mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-27 14:52:16 +00:00
7b2e6d4996
Differential Revision: https://phabricator.services.mozilla.com/D131422
185 lines
7.3 KiB
C++
185 lines
7.3 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef nsStringBuffer_h__
|
|
#define nsStringBuffer_h__
|
|
|
|
#include <atomic>
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "nsStringFwd.h"
|
|
|
|
template <class T>
|
|
struct already_AddRefed;
|
|
|
|
/**
|
|
* This structure precedes the string buffers "we" allocate. It may be the
|
|
* case that nsTAString::mData does not point to one of these special
|
|
* buffers. The mDataFlags member variable distinguishes the buffer type.
|
|
*
|
|
* When this header is in use, it enables reference counting, and capacity
|
|
* tracking. NOTE: A string buffer can be modified only if its reference
|
|
* count is 1.
|
|
*/
|
|
class nsStringBuffer {
|
|
private:
|
|
friend class CheckStaticAtomSizes;
|
|
|
|
std::atomic<uint32_t> mRefCount;
|
|
uint32_t mStorageSize;
|
|
|
|
public:
|
|
/**
|
|
* Allocates a new string buffer, with given size in bytes and a
|
|
* reference count of one. When the string buffer is no longer needed,
|
|
* it should be released via Release.
|
|
*
|
|
* It is up to the caller to set the bytes corresponding to the string
|
|
* buffer by calling the Data method to fetch the raw data pointer. Care
|
|
* must be taken to properly null terminate the character array. The
|
|
* storage size can be greater than the length of the actual string
|
|
* (i.e., it is not required that the null terminator appear in the last
|
|
* storage unit of the string buffer's data).
|
|
*
|
|
* @return new string buffer or null if out of memory.
|
|
*/
|
|
static already_AddRefed<nsStringBuffer> Alloc(size_t aStorageSize);
|
|
|
|
/**
|
|
* Resizes the given string buffer to the specified storage size. This
|
|
* method must not be called on a readonly string buffer. Use this API
|
|
* carefully!!
|
|
*
|
|
* This method behaves like the ANSI-C realloc function. (i.e., If the
|
|
* allocation fails, null will be returned and the given string buffer
|
|
* will remain unmodified.)
|
|
*
|
|
* @see IsReadonly
|
|
*/
|
|
static nsStringBuffer* Realloc(nsStringBuffer* aBuf, size_t aStorageSize);
|
|
|
|
/**
|
|
* Increment the reference count on this string buffer.
|
|
*/
|
|
void NS_FASTCALL AddRef();
|
|
|
|
/**
|
|
* Decrement the reference count on this string buffer. The string
|
|
* buffer will be destroyed when its reference count reaches zero.
|
|
*/
|
|
void NS_FASTCALL Release();
|
|
|
|
/**
|
|
* This method returns the string buffer corresponding to the given data
|
|
* pointer. The data pointer must have been returned previously by a
|
|
* call to the nsStringBuffer::Data method.
|
|
*/
|
|
static nsStringBuffer* FromData(void* aData) {
|
|
return reinterpret_cast<nsStringBuffer*>(aData) - 1;
|
|
}
|
|
|
|
/**
|
|
* This method returns the data pointer for this string buffer.
|
|
*/
|
|
void* Data() const {
|
|
return const_cast<char*>(reinterpret_cast<const char*>(this + 1));
|
|
}
|
|
|
|
/**
|
|
* This function returns the storage size of a string buffer in bytes.
|
|
* This value is the same value that was originally passed to Alloc (or
|
|
* Realloc).
|
|
*/
|
|
uint32_t StorageSize() const { return mStorageSize; }
|
|
|
|
/**
|
|
* If this method returns false, then the caller can be sure that their
|
|
* reference to the string buffer is the only reference to the string
|
|
* buffer, and therefore it has exclusive access to the string buffer and
|
|
* associated data. However, if this function returns true, then other
|
|
* consumers may rely on the data in this buffer being immutable and
|
|
* other threads may access this buffer simultaneously.
|
|
*/
|
|
bool IsReadonly() const {
|
|
// This doesn't lead to the destruction of the buffer, so we don't
|
|
// need to perform acquire memory synchronization for the normal
|
|
// reason that a reference count needs acquire synchronization
|
|
// (ensuring that all writes to the object made on other threads are
|
|
// visible to the thread destroying the object).
|
|
//
|
|
// We then need to consider the possibility that there were prior
|
|
// writes to the buffer on a different thread: one that has either
|
|
// since released its reference count, or one that also has access
|
|
// to this buffer through the same reference. There are two ways
|
|
// for that to happen: either the buffer pointer or a data structure
|
|
// (e.g., string object) pointing to the buffer was transferred from
|
|
// one thread to another, or the data structure pointing to the
|
|
// buffer was already visible on both threads. In the first case
|
|
// (transfer), the transfer of data from one thread to another would
|
|
// have handled the memory synchronization. In the latter case
|
|
// (data structure visible on both threads), the caller needed some
|
|
// sort of higher level memory synchronization to protect against
|
|
// the string object being mutated at the same time on multiple
|
|
// threads.
|
|
|
|
// See bug 1603504. TSan might complain about a race when using
|
|
// memory_order_relaxed, so use memory_order_acquire for making TSan
|
|
// happy.
|
|
#if defined(MOZ_TSAN)
|
|
return mRefCount.load(std::memory_order_acquire) > 1;
|
|
#else
|
|
return mRefCount.load(std::memory_order_relaxed) > 1;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* The FromString methods return a string buffer for the given string
|
|
* object or null if the string object does not have a string buffer.
|
|
* The reference count of the string buffer is NOT incremented by these
|
|
* methods. If the caller wishes to hold onto the returned value, then
|
|
* the returned string buffer must have its reference count incremented
|
|
* via a call to the AddRef method.
|
|
*/
|
|
static nsStringBuffer* FromString(const nsAString& aStr);
|
|
static nsStringBuffer* FromString(const nsACString& aStr);
|
|
|
|
/**
|
|
* The ToString methods assign this string buffer to a given string
|
|
* object. If the string object does not support sharable string
|
|
* buffers, then its value will be set to a copy of the given string
|
|
* buffer. Otherwise, these methods increment the reference count of the
|
|
* given string buffer. It is important to specify the length (in
|
|
* storage units) of the string contained in the string buffer since the
|
|
* length of the string may be less than its storage size. The string
|
|
* must have a null terminator at the offset specified by |len|.
|
|
*
|
|
* NOTE: storage size is measured in bytes even for wide strings;
|
|
* however, string length is always measured in storage units
|
|
* (2-byte units for wide strings).
|
|
*/
|
|
void ToString(uint32_t aLen, nsAString& aStr, bool aMoveOwnership = false);
|
|
void ToString(uint32_t aLen, nsACString& aStr, bool aMoveOwnership = false);
|
|
|
|
/**
|
|
* This measures the size only if the StringBuffer is unshared.
|
|
*/
|
|
size_t SizeOfIncludingThisIfUnshared(
|
|
mozilla::MallocSizeOf aMallocSizeOf) const;
|
|
|
|
/**
|
|
* This measures the size regardless of whether the StringBuffer is
|
|
* unshared.
|
|
*
|
|
* WARNING: Only use this if you really know what you are doing, because
|
|
* it can easily lead to double-counting strings. If you do use them,
|
|
* please explain clearly in a comment why it's safe and won't lead to
|
|
* double-counting.
|
|
*/
|
|
size_t SizeOfIncludingThisEvenIfShared(
|
|
mozilla::MallocSizeOf aMallocSizeOf) const;
|
|
};
|
|
|
|
#endif /* !defined(nsStringBuffer_h__ */
|