mirror of
https://github.com/mozilla/gecko-dev.git
synced 2025-01-12 23:12:21 +00:00
107a563dc7
This is faster and more accurate. Specifically, the old code would produce non-monontic segments which was causing rasterization differences with skia
189 lines
7.2 KiB
C++
189 lines
7.2 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef MOZILLA_GFX_PATHHELPERS_H_
|
|
#define MOZILLA_GFX_PATHHELPERS_H_
|
|
|
|
#include "2D.h"
|
|
#include "mozilla/Constants.h"
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
template <typename T>
|
|
void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius,
|
|
float aStartAngle, float aEndAngle, bool aAntiClockwise)
|
|
{
|
|
Point startPoint(aOrigin.x + cos(aStartAngle) * aRadius.width,
|
|
aOrigin.y + sin(aStartAngle) * aRadius.height);
|
|
|
|
aSink->LineTo(startPoint);
|
|
|
|
// Clockwise we always sweep from the smaller to the larger angle, ccw
|
|
// it's vice versa.
|
|
if (!aAntiClockwise && (aEndAngle < aStartAngle)) {
|
|
Float correction = Float(ceil((aStartAngle - aEndAngle) / (2.0f * M_PI)));
|
|
aEndAngle += float(correction * 2.0f * M_PI);
|
|
} else if (aAntiClockwise && (aStartAngle < aEndAngle)) {
|
|
Float correction = (Float)ceil((aEndAngle - aStartAngle) / (2.0f * M_PI));
|
|
aStartAngle += float(correction * 2.0f * M_PI);
|
|
}
|
|
|
|
// Sweeping more than 2 * pi is a full circle.
|
|
if (!aAntiClockwise && (aEndAngle - aStartAngle > 2 * M_PI)) {
|
|
aEndAngle = float(aStartAngle + 2.0f * M_PI);
|
|
} else if (aAntiClockwise && (aStartAngle - aEndAngle > 2.0f * M_PI)) {
|
|
aEndAngle = float(aStartAngle - 2.0f * M_PI);
|
|
}
|
|
|
|
// Calculate the total arc we're going to sweep.
|
|
Float arcSweepLeft = fabs(aEndAngle - aStartAngle);
|
|
|
|
Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;
|
|
|
|
Float currentStartAngle = aStartAngle;
|
|
|
|
while (arcSweepLeft > 0) {
|
|
// We guarantee here the current point is the start point of the next
|
|
// curve segment.
|
|
Float currentEndAngle;
|
|
|
|
if (arcSweepLeft > M_PI / 2.0f) {
|
|
currentEndAngle = Float(currentStartAngle + M_PI / 2.0f * sweepDirection);
|
|
} else {
|
|
currentEndAngle = currentStartAngle + arcSweepLeft * sweepDirection;
|
|
}
|
|
|
|
Point currentStartPoint(aOrigin.x + cos(currentStartAngle) * aRadius.width,
|
|
aOrigin.y + sin(currentStartAngle) * aRadius.height);
|
|
Point currentEndPoint(aOrigin.x + cos(currentEndAngle) * aRadius.width,
|
|
aOrigin.y + sin(currentEndAngle) * aRadius.height);
|
|
|
|
// Calculate kappa constant for partial curve. The sign of angle in the
|
|
// tangent will actually ensure this is negative for a counter clockwise
|
|
// sweep, so changing signs later isn't needed.
|
|
Float kappaFactor = (4.0f / 3.0f) * tan((currentEndAngle - currentStartAngle) / 4.0f);
|
|
Float kappaX = kappaFactor * aRadius.width;
|
|
Float kappaY = kappaFactor * aRadius.height;
|
|
|
|
Point tangentStart(-sin(currentStartAngle), cos(currentStartAngle));
|
|
Point cp1 = currentStartPoint;
|
|
cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY);
|
|
|
|
Point revTangentEnd(sin(currentEndAngle), -cos(currentEndAngle));
|
|
Point cp2 = currentEndPoint;
|
|
cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY);
|
|
|
|
aSink->BezierTo(cp1, cp2, currentEndPoint);
|
|
|
|
arcSweepLeft -= Float(M_PI / 2.0f);
|
|
currentStartAngle = currentEndAngle;
|
|
}
|
|
}
|
|
|
|
/* This is basically the ArcToBezier with the parameters for drawing a circle
|
|
* inlined which vastly simplifies it and avoids a bunch of transcedental function
|
|
* calls which should make it faster. */
|
|
template <typename T>
|
|
void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius)
|
|
{
|
|
Point startPoint(aOrigin.x + aRadius.width,
|
|
aOrigin.y);
|
|
|
|
aSink->LineTo(startPoint);
|
|
|
|
// Calculate kappa constant for partial curve. The sign of angle in the
|
|
// tangent will actually ensure this is negative for a counter clockwise
|
|
// sweep, so changing signs later isn't needed.
|
|
Float kappaFactor = (4.0f / 3.0f) * tan((M_PI/2.0f) / 4.0f);
|
|
Float kappaX = kappaFactor * aRadius.width;
|
|
Float kappaY = kappaFactor * aRadius.height;
|
|
Float cosStartAngle = 1;
|
|
Float sinStartAngle = 0;
|
|
for (int i = 0; i < 4; i++) {
|
|
// We guarantee here the current point is the start point of the next
|
|
// curve segment.
|
|
Point currentStartPoint(aOrigin.x + cosStartAngle * aRadius.width,
|
|
aOrigin.y + sinStartAngle * aRadius.height);
|
|
Point currentEndPoint(aOrigin.x + -sinStartAngle * aRadius.width,
|
|
aOrigin.y + cosStartAngle * aRadius.height);
|
|
|
|
Point tangentStart(-sinStartAngle, cosStartAngle);
|
|
Point cp1 = currentStartPoint;
|
|
cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY);
|
|
|
|
Point revTangentEnd(cosStartAngle, sinStartAngle);
|
|
Point cp2 = currentEndPoint;
|
|
cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY);
|
|
|
|
aSink->BezierTo(cp1, cp2, currentEndPoint);
|
|
|
|
// cos(x+pi/2) == -sin(x)
|
|
// sin(x+pi/2) == cos(x)
|
|
Float tmp = cosStartAngle;
|
|
cosStartAngle = -sinStartAngle;
|
|
sinStartAngle = tmp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Appends a path represending a rounded rectangle to the path being built by
|
|
* aPathBuilder.
|
|
*
|
|
* aRect The rectangle to append.
|
|
* aCornerRadii Contains the radii of the top-left, top-right, bottom-right
|
|
* and bottom-left corners, in that order.
|
|
* aDrawClockwise If set to true, the path will start at the left of the top
|
|
* left edge and draw clockwise. If set to false the path will
|
|
* start at the right of the top left edge and draw counter-
|
|
* clockwise.
|
|
*/
|
|
GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder,
|
|
const Rect& aRect,
|
|
const Size(& aCornerRadii)[4],
|
|
bool aDrawClockwise = true);
|
|
|
|
/**
|
|
* Appends a path represending an ellipse to the path being built by
|
|
* aPathBuilder.
|
|
*
|
|
* The ellipse extends aDimensions.width / 2.0 in the horizontal direction
|
|
* from aCenter, and aDimensions.height / 2.0 in the vertical direction.
|
|
*/
|
|
GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
|
|
const Point& aCenter,
|
|
const Size& aDimensions);
|
|
|
|
static inline bool
|
|
UserToDevicePixelSnapped(Rect& aRect, const Matrix& aTransform)
|
|
{
|
|
Point p1 = aTransform * aRect.TopLeft();
|
|
Point p2 = aTransform * aRect.TopRight();
|
|
Point p3 = aTransform * aRect.BottomRight();
|
|
|
|
// Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
|
|
// two opposite corners define the entire rectangle. So check if
|
|
// the axis-aligned rectangle with opposite corners p1 and p3
|
|
// define an axis-aligned rectangle whose other corners are p2 and p4.
|
|
// We actually only need to check one of p2 and p4, since an affine
|
|
// transform maps parallelograms to parallelograms.
|
|
if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
|
|
p1.Round();
|
|
p3.Round();
|
|
|
|
aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
|
|
aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
|
|
std::max(p1.y, p3.y) - aRect.Y()));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace gfx
|
|
} // namespace mozilla
|
|
|
|
#endif /* MOZILLA_GFX_PATHHELPERS_H_ */
|