gecko-dev/image/FrameAnimator.cpp

891 lines
32 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "FrameAnimator.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "imgIContainer.h"
#include "LookupResult.h"
#include "MainThreadUtils.h"
#include "RasterImage.h"
#include "gfxPrefs.h"
#include "pixman.h"
namespace mozilla {
using namespace gfx;
namespace image {
///////////////////////////////////////////////////////////////////////////////
// AnimationState implementation.
///////////////////////////////////////////////////////////////////////////////
void
AnimationState::NotifyDecodeComplete()
{
mHasBeenDecoded = true;
}
void
AnimationState::ResetAnimation()
{
mCurrentAnimationFrameIndex = 0;
}
void
AnimationState::SetAnimationMode(uint16_t aAnimationMode)
{
mAnimationMode = aAnimationMode;
}
void
AnimationState::UpdateKnownFrameCount(uint32_t aFrameCount)
{
if (aFrameCount <= mFrameCount) {
// Nothing to do. Since we can redecode animated images, we may see the same
// sequence of updates replayed again, so seeing a smaller frame count than
// what we already know about doesn't indicate an error.
return;
}
MOZ_ASSERT(!mHasBeenDecoded, "Adding new frames after decoding is finished?");
MOZ_ASSERT(aFrameCount <= mFrameCount + 1, "Skipped a frame?");
mFrameCount = aFrameCount;
}
Maybe<uint32_t>
AnimationState::FrameCount() const
{
return mHasBeenDecoded ? Some(mFrameCount) : Nothing();
}
void
AnimationState::SetFirstFrameRefreshArea(const IntRect& aRefreshArea)
{
mFirstFrameRefreshArea = aRefreshArea;
}
void
AnimationState::InitAnimationFrameTimeIfNecessary()
{
if (mCurrentAnimationFrameTime.IsNull()) {
mCurrentAnimationFrameTime = TimeStamp::Now();
}
}
void
AnimationState::SetAnimationFrameTime(const TimeStamp& aTime)
{
mCurrentAnimationFrameTime = aTime;
}
uint32_t
AnimationState::GetCurrentAnimationFrameIndex() const
{
return mCurrentAnimationFrameIndex;
}
FrameTimeout
AnimationState::LoopLength() const
{
// If we don't know the loop length yet, we have to treat it as infinite.
if (!mLoopLength) {
return FrameTimeout::Forever();
}
MOZ_ASSERT(mHasBeenDecoded, "We know the loop length but decoding isn't done?");
// If we're not looping, a single loop time has no meaning.
if (mAnimationMode != imgIContainer::kNormalAnimMode) {
return FrameTimeout::Forever();
}
return *mLoopLength;
}
///////////////////////////////////////////////////////////////////////////////
// FrameAnimator implementation.
///////////////////////////////////////////////////////////////////////////////
TimeStamp
FrameAnimator::GetCurrentImgFrameEndTime(AnimationState& aState) const
{
TimeStamp currentFrameTime = aState.mCurrentAnimationFrameTime;
FrameTimeout timeout = GetTimeoutForFrame(aState.mCurrentAnimationFrameIndex);
if (timeout == FrameTimeout::Forever()) {
// We need to return a sentinel value in this case, because our logic
// doesn't work correctly if we have an infinitely long timeout. We use one
// year in the future as the sentinel because it works with the loop in
// RequestRefresh() below.
// XXX(seth): It'd be preferable to make our logic work correctly with
// infinitely long timeouts.
return TimeStamp::NowLoRes() +
TimeDuration::FromMilliseconds(31536000.0);
}
TimeDuration durationOfTimeout =
TimeDuration::FromMilliseconds(double(timeout.AsMilliseconds()));
TimeStamp currentFrameEndTime = currentFrameTime + durationOfTimeout;
return currentFrameEndTime;
}
RefreshResult
FrameAnimator::AdvanceFrame(AnimationState& aState, TimeStamp aTime)
{
NS_ASSERTION(aTime <= TimeStamp::Now(),
"Given time appears to be in the future");
PROFILER_LABEL_FUNC(js::ProfileEntry::Category::GRAPHICS);
RefreshResult ret;
// Determine what the next frame is, taking into account looping.
uint32_t currentFrameIndex = aState.mCurrentAnimationFrameIndex;
uint32_t nextFrameIndex = currentFrameIndex + 1;
// Check if we're at the end of the loop. (FrameCount() returns Nothing() if
// we don't know the total count yet.)
if (aState.FrameCount() == Some(nextFrameIndex)) {
// If we are not looping forever, initialize the loop counter
if (aState.mLoopRemainingCount < 0 && aState.LoopCount() >= 0) {
aState.mLoopRemainingCount = aState.LoopCount();
}
// If animation mode is "loop once", or we're at end of loop counter,
// it's time to stop animating.
if (aState.mAnimationMode == imgIContainer::kLoopOnceAnimMode ||
aState.mLoopRemainingCount == 0) {
ret.mAnimationFinished = true;
}
nextFrameIndex = 0;
if (aState.mLoopRemainingCount > 0) {
aState.mLoopRemainingCount--;
}
// If we're done, exit early.
if (ret.mAnimationFinished) {
return ret;
}
}
if (nextFrameIndex >= aState.KnownFrameCount()) {
// We've already advanced to the last decoded frame, nothing more we can do.
// We're blocked by network/decoding from displaying the animation at the
// rate specified, so that means the frame we are displaying (the latest
// available) is the frame we want to be displaying at this time. So we
// update the current animation time. If we didn't update the current
// animation time then it could lag behind, which would indicate that we are
// behind in the animation and should try to catch up. When we are done
// decoding (and thus can loop around back to the start of the animation) we
// would then jump to a random point in the animation to try to catch up.
// But we were never behind in the animation.
aState.mCurrentAnimationFrameTime = aTime;
return ret;
}
// There can be frames in the surface cache with index >= KnownFrameCount()
// which GetRawFrame() can access because an async decoder has decoded them,
// but which AnimationState doesn't know about yet because we haven't received
// the appropriate notification on the main thread. Make sure we stay in sync
// with AnimationState.
MOZ_ASSERT(nextFrameIndex < aState.KnownFrameCount());
RawAccessFrameRef nextFrame = GetRawFrame(nextFrameIndex);
// We should always check to see if we have the next frame even if we have
// previously finished decoding. If we needed to redecode (e.g. due to a draw
// failure) we would have discarded all the old frames and may not yet have
// the new ones.
if (!nextFrame || !nextFrame->IsFinished()) {
// Uh oh, the frame we want to show is currently being decoded (partial)
// Wait until the next refresh driver tick and try again
return ret;
}
if (GetTimeoutForFrame(nextFrameIndex) == FrameTimeout::Forever()) {
ret.mAnimationFinished = true;
}
if (nextFrameIndex == 0) {
ret.mDirtyRect = aState.FirstFrameRefreshArea();
} else {
MOZ_ASSERT(nextFrameIndex == currentFrameIndex + 1);
// Change frame
if (!DoBlend(&ret.mDirtyRect, currentFrameIndex, nextFrameIndex)) {
// something went wrong, move on to next
NS_WARNING("FrameAnimator::AdvanceFrame(): Compositing of frame failed");
nextFrame->SetCompositingFailed(true);
aState.mCurrentAnimationFrameTime = GetCurrentImgFrameEndTime(aState);
aState.mCurrentAnimationFrameIndex = nextFrameIndex;
return ret;
}
nextFrame->SetCompositingFailed(false);
}
aState.mCurrentAnimationFrameTime = GetCurrentImgFrameEndTime(aState);
// If we can get closer to the current time by a multiple of the image's loop
// time, we should. We can only do this if we're done decoding; otherwise, we
// don't know the full loop length, and LoopLength() will have to return
// FrameTimeout::Forever().
FrameTimeout loopTime = aState.LoopLength();
if (loopTime != FrameTimeout::Forever()) {
TimeDuration delay = aTime - aState.mCurrentAnimationFrameTime;
if (delay.ToMilliseconds() > loopTime.AsMilliseconds()) {
// Explicitly use integer division to get the floor of the number of
// loops.
uint64_t loops = static_cast<uint64_t>(delay.ToMilliseconds())
/ loopTime.AsMilliseconds();
aState.mCurrentAnimationFrameTime +=
TimeDuration::FromMilliseconds(loops * loopTime.AsMilliseconds());
}
}
// Set currentAnimationFrameIndex at the last possible moment
aState.mCurrentAnimationFrameIndex = nextFrameIndex;
// If we're here, we successfully advanced the frame.
ret.mFrameAdvanced = true;
return ret;
}
RefreshResult
FrameAnimator::RequestRefresh(AnimationState& aState, const TimeStamp& aTime)
{
// only advance the frame if the current time is greater than or
// equal to the current frame's end time.
TimeStamp currentFrameEndTime = GetCurrentImgFrameEndTime(aState);
// By default, an empty RefreshResult.
RefreshResult ret;
while (currentFrameEndTime <= aTime) {
TimeStamp oldFrameEndTime = currentFrameEndTime;
RefreshResult frameRes = AdvanceFrame(aState, aTime);
// Accumulate our result for returning to callers.
ret.Accumulate(frameRes);
currentFrameEndTime = GetCurrentImgFrameEndTime(aState);
// If we didn't advance a frame, and our frame end time didn't change,
// then we need to break out of this loop & wait for the frame(s)
// to finish downloading.
if (!frameRes.mFrameAdvanced && (currentFrameEndTime == oldFrameEndTime)) {
break;
}
}
return ret;
}
LookupResult
FrameAnimator::GetCompositedFrame(AnimationState& aState)
{
// If we have a composited version of this frame, return that.
if (mLastCompositedFrameIndex >= 0 &&
(uint32_t(mLastCompositedFrameIndex) == aState.mCurrentAnimationFrameIndex)) {
return LookupResult(DrawableSurface(mCompositingFrame->DrawableRef()),
MatchType::EXACT);
}
// Otherwise return the raw frame. DoBlend is required to ensure that we only
// hit this case if the frame is not paletted and doesn't require compositing.
LookupResult result =
SurfaceCache::Lookup(ImageKey(mImage),
RasterSurfaceKey(mSize,
DefaultSurfaceFlags(),
PlaybackType::eAnimated));
if (!result) {
return result;
}
// Seek to the appropriate frame. If seeking fails, it means that we couldn't
// get the frame we're looking for; treat this as if the lookup failed.
if (NS_FAILED(result.Surface().Seek(aState.mCurrentAnimationFrameIndex))) {
return LookupResult(MatchType::NOT_FOUND);
}
MOZ_ASSERT(!result.Surface()->GetIsPaletted(),
"About to return a paletted frame");
return result;
}
FrameTimeout
FrameAnimator::GetTimeoutForFrame(uint32_t aFrameNum) const
{
RawAccessFrameRef frame = GetRawFrame(aFrameNum);
if (frame) {
AnimationData data = frame->GetAnimationData();
return data.mTimeout;
}
NS_WARNING("No frame; called GetTimeoutForFrame too early?");
return FrameTimeout::FromRawMilliseconds(100);
}
static void
DoCollectSizeOfCompositingSurfaces(const RawAccessFrameRef& aSurface,
SurfaceMemoryCounterType aType,
nsTArray<SurfaceMemoryCounter>& aCounters,
MallocSizeOf aMallocSizeOf)
{
// Concoct a SurfaceKey for this surface.
SurfaceKey key = RasterSurfaceKey(aSurface->GetImageSize(),
DefaultSurfaceFlags(),
PlaybackType::eStatic);
// Create a counter for this surface.
SurfaceMemoryCounter counter(key, /* aIsLocked = */ true, aType);
// Extract the surface's memory usage information.
size_t heap = 0, nonHeap = 0, handles = 0;
aSurface->AddSizeOfExcludingThis(aMallocSizeOf, heap, nonHeap, handles);
counter.Values().SetDecodedHeap(heap);
counter.Values().SetDecodedNonHeap(nonHeap);
counter.Values().SetSharedHandles(handles);
// Record it.
aCounters.AppendElement(counter);
}
void
FrameAnimator::CollectSizeOfCompositingSurfaces(
nsTArray<SurfaceMemoryCounter>& aCounters,
MallocSizeOf aMallocSizeOf) const
{
if (mCompositingFrame) {
DoCollectSizeOfCompositingSurfaces(mCompositingFrame,
SurfaceMemoryCounterType::COMPOSITING,
aCounters,
aMallocSizeOf);
}
if (mCompositingPrevFrame) {
DoCollectSizeOfCompositingSurfaces(mCompositingPrevFrame,
SurfaceMemoryCounterType::COMPOSITING_PREV,
aCounters,
aMallocSizeOf);
}
}
RawAccessFrameRef
FrameAnimator::GetRawFrame(uint32_t aFrameNum) const
{
LookupResult result =
SurfaceCache::Lookup(ImageKey(mImage),
RasterSurfaceKey(mSize,
DefaultSurfaceFlags(),
PlaybackType::eAnimated));
if (!result) {
return RawAccessFrameRef();
}
// Seek to the frame we want. If seeking fails, it means we couldn't get the
// frame we're looking for, so we bail here to avoid returning the wrong frame
// to the caller.
if (NS_FAILED(result.Surface().Seek(aFrameNum))) {
return RawAccessFrameRef(); // Not available yet.
}
return result.Surface()->RawAccessRef();
}
//******************************************************************************
// DoBlend gets called when the timer for animation get fired and we have to
// update the composited frame of the animation.
bool
FrameAnimator::DoBlend(IntRect* aDirtyRect,
uint32_t aPrevFrameIndex,
uint32_t aNextFrameIndex)
{
RawAccessFrameRef prevFrame = GetRawFrame(aPrevFrameIndex);
RawAccessFrameRef nextFrame = GetRawFrame(aNextFrameIndex);
MOZ_ASSERT(prevFrame && nextFrame, "Should have frames here");
AnimationData prevFrameData = prevFrame->GetAnimationData();
if (prevFrameData.mDisposalMethod == DisposalMethod::RESTORE_PREVIOUS &&
!mCompositingPrevFrame) {
prevFrameData.mDisposalMethod = DisposalMethod::CLEAR;
}
IntRect prevRect = prevFrameData.mBlendRect
? prevFrameData.mRect.Intersect(*prevFrameData.mBlendRect)
: prevFrameData.mRect;
bool isFullPrevFrame = prevRect.x == 0 && prevRect.y == 0 &&
prevRect.width == mSize.width &&
prevRect.height == mSize.height;
// Optimization: DisposeClearAll if the previous frame is the same size as
// container and it's clearing itself
if (isFullPrevFrame &&
(prevFrameData.mDisposalMethod == DisposalMethod::CLEAR)) {
prevFrameData.mDisposalMethod = DisposalMethod::CLEAR_ALL;
}
AnimationData nextFrameData = nextFrame->GetAnimationData();
IntRect nextRect = nextFrameData.mBlendRect
? nextFrameData.mRect.Intersect(*nextFrameData.mBlendRect)
: nextFrameData.mRect;
bool isFullNextFrame = nextRect.x == 0 && nextRect.y == 0 &&
nextRect.width == mSize.width &&
nextRect.height == mSize.height;
if (!nextFrame->GetIsPaletted()) {
// Optimization: Skip compositing if the previous frame wants to clear the
// whole image
if (prevFrameData.mDisposalMethod == DisposalMethod::CLEAR_ALL) {
aDirtyRect->SetRect(0, 0, mSize.width, mSize.height);
return true;
}
// Optimization: Skip compositing if this frame is the same size as the
// container and it's fully drawing over prev frame (no alpha)
if (isFullNextFrame &&
(nextFrameData.mDisposalMethod != DisposalMethod::RESTORE_PREVIOUS) &&
!nextFrameData.mHasAlpha) {
aDirtyRect->SetRect(0, 0, mSize.width, mSize.height);
return true;
}
}
// Calculate area that needs updating
switch (prevFrameData.mDisposalMethod) {
default:
MOZ_FALLTHROUGH_ASSERT("Unexpected DisposalMethod");
case DisposalMethod::NOT_SPECIFIED:
case DisposalMethod::KEEP:
*aDirtyRect = nextRect;
break;
case DisposalMethod::CLEAR_ALL:
// Whole image container is cleared
aDirtyRect->SetRect(0, 0, mSize.width, mSize.height);
break;
case DisposalMethod::CLEAR:
// Calc area that needs to be redrawn (the combination of previous and
// this frame)
// XXX - This could be done with multiple framechanged calls
// Having prevFrame way at the top of the image, and nextFrame
// way at the bottom, and both frames being small, we'd be
// telling framechanged to refresh the whole image when only two
// small areas are needed.
aDirtyRect->UnionRect(nextRect, prevRect);
break;
case DisposalMethod::RESTORE_PREVIOUS:
aDirtyRect->SetRect(0, 0, mSize.width, mSize.height);
break;
}
// Optimization:
// Skip compositing if the last composited frame is this frame
// (Only one composited frame was made for this animation. Example:
// Only Frame 3 of a 10 frame image required us to build a composite frame
// On the second loop, we do not need to rebuild the frame
// since it's still sitting in compositingFrame)
if (mLastCompositedFrameIndex == int32_t(aNextFrameIndex)) {
return true;
}
bool needToBlankComposite = false;
// Create the Compositing Frame
if (!mCompositingFrame) {
RefPtr<imgFrame> newFrame = new imgFrame;
nsresult rv = newFrame->InitForAnimator(mSize,
SurfaceFormat::B8G8R8A8);
if (NS_FAILED(rv)) {
mCompositingFrame.reset();
return false;
}
mCompositingFrame = newFrame->RawAccessRef();
needToBlankComposite = true;
} else if (int32_t(aNextFrameIndex) != mLastCompositedFrameIndex+1) {
// If we are not drawing on top of last composited frame,
// then we are building a new composite frame, so let's clear it first.
needToBlankComposite = true;
}
AnimationData compositingFrameData = mCompositingFrame->GetAnimationData();
// More optimizations possible when next frame is not transparent
// But if the next frame has DisposalMethod::RESTORE_PREVIOUS,
// this "no disposal" optimization is not possible,
// because the frame in "after disposal operation" state
// needs to be stored in compositingFrame, so it can be
// copied into compositingPrevFrame later.
bool doDisposal = true;
if (!nextFrameData.mHasAlpha &&
nextFrameData.mDisposalMethod != DisposalMethod::RESTORE_PREVIOUS) {
if (isFullNextFrame) {
// Optimization: No need to dispose prev.frame when
// next frame is full frame and not transparent.
doDisposal = false;
// No need to blank the composite frame
needToBlankComposite = false;
} else {
if ((prevRect.x >= nextRect.x) && (prevRect.y >= nextRect.y) &&
(prevRect.x + prevRect.width <= nextRect.x + nextRect.width) &&
(prevRect.y + prevRect.height <= nextRect.y + nextRect.height)) {
// Optimization: No need to dispose prev.frame when
// next frame fully overlaps previous frame.
doDisposal = false;
}
}
}
if (doDisposal) {
// Dispose of previous: clear, restore, or keep (copy)
switch (prevFrameData.mDisposalMethod) {
case DisposalMethod::CLEAR:
if (needToBlankComposite) {
// If we just created the composite, it could have anything in its
// buffer. Clear whole frame
ClearFrame(compositingFrameData.mRawData,
compositingFrameData.mRect);
} else {
// Only blank out previous frame area (both color & Mask/Alpha)
ClearFrame(compositingFrameData.mRawData,
compositingFrameData.mRect,
prevRect);
}
break;
case DisposalMethod::CLEAR_ALL:
ClearFrame(compositingFrameData.mRawData,
compositingFrameData.mRect);
break;
case DisposalMethod::RESTORE_PREVIOUS:
// It would be better to copy only the area changed back to
// compositingFrame.
if (mCompositingPrevFrame) {
AnimationData compositingPrevFrameData =
mCompositingPrevFrame->GetAnimationData();
CopyFrameImage(compositingPrevFrameData.mRawData,
compositingPrevFrameData.mRect,
compositingFrameData.mRawData,
compositingFrameData.mRect);
// destroy only if we don't need it for this frame's disposal
if (nextFrameData.mDisposalMethod !=
DisposalMethod::RESTORE_PREVIOUS) {
mCompositingPrevFrame.reset();
}
} else {
ClearFrame(compositingFrameData.mRawData,
compositingFrameData.mRect);
}
break;
default:
MOZ_FALLTHROUGH_ASSERT("Unexpected DisposalMethod");
case DisposalMethod::NOT_SPECIFIED:
case DisposalMethod::KEEP:
// Copy previous frame into compositingFrame before we put the new
// frame on top
// Assumes that the previous frame represents a full frame (it could be
// smaller in size than the container, as long as the frame before it
// erased itself)
// Note: Frame 1 never gets into DoBlend(), so (aNextFrameIndex - 1)
// will always be a valid frame number.
if (mLastCompositedFrameIndex != int32_t(aNextFrameIndex - 1)) {
if (isFullPrevFrame && !prevFrame->GetIsPaletted()) {
// Just copy the bits
CopyFrameImage(prevFrameData.mRawData,
prevRect,
compositingFrameData.mRawData,
compositingFrameData.mRect);
} else {
if (needToBlankComposite) {
// Only blank composite when prev is transparent or not full.
if (prevFrameData.mHasAlpha || !isFullPrevFrame) {
ClearFrame(compositingFrameData.mRawData,
compositingFrameData.mRect);
}
}
DrawFrameTo(prevFrameData.mRawData, prevFrameData.mRect,
prevFrameData.mPaletteDataLength,
prevFrameData.mHasAlpha,
compositingFrameData.mRawData,
compositingFrameData.mRect,
prevFrameData.mBlendMethod,
prevFrameData.mBlendRect);
}
}
}
} else if (needToBlankComposite) {
// If we just created the composite, it could have anything in its
// buffers. Clear them
ClearFrame(compositingFrameData.mRawData,
compositingFrameData.mRect);
}
// Check if the frame we are composing wants the previous image restored after
// it is done. Don't store it (again) if last frame wanted its image restored
// too
if ((nextFrameData.mDisposalMethod == DisposalMethod::RESTORE_PREVIOUS) &&
(prevFrameData.mDisposalMethod != DisposalMethod::RESTORE_PREVIOUS)) {
// We are storing the whole image.
// It would be better if we just stored the area that nextFrame is going to
// overwrite.
if (!mCompositingPrevFrame) {
RefPtr<imgFrame> newFrame = new imgFrame;
nsresult rv = newFrame->InitForAnimator(mSize,
SurfaceFormat::B8G8R8A8);
if (NS_FAILED(rv)) {
mCompositingPrevFrame.reset();
return false;
}
mCompositingPrevFrame = newFrame->RawAccessRef();
}
AnimationData compositingPrevFrameData =
mCompositingPrevFrame->GetAnimationData();
CopyFrameImage(compositingFrameData.mRawData,
compositingFrameData.mRect,
compositingPrevFrameData.mRawData,
compositingPrevFrameData.mRect);
mCompositingPrevFrame->Finish();
}
// blit next frame into it's correct spot
DrawFrameTo(nextFrameData.mRawData, nextFrameData.mRect,
nextFrameData.mPaletteDataLength,
nextFrameData.mHasAlpha,
compositingFrameData.mRawData,
compositingFrameData.mRect,
nextFrameData.mBlendMethod,
nextFrameData.mBlendRect);
// Tell the image that it is fully 'downloaded'.
mCompositingFrame->Finish();
mLastCompositedFrameIndex = int32_t(aNextFrameIndex);
return true;
}
//******************************************************************************
// Fill aFrame with black. Does also clears the mask.
void
FrameAnimator::ClearFrame(uint8_t* aFrameData, const IntRect& aFrameRect)
{
if (!aFrameData) {
return;
}
memset(aFrameData, 0, aFrameRect.width * aFrameRect.height * 4);
}
//******************************************************************************
void
FrameAnimator::ClearFrame(uint8_t* aFrameData, const IntRect& aFrameRect,
const IntRect& aRectToClear)
{
if (!aFrameData || aFrameRect.width <= 0 || aFrameRect.height <= 0 ||
aRectToClear.width <= 0 || aRectToClear.height <= 0) {
return;
}
IntRect toClear = aFrameRect.Intersect(aRectToClear);
if (toClear.IsEmpty()) {
return;
}
uint32_t bytesPerRow = aFrameRect.width * 4;
for (int row = toClear.y; row < toClear.y + toClear.height; ++row) {
memset(aFrameData + toClear.x * 4 + row * bytesPerRow, 0,
toClear.width * 4);
}
}
//******************************************************************************
// Whether we succeed or fail will not cause a crash, and there's not much
// we can do about a failure, so there we don't return a nsresult
bool
FrameAnimator::CopyFrameImage(const uint8_t* aDataSrc,
const IntRect& aRectSrc,
uint8_t* aDataDest,
const IntRect& aRectDest)
{
uint32_t dataLengthSrc = aRectSrc.width * aRectSrc.height * 4;
uint32_t dataLengthDest = aRectDest.width * aRectDest.height * 4;
if (!aDataDest || !aDataSrc || dataLengthSrc != dataLengthDest) {
return false;
}
memcpy(aDataDest, aDataSrc, dataLengthDest);
return true;
}
nsresult
FrameAnimator::DrawFrameTo(const uint8_t* aSrcData, const IntRect& aSrcRect,
uint32_t aSrcPaletteLength, bool aSrcHasAlpha,
uint8_t* aDstPixels, const IntRect& aDstRect,
BlendMethod aBlendMethod, const Maybe<IntRect>& aBlendRect)
{
NS_ENSURE_ARG_POINTER(aSrcData);
NS_ENSURE_ARG_POINTER(aDstPixels);
// According to both AGIF and APNG specs, offsets are unsigned
if (aSrcRect.x < 0 || aSrcRect.y < 0) {
NS_WARNING("FrameAnimator::DrawFrameTo: negative offsets not allowed");
return NS_ERROR_FAILURE;
}
// Outside the destination frame, skip it
if ((aSrcRect.x > aDstRect.width) || (aSrcRect.y > aDstRect.height)) {
return NS_OK;
}
if (aSrcPaletteLength) {
// Larger than the destination frame, clip it
int32_t width = std::min(aSrcRect.width, aDstRect.width - aSrcRect.x);
int32_t height = std::min(aSrcRect.height, aDstRect.height - aSrcRect.y);
// The clipped image must now fully fit within destination image frame
NS_ASSERTION((aSrcRect.x >= 0) && (aSrcRect.y >= 0) &&
(aSrcRect.x + width <= aDstRect.width) &&
(aSrcRect.y + height <= aDstRect.height),
"FrameAnimator::DrawFrameTo: Invalid aSrcRect");
// clipped image size may be smaller than source, but not larger
NS_ASSERTION((width <= aSrcRect.width) && (height <= aSrcRect.height),
"FrameAnimator::DrawFrameTo: source must be smaller than dest");
// Get pointers to image data
const uint8_t* srcPixels = aSrcData + aSrcPaletteLength;
uint32_t* dstPixels = reinterpret_cast<uint32_t*>(aDstPixels);
const uint32_t* colormap = reinterpret_cast<const uint32_t*>(aSrcData);
// Skip to the right offset
dstPixels += aSrcRect.x + (aSrcRect.y * aDstRect.width);
if (!aSrcHasAlpha) {
for (int32_t r = height; r > 0; --r) {
for (int32_t c = 0; c < width; c++) {
dstPixels[c] = colormap[srcPixels[c]];
}
// Go to the next row in the source resp. destination image
srcPixels += aSrcRect.width;
dstPixels += aDstRect.width;
}
} else {
for (int32_t r = height; r > 0; --r) {
for (int32_t c = 0; c < width; c++) {
const uint32_t color = colormap[srcPixels[c]];
if (color) {
dstPixels[c] = color;
}
}
// Go to the next row in the source resp. destination image
srcPixels += aSrcRect.width;
dstPixels += aDstRect.width;
}
}
} else {
pixman_image_t* src =
pixman_image_create_bits(
aSrcHasAlpha ? PIXMAN_a8r8g8b8 : PIXMAN_x8r8g8b8,
aSrcRect.width, aSrcRect.height,
reinterpret_cast<uint32_t*>(const_cast<uint8_t*>(aSrcData)),
aSrcRect.width * 4);
if (!src) {
return NS_ERROR_OUT_OF_MEMORY;
}
pixman_image_t* dst =
pixman_image_create_bits(PIXMAN_a8r8g8b8,
aDstRect.width,
aDstRect.height,
reinterpret_cast<uint32_t*>(aDstPixels),
aDstRect.width * 4);
if (!dst) {
pixman_image_unref(src);
return NS_ERROR_OUT_OF_MEMORY;
}
// XXX(seth): This is inefficient but we'll remove it quite soon when we
// move frame compositing into SurfacePipe. For now we need this because
// RemoveFrameRectFilter has transformed PNG frames with frame rects into
// imgFrame's with no frame rects, but with a region of 0 alpha where the
// frame rect should be. This works really nicely if we're using
// BlendMethod::OVER, but BlendMethod::SOURCE will result in that frame rect
// area overwriting the previous frame, which makes the animation look
// wrong. This quick hack fixes that by first compositing the whle new frame
// with BlendMethod::OVER, and then recopying the area that uses
// BlendMethod::SOURCE if needed. To make this work, the decoder has to
// provide a "blend rect" that tells us where to do this. This is just the
// frame rect, but hidden in a way that makes it invisible to most of the
// system, so we can keep eliminating dependencies on it.
auto op = aBlendMethod == BlendMethod::SOURCE ? PIXMAN_OP_SRC
: PIXMAN_OP_OVER;
if (aBlendMethod == BlendMethod::OVER || !aBlendRect ||
(aBlendMethod == BlendMethod::SOURCE && aSrcRect.IsEqualEdges(*aBlendRect))) {
// We don't need to do anything clever. (Or, in the case where no blend
// rect was specified, we can't.)
pixman_image_composite32(op,
src,
nullptr,
dst,
0, 0,
0, 0,
aSrcRect.x, aSrcRect.y,
aSrcRect.width, aSrcRect.height);
} else {
// We need to do the OVER followed by SOURCE trick above.
pixman_image_composite32(PIXMAN_OP_OVER,
src,
nullptr,
dst,
0, 0,
0, 0,
aSrcRect.x, aSrcRect.y,
aSrcRect.width, aSrcRect.height);
pixman_image_composite32(PIXMAN_OP_SRC,
src,
nullptr,
dst,
aBlendRect->x, aBlendRect->y,
0, 0,
aBlendRect->x, aBlendRect->y,
aBlendRect->width, aBlendRect->height);
}
pixman_image_unref(src);
pixman_image_unref(dst);
}
return NS_OK;
}
} // namespace image
} // namespace mozilla