPos += pixelsNeeded;
if (mH.mCompression == Compression::RLE8) {
do {
SetPixel(dst, byte2, mColors);
pixelsNeeded --;
} while (pixelsNeeded);
} else {
do {
Set4BitPixel(dst, byte2, pixelsNeeded, mColors);
} while (pixelsNeeded);
}
}
return Transition::To(State::RLE_SEGMENT, RLE::SEGMENT_LENGTH);
}
if (byte2 == RLE::ESCAPE_EOL) {
mCurrentPos = 0;
FinishRow();
return mCurrentRow == 0
? Transition::TerminateSuccess()
: Transition::To(State::RLE_SEGMENT, RLE::SEGMENT_LENGTH);
}
if (byte2 == RLE::ESCAPE_EOF) {
return Transition::TerminateSuccess();
}
if (byte2 == RLE::ESCAPE_DELTA) {
return Transition::To(State::RLE_DELTA, RLE::DELTA_LENGTH);
}
// Absolute mode. |byte2| gives the number of pixels. The length depends on
// whether it's 4-bit or 8-bit RLE. Also, the length must be even (and zero
// padding is used to achieve this when necessary).
MOZ_ASSERT(mAbsoluteModeNumPixels == 0);
mAbsoluteModeNumPixels = byte2;
uint32_t length = byte2;
if (mH.mCompression == Compression::RLE4) {
length = (length + 1) / 2; // halve, rounding up
}
if (length & 1) {
length++;
}
return Transition::To(State::RLE_ABSOLUTE, length);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadRLEDelta(const char* aData)
{
// Delta encoding makes it possible to skip pixels making part of the image
// transparent.
MOZ_ASSERT(mMayHaveTransparency);
mDoesHaveTransparency = true;
if (mDownscaler) {
// Clear the skipped pixels. (This clears to the end of the row,
// which is perfect if there's a Y delta and harmless if not).
mDownscaler->ClearRow(/* aStartingAtCol = */ mCurrentPos);
}
// Handle the XDelta.
mCurrentPos += uint8_t(aData[0]);
if (mCurrentPos > mH.mWidth) {
mCurrentPos = mH.mWidth;
}
// Handle the Y Delta.
int32_t yDelta = std::min<int32_t>(uint8_t(aData[1]), mCurrentRow);
mCurrentRow -= yDelta;
if (mDownscaler && yDelta > 0) {
// Commit the current row (the first of the skipped rows).
mDownscaler->CommitRow();
// Clear and commit the remaining skipped rows.
for (int32_t line = 1; line < yDelta; line++) {
mDownscaler->ClearRow();
mDownscaler->CommitRow();
}
}
return mCurrentRow == 0
? Transition::TerminateSuccess()
: Transition::To(State::RLE_SEGMENT, RLE::SEGMENT_LENGTH);
}
LexerTransition<nsBMPDecoder::State>
nsBMPDecoder::ReadRLEAbsolute(const char* aData, size_t aLength)
{
uint32_t n = mAbsoluteModeNumPixels;
mAbsoluteModeNumPixels = 0;
if (mCurrentPos + n > uint32_t(mH.mWidth)) {
// Bad data. Stop decoding; at least part of the image may have been
// decoded.
return Transition::TerminateSuccess();
}
// In absolute mode, n represents the number of pixels that follow, each of
// which contains the color index of a single pixel.
uint32_t* dst = RowBuffer();
uint32_t iSrc = 0;
uint32_t* oldPos = dst;
if (mH.mCompression == Compression::RLE8) {
while (n > 0) {
SetPixel(dst, aData[iSrc], mColors);
n--;
iSrc++;
}
} else {
while (n > 0) {
Set4BitPixel(dst, aData[iSrc], n, mColors);
iSrc++;
}
}
mCurrentPos += dst - oldPos;
// We should read all the data (unless the last byte is zero padding).
MOZ_ASSERT(iSrc == aLength - 1 || iSrc == aLength);
return Transition::To(State::RLE_SEGMENT, RLE::SEGMENT_LENGTH);
}
} // namespace image
} // namespace mozilla