mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-25 13:51:41 +00:00
09266efcbc
Rather than change every use of IntSize/Rect/Point in image/, this patch attempts to draw the line at the relevant parts of the decoding pipeline to prevent confusion about which size and orientation we are working with. Differential Revision: https://phabricator.services.mozilla.com/D126381
568 lines
18 KiB
C++
568 lines
18 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "Decoder.h"
|
|
|
|
#include "DecodePool.h"
|
|
#include "IDecodingTask.h"
|
|
#include "ISurfaceProvider.h"
|
|
#include "gfxPlatform.h"
|
|
#include "mozilla/gfx/2D.h"
|
|
#include "mozilla/gfx/Point.h"
|
|
#include "mozilla/ProfilerLabels.h"
|
|
#include "mozilla/Telemetry.h"
|
|
#include "nsComponentManagerUtils.h"
|
|
#include "nsProxyRelease.h"
|
|
#include "nsServiceManagerUtils.h"
|
|
|
|
using mozilla::gfx::IntPoint;
|
|
using mozilla::gfx::IntRect;
|
|
using mozilla::gfx::IntSize;
|
|
using mozilla::gfx::SurfaceFormat;
|
|
|
|
namespace mozilla {
|
|
namespace image {
|
|
|
|
class MOZ_STACK_CLASS AutoRecordDecoderTelemetry final {
|
|
public:
|
|
explicit AutoRecordDecoderTelemetry(Decoder* aDecoder) : mDecoder(aDecoder) {
|
|
MOZ_ASSERT(mDecoder);
|
|
|
|
// Begin recording telemetry data.
|
|
mStartTime = TimeStamp::Now();
|
|
}
|
|
|
|
~AutoRecordDecoderTelemetry() {
|
|
// Finish telemetry.
|
|
mDecoder->mDecodeTime += (TimeStamp::Now() - mStartTime);
|
|
}
|
|
|
|
private:
|
|
Decoder* mDecoder;
|
|
TimeStamp mStartTime;
|
|
};
|
|
|
|
Decoder::Decoder(RasterImage* aImage)
|
|
: mInProfile(nullptr),
|
|
mTransform(nullptr),
|
|
mImageData(nullptr),
|
|
mImageDataLength(0),
|
|
mCMSMode(gfxPlatform::GetCMSMode()),
|
|
mImage(aImage),
|
|
mFrameRecycler(nullptr),
|
|
mProgress(NoProgress),
|
|
mFrameCount(0),
|
|
mLoopLength(FrameTimeout::Zero()),
|
|
mDecoderFlags(DefaultDecoderFlags()),
|
|
mSurfaceFlags(DefaultSurfaceFlags()),
|
|
mInitialized(false),
|
|
mMetadataDecode(false),
|
|
mHaveExplicitOutputSize(false),
|
|
mInFrame(false),
|
|
mFinishedNewFrame(false),
|
|
mHasFrameToTake(false),
|
|
mReachedTerminalState(false),
|
|
mDecodeDone(false),
|
|
mError(false),
|
|
mShouldReportError(false),
|
|
mFinalizeFrames(true) {}
|
|
|
|
Decoder::~Decoder() {
|
|
MOZ_ASSERT(mProgress == NoProgress || !mImage,
|
|
"Destroying Decoder without taking all its progress changes");
|
|
MOZ_ASSERT(mInvalidRect.IsEmpty() || !mImage,
|
|
"Destroying Decoder without taking all its invalidations");
|
|
mInitialized = false;
|
|
|
|
if (mInProfile) {
|
|
// mTransform belongs to us only if mInProfile is non-null
|
|
if (mTransform) {
|
|
qcms_transform_release(mTransform);
|
|
}
|
|
qcms_profile_release(mInProfile);
|
|
}
|
|
|
|
if (mImage && !NS_IsMainThread()) {
|
|
// Dispatch mImage to main thread to prevent it from being destructed by the
|
|
// decode thread.
|
|
SurfaceCache::ReleaseImageOnMainThread(mImage.forget());
|
|
}
|
|
}
|
|
|
|
void Decoder::SetSurfaceFlags(SurfaceFlags aSurfaceFlags) {
|
|
MOZ_ASSERT(!mInitialized);
|
|
mSurfaceFlags = aSurfaceFlags;
|
|
if (mSurfaceFlags & SurfaceFlags::NO_COLORSPACE_CONVERSION) {
|
|
mCMSMode = CMSMode::Off;
|
|
}
|
|
}
|
|
|
|
qcms_profile* Decoder::GetCMSOutputProfile() const {
|
|
if (mSurfaceFlags & SurfaceFlags::TO_SRGB_COLORSPACE) {
|
|
return gfxPlatform::GetCMSsRGBProfile();
|
|
}
|
|
return gfxPlatform::GetCMSOutputProfile();
|
|
}
|
|
|
|
qcms_transform* Decoder::GetCMSsRGBTransform(SurfaceFormat aFormat) const {
|
|
if (mSurfaceFlags & SurfaceFlags::TO_SRGB_COLORSPACE) {
|
|
// We want a transform to convert from sRGB to device space, but we are
|
|
// already using sRGB as our device space. That means we can skip
|
|
// color management entirely.
|
|
return nullptr;
|
|
}
|
|
if (qcms_profile_is_sRGB(gfxPlatform::GetCMSOutputProfile())) {
|
|
// Device space is sRGB so we can skip color management as well.
|
|
return nullptr;
|
|
}
|
|
|
|
switch (aFormat) {
|
|
case SurfaceFormat::B8G8R8A8:
|
|
case SurfaceFormat::B8G8R8X8:
|
|
return gfxPlatform::GetCMSBGRATransform();
|
|
case SurfaceFormat::R8G8B8A8:
|
|
case SurfaceFormat::R8G8B8X8:
|
|
return gfxPlatform::GetCMSRGBATransform();
|
|
case SurfaceFormat::R8G8B8:
|
|
return gfxPlatform::GetCMSRGBTransform();
|
|
default:
|
|
MOZ_ASSERT_UNREACHABLE("Unsupported surface format!");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common implementation of the decoder interface.
|
|
*/
|
|
|
|
nsresult Decoder::Init() {
|
|
// No re-initializing
|
|
MOZ_ASSERT(!mInitialized, "Can't re-initialize a decoder!");
|
|
|
|
// All decoders must have a SourceBufferIterator.
|
|
MOZ_ASSERT(mIterator);
|
|
|
|
// Metadata decoders must not set an output size.
|
|
MOZ_ASSERT_IF(mMetadataDecode, !mHaveExplicitOutputSize);
|
|
|
|
// All decoders must be anonymous except for metadata decoders.
|
|
// XXX(seth): Soon that exception will be removed.
|
|
MOZ_ASSERT_IF(mImage, IsMetadataDecode());
|
|
|
|
// Implementation-specific initialization.
|
|
nsresult rv = InitInternal();
|
|
|
|
mInitialized = true;
|
|
|
|
return rv;
|
|
}
|
|
|
|
LexerResult Decoder::Decode(IResumable* aOnResume /* = nullptr */) {
|
|
MOZ_ASSERT(mInitialized, "Should be initialized here");
|
|
MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");
|
|
|
|
// If we're already done, don't attempt to keep decoding.
|
|
if (GetDecodeDone()) {
|
|
return LexerResult(HasError() ? TerminalState::FAILURE
|
|
: TerminalState::SUCCESS);
|
|
}
|
|
|
|
LexerResult lexerResult(TerminalState::FAILURE);
|
|
{
|
|
AUTO_PROFILER_LABEL_CATEGORY_PAIR(GRAPHICS_ImageDecoding);
|
|
AutoRecordDecoderTelemetry telemetry(this);
|
|
|
|
lexerResult = DoDecode(*mIterator, aOnResume);
|
|
};
|
|
|
|
if (lexerResult.is<Yield>()) {
|
|
// We either need more data to continue (in which case either @aOnResume or
|
|
// the caller will reschedule us to run again later), or the decoder is
|
|
// yielding to allow the caller access to some intermediate output.
|
|
return lexerResult;
|
|
}
|
|
|
|
// We reached a terminal state; we're now done decoding.
|
|
MOZ_ASSERT(lexerResult.is<TerminalState>());
|
|
mReachedTerminalState = true;
|
|
|
|
// If decoding failed, record that fact.
|
|
if (lexerResult.as<TerminalState>() == TerminalState::FAILURE) {
|
|
PostError();
|
|
}
|
|
|
|
// Perform final cleanup.
|
|
CompleteDecode();
|
|
|
|
return LexerResult(HasError() ? TerminalState::FAILURE
|
|
: TerminalState::SUCCESS);
|
|
}
|
|
|
|
LexerResult Decoder::TerminateFailure() {
|
|
PostError();
|
|
|
|
// Perform final cleanup if need be.
|
|
if (!mReachedTerminalState) {
|
|
mReachedTerminalState = true;
|
|
CompleteDecode();
|
|
}
|
|
|
|
return LexerResult(TerminalState::FAILURE);
|
|
}
|
|
|
|
bool Decoder::ShouldSyncDecode(size_t aByteLimit) {
|
|
MOZ_ASSERT(aByteLimit > 0);
|
|
MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");
|
|
|
|
return mIterator->RemainingBytesIsNoMoreThan(aByteLimit);
|
|
}
|
|
|
|
void Decoder::CompleteDecode() {
|
|
// Implementation-specific finalization.
|
|
nsresult rv = BeforeFinishInternal();
|
|
if (NS_FAILED(rv)) {
|
|
PostError();
|
|
}
|
|
|
|
rv = HasError() ? FinishWithErrorInternal() : FinishInternal();
|
|
if (NS_FAILED(rv)) {
|
|
PostError();
|
|
}
|
|
|
|
if (IsMetadataDecode()) {
|
|
// If this was a metadata decode and we never got a size, the decode failed.
|
|
if (!HasSize()) {
|
|
PostError();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the implementation left us mid-frame, finish that up. Note that it may
|
|
// have left us transparent.
|
|
if (mInFrame) {
|
|
PostHasTransparency();
|
|
PostFrameStop();
|
|
}
|
|
|
|
// If PostDecodeDone() has not been called, we may need to send teardown
|
|
// notifications if it is unrecoverable.
|
|
if (mDecodeDone) {
|
|
MOZ_ASSERT(HasError() || mCurrentFrame, "Should have an error or a frame");
|
|
} else {
|
|
// We should always report an error to the console in this case.
|
|
mShouldReportError = true;
|
|
|
|
if (GetCompleteFrameCount() > 0) {
|
|
// We're usable if we have at least one complete frame, so do exactly
|
|
// what we should have when the decoder completed.
|
|
PostHasTransparency();
|
|
PostDecodeDone();
|
|
} else {
|
|
// We're not usable. Record some final progress indicating the error.
|
|
mProgress |= FLAG_DECODE_COMPLETE | FLAG_HAS_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Decoder::SetOutputSize(const OrientedIntSize& aSize) {
|
|
mOutputSize = Some(aSize);
|
|
mHaveExplicitOutputSize = true;
|
|
}
|
|
|
|
Maybe<OrientedIntSize> Decoder::ExplicitOutputSize() const {
|
|
MOZ_ASSERT_IF(mHaveExplicitOutputSize, mOutputSize);
|
|
return mHaveExplicitOutputSize ? mOutputSize : Nothing();
|
|
}
|
|
|
|
Maybe<uint32_t> Decoder::TakeCompleteFrameCount() {
|
|
const bool finishedNewFrame = mFinishedNewFrame;
|
|
mFinishedNewFrame = false;
|
|
return finishedNewFrame ? Some(GetCompleteFrameCount()) : Nothing();
|
|
}
|
|
|
|
DecoderFinalStatus Decoder::FinalStatus() const {
|
|
return DecoderFinalStatus(IsMetadataDecode(), GetDecodeDone(), HasError(),
|
|
ShouldReportError());
|
|
}
|
|
|
|
DecoderTelemetry Decoder::Telemetry() const {
|
|
MOZ_ASSERT(mIterator);
|
|
return DecoderTelemetry(SpeedHistogram(),
|
|
mIterator ? mIterator->ByteCount() : 0,
|
|
mIterator ? mIterator->ChunkCount() : 0, mDecodeTime);
|
|
}
|
|
|
|
nsresult Decoder::AllocateFrame(const gfx::IntSize& aOutputSize,
|
|
gfx::SurfaceFormat aFormat,
|
|
const Maybe<AnimationParams>& aAnimParams) {
|
|
mCurrentFrame = AllocateFrameInternal(aOutputSize, aFormat, aAnimParams,
|
|
std::move(mCurrentFrame));
|
|
|
|
if (mCurrentFrame) {
|
|
mHasFrameToTake = true;
|
|
|
|
// Gather the raw pointers the decoders will use.
|
|
mCurrentFrame->GetImageData(&mImageData, &mImageDataLength);
|
|
|
|
// We should now be on |aFrameNum|. (Note that we're comparing the frame
|
|
// number, which is zero-based, with the frame count, which is one-based.)
|
|
MOZ_ASSERT_IF(aAnimParams, aAnimParams->mFrameNum + 1 == mFrameCount);
|
|
|
|
// If we're past the first frame, PostIsAnimated() should've been called.
|
|
MOZ_ASSERT_IF(mFrameCount > 1, HasAnimation());
|
|
|
|
// Update our state to reflect the new frame.
|
|
MOZ_ASSERT(!mInFrame, "Starting new frame but not done with old one!");
|
|
mInFrame = true;
|
|
}
|
|
|
|
return mCurrentFrame ? NS_OK : NS_ERROR_FAILURE;
|
|
}
|
|
|
|
RawAccessFrameRef Decoder::AllocateFrameInternal(
|
|
const gfx::IntSize& aOutputSize, SurfaceFormat aFormat,
|
|
const Maybe<AnimationParams>& aAnimParams,
|
|
RawAccessFrameRef&& aPreviousFrame) {
|
|
if (HasError()) {
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
uint32_t frameNum = aAnimParams ? aAnimParams->mFrameNum : 0;
|
|
if (frameNum != mFrameCount) {
|
|
MOZ_ASSERT_UNREACHABLE("Allocating frames out of order");
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
if (aOutputSize.width <= 0 || aOutputSize.height <= 0) {
|
|
NS_WARNING("Trying to add frame with zero or negative size");
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
if (frameNum > 0) {
|
|
if (aPreviousFrame->GetDisposalMethod() !=
|
|
DisposalMethod::RESTORE_PREVIOUS) {
|
|
// If the new restore frame is the direct previous frame, then we know
|
|
// the dirty rect is composed only of the current frame's blend rect and
|
|
// the restore frame's clear rect (if applicable) which are handled in
|
|
// filters.
|
|
mRestoreFrame = std::move(aPreviousFrame);
|
|
mRestoreDirtyRect.SetBox(0, 0, 0, 0);
|
|
} else {
|
|
// We only need the previous frame's dirty rect, because while there may
|
|
// have been several frames between us and mRestoreFrame, the only areas
|
|
// that changed are the restore frame's clear rect, the current frame
|
|
// blending rect, and the previous frame's blending rect. All else is
|
|
// forgotten due to us restoring the same frame again.
|
|
mRestoreDirtyRect = aPreviousFrame->GetBoundedBlendRect();
|
|
}
|
|
}
|
|
|
|
RawAccessFrameRef ref;
|
|
|
|
// If we have a frame recycler, it must be for an animated image producing
|
|
// full frames. If the higher layers are discarding frames because of the
|
|
// memory footprint, then the recycler will allow us to reuse the buffers.
|
|
// Each frame should be the same size and have mostly the same properties.
|
|
if (mFrameRecycler) {
|
|
MOZ_ASSERT(aAnimParams);
|
|
|
|
ref = mFrameRecycler->RecycleFrame(mRecycleRect);
|
|
if (ref) {
|
|
// If the recycled frame is actually the current restore frame, we cannot
|
|
// use it. If the next restore frame is the new frame we are creating, in
|
|
// theory we could reuse it, but we would need to store the restore frame
|
|
// animation parameters elsewhere. For now we just drop it.
|
|
bool blocked = ref.get() == mRestoreFrame.get();
|
|
if (!blocked) {
|
|
blocked = NS_FAILED(ref->InitForDecoderRecycle(aAnimParams.ref()));
|
|
}
|
|
|
|
if (blocked) {
|
|
ref.reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Either the recycler had nothing to give us, or we don't have a recycler.
|
|
// Produce a new frame to store the data.
|
|
if (!ref) {
|
|
// There is no underlying data to reuse, so reset the recycle rect to be
|
|
// the full frame, to ensure the restore frame is fully copied.
|
|
mRecycleRect = IntRect(IntPoint(0, 0), aOutputSize);
|
|
|
|
bool nonPremult = bool(mSurfaceFlags & SurfaceFlags::NO_PREMULTIPLY_ALPHA);
|
|
auto frame = MakeNotNull<RefPtr<imgFrame>>();
|
|
if (NS_FAILED(frame->InitForDecoder(aOutputSize, aFormat, nonPremult,
|
|
aAnimParams, bool(mFrameRecycler)))) {
|
|
NS_WARNING("imgFrame::Init should succeed");
|
|
return RawAccessFrameRef();
|
|
}
|
|
|
|
ref = frame->RawAccessRef();
|
|
if (!ref) {
|
|
frame->Abort();
|
|
return RawAccessFrameRef();
|
|
}
|
|
}
|
|
|
|
mFrameCount++;
|
|
|
|
return ref;
|
|
}
|
|
|
|
/*
|
|
* Hook stubs. Override these as necessary in decoder implementations.
|
|
*/
|
|
|
|
nsresult Decoder::InitInternal() { return NS_OK; }
|
|
nsresult Decoder::BeforeFinishInternal() { return NS_OK; }
|
|
nsresult Decoder::FinishInternal() { return NS_OK; }
|
|
|
|
nsresult Decoder::FinishWithErrorInternal() {
|
|
MOZ_ASSERT(!mInFrame);
|
|
return NS_OK;
|
|
}
|
|
|
|
/*
|
|
* Progress Notifications
|
|
*/
|
|
|
|
void Decoder::PostSize(int32_t aWidth, int32_t aHeight,
|
|
Orientation aOrientation, Resolution aResolution) {
|
|
// Validate.
|
|
MOZ_ASSERT(aWidth >= 0, "Width can't be negative!");
|
|
MOZ_ASSERT(aHeight >= 0, "Height can't be negative!");
|
|
|
|
// Set our intrinsic size.
|
|
mImageMetadata.SetSize(aWidth, aHeight, aOrientation, aResolution);
|
|
|
|
// Verify it is the expected size, if given. Note that this is only used by
|
|
// the ICO decoder for embedded image types, so only its subdecoders are
|
|
// required to handle failures in PostSize.
|
|
if (!IsExpectedSize()) {
|
|
PostError();
|
|
return;
|
|
}
|
|
|
|
// Set our output size if it's not already set.
|
|
if (!mOutputSize) {
|
|
mOutputSize = Some(mImageMetadata.GetSize());
|
|
}
|
|
|
|
MOZ_ASSERT(mOutputSize->width <= mImageMetadata.GetSize().width &&
|
|
mOutputSize->height <= mImageMetadata.GetSize().height,
|
|
"Output size will result in upscaling");
|
|
|
|
// Record this notification.
|
|
mProgress |= FLAG_SIZE_AVAILABLE;
|
|
}
|
|
|
|
void Decoder::PostHasTransparency() { mProgress |= FLAG_HAS_TRANSPARENCY; }
|
|
|
|
void Decoder::PostIsAnimated(FrameTimeout aFirstFrameTimeout) {
|
|
mProgress |= FLAG_IS_ANIMATED;
|
|
mImageMetadata.SetHasAnimation();
|
|
mImageMetadata.SetFirstFrameTimeout(aFirstFrameTimeout);
|
|
}
|
|
|
|
void Decoder::PostFrameStop(Opacity aFrameOpacity) {
|
|
// We should be mid-frame
|
|
MOZ_ASSERT(!IsMetadataDecode(), "Stopping frame during metadata decode");
|
|
MOZ_ASSERT(mInFrame, "Stopping frame when we didn't start one");
|
|
MOZ_ASSERT(mCurrentFrame, "Stopping frame when we don't have one");
|
|
|
|
// Update our state.
|
|
mInFrame = false;
|
|
mFinishedNewFrame = true;
|
|
|
|
mCurrentFrame->Finish(aFrameOpacity, mFinalizeFrames);
|
|
|
|
mProgress |= FLAG_FRAME_COMPLETE;
|
|
|
|
mLoopLength += mCurrentFrame->GetTimeout();
|
|
|
|
if (mFrameCount == 1) {
|
|
// If we're not sending partial invalidations, then we send an invalidation
|
|
// here when the first frame is complete.
|
|
if (!ShouldSendPartialInvalidations()) {
|
|
mInvalidRect.UnionRect(mInvalidRect,
|
|
OrientedIntRect(OrientedIntPoint(), Size()));
|
|
}
|
|
|
|
// If we dispose of the first frame by clearing it, then the first frame's
|
|
// refresh area is all of itself. RESTORE_PREVIOUS is invalid (assumed to
|
|
// be DISPOSE_CLEAR).
|
|
switch (mCurrentFrame->GetDisposalMethod()) {
|
|
default:
|
|
MOZ_FALLTHROUGH_ASSERT("Unexpected DisposalMethod");
|
|
case DisposalMethod::CLEAR:
|
|
case DisposalMethod::CLEAR_ALL:
|
|
case DisposalMethod::RESTORE_PREVIOUS:
|
|
mFirstFrameRefreshArea = IntRect(IntPoint(), Size().ToUnknownSize());
|
|
break;
|
|
case DisposalMethod::KEEP:
|
|
case DisposalMethod::NOT_SPECIFIED:
|
|
break;
|
|
}
|
|
} else {
|
|
// Some GIFs are huge but only have a small area that they animate. We only
|
|
// need to refresh that small area when frame 0 comes around again.
|
|
mFirstFrameRefreshArea.UnionRect(mFirstFrameRefreshArea,
|
|
mCurrentFrame->GetBoundedBlendRect());
|
|
}
|
|
}
|
|
|
|
void Decoder::PostInvalidation(const OrientedIntRect& aRect,
|
|
const Maybe<OrientedIntRect>& aRectAtOutputSize
|
|
/* = Nothing() */) {
|
|
// We should be mid-frame
|
|
MOZ_ASSERT(mInFrame, "Can't invalidate when not mid-frame!");
|
|
MOZ_ASSERT(mCurrentFrame, "Can't invalidate when not mid-frame!");
|
|
|
|
// Record this invalidation, unless we're not sending partial invalidations
|
|
// or we're past the first frame.
|
|
if (ShouldSendPartialInvalidations() && mFrameCount == 1) {
|
|
mInvalidRect.UnionRect(mInvalidRect, aRect);
|
|
mCurrentFrame->ImageUpdated(
|
|
aRectAtOutputSize.valueOr(aRect).ToUnknownRect());
|
|
}
|
|
}
|
|
|
|
void Decoder::PostDecodeDone(int32_t aLoopCount /* = 0 */) {
|
|
MOZ_ASSERT(!IsMetadataDecode(), "Done with decoding in metadata decode");
|
|
MOZ_ASSERT(!mInFrame, "Can't be done decoding if we're mid-frame!");
|
|
MOZ_ASSERT(!mDecodeDone, "Decode already done!");
|
|
mDecodeDone = true;
|
|
|
|
mImageMetadata.SetLoopCount(aLoopCount);
|
|
|
|
// Some metadata that we track should take into account every frame in the
|
|
// image. If this is a first-frame-only decode, our accumulated loop length
|
|
// and first frame refresh area only includes the first frame, so it's not
|
|
// correct and we don't record it.
|
|
if (!IsFirstFrameDecode()) {
|
|
mImageMetadata.SetLoopLength(mLoopLength);
|
|
mImageMetadata.SetFirstFrameRefreshArea(mFirstFrameRefreshArea);
|
|
}
|
|
|
|
mProgress |= FLAG_DECODE_COMPLETE;
|
|
}
|
|
|
|
void Decoder::PostError() {
|
|
mError = true;
|
|
|
|
if (mInFrame) {
|
|
MOZ_ASSERT(mCurrentFrame);
|
|
MOZ_ASSERT(mFrameCount > 0);
|
|
mCurrentFrame->Abort();
|
|
mInFrame = false;
|
|
--mFrameCount;
|
|
mHasFrameToTake = false;
|
|
}
|
|
}
|
|
|
|
} // namespace image
|
|
} // namespace mozilla
|