mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-30 16:22:00 +00:00
d0f6c7fc66
Done with: ./mach static-analysis check --checks="-*, readability-redundant-member-init" --fix . https://clang.llvm.org/extra/clang-tidy/checks/readability/redundant-member-init.html Differential Revision: https://phabricator.services.mozilla.com/D190002
870 lines
26 KiB
C++
870 lines
26 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <new>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "PLDHashTable.h"
|
|
#include "nsDebug.h"
|
|
#include "mozilla/HashFunctions.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
#include "mozilla/OperatorNewExtensions.h"
|
|
#include "mozilla/ScopeExit.h"
|
|
#include "nsAlgorithm.h"
|
|
#include "nsPointerHashKeys.h"
|
|
#include "mozilla/Likely.h"
|
|
#include "mozilla/MemoryReporting.h"
|
|
#include "mozilla/Maybe.h"
|
|
#include "mozilla/ChaosMode.h"
|
|
|
|
using namespace mozilla;
|
|
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
|
|
class AutoReadOp {
|
|
Checker& mChk;
|
|
|
|
public:
|
|
explicit AutoReadOp(Checker& aChk) : mChk(aChk) { mChk.StartReadOp(); }
|
|
~AutoReadOp() { mChk.EndReadOp(); }
|
|
};
|
|
|
|
class AutoWriteOp {
|
|
Checker& mChk;
|
|
|
|
public:
|
|
explicit AutoWriteOp(Checker& aChk) : mChk(aChk) { mChk.StartWriteOp(); }
|
|
~AutoWriteOp() { mChk.EndWriteOp(); }
|
|
};
|
|
|
|
class AutoIteratorRemovalOp {
|
|
Checker& mChk;
|
|
|
|
public:
|
|
explicit AutoIteratorRemovalOp(Checker& aChk) : mChk(aChk) {
|
|
mChk.StartIteratorRemovalOp();
|
|
}
|
|
~AutoIteratorRemovalOp() { mChk.EndIteratorRemovalOp(); }
|
|
};
|
|
|
|
class AutoDestructorOp {
|
|
Checker& mChk;
|
|
|
|
public:
|
|
explicit AutoDestructorOp(Checker& aChk) : mChk(aChk) {
|
|
mChk.StartDestructorOp();
|
|
}
|
|
~AutoDestructorOp() { mChk.EndDestructorOp(); }
|
|
};
|
|
|
|
#endif
|
|
|
|
/* static */
|
|
PLDHashNumber PLDHashTable::HashStringKey(const void* aKey) {
|
|
return HashString(static_cast<const char*>(aKey));
|
|
}
|
|
|
|
/* static */
|
|
PLDHashNumber PLDHashTable::HashVoidPtrKeyStub(const void* aKey) {
|
|
return nsPtrHashKey<void>::HashKey(aKey);
|
|
}
|
|
|
|
/* static */
|
|
bool PLDHashTable::MatchEntryStub(const PLDHashEntryHdr* aEntry,
|
|
const void* aKey) {
|
|
const PLDHashEntryStub* stub = (const PLDHashEntryStub*)aEntry;
|
|
|
|
return stub->key == aKey;
|
|
}
|
|
|
|
/* static */
|
|
bool PLDHashTable::MatchStringKey(const PLDHashEntryHdr* aEntry,
|
|
const void* aKey) {
|
|
const PLDHashEntryStub* stub = (const PLDHashEntryStub*)aEntry;
|
|
|
|
// XXX tolerate null keys on account of sloppy Mozilla callers.
|
|
return stub->key == aKey ||
|
|
(stub->key && aKey &&
|
|
strcmp((const char*)stub->key, (const char*)aKey) == 0);
|
|
}
|
|
|
|
/* static */
|
|
void PLDHashTable::MoveEntryStub(PLDHashTable* aTable,
|
|
const PLDHashEntryHdr* aFrom,
|
|
PLDHashEntryHdr* aTo) {
|
|
memcpy(aTo, aFrom, aTable->mEntrySize);
|
|
}
|
|
|
|
/* static */
|
|
void PLDHashTable::ClearEntryStub(PLDHashTable* aTable,
|
|
PLDHashEntryHdr* aEntry) {
|
|
memset(aEntry, 0, aTable->mEntrySize);
|
|
}
|
|
|
|
static const PLDHashTableOps gStubOps = {
|
|
PLDHashTable::HashVoidPtrKeyStub, PLDHashTable::MatchEntryStub,
|
|
PLDHashTable::MoveEntryStub, PLDHashTable::ClearEntryStub, nullptr};
|
|
|
|
/* static */ const PLDHashTableOps* PLDHashTable::StubOps() {
|
|
return &gStubOps;
|
|
}
|
|
|
|
static bool SizeOfEntryStore(uint32_t aCapacity, uint32_t aEntrySize,
|
|
uint32_t* aNbytes) {
|
|
uint32_t slotSize = aEntrySize + sizeof(PLDHashNumber);
|
|
uint64_t nbytes64 = uint64_t(aCapacity) * uint64_t(slotSize);
|
|
*aNbytes = aCapacity * slotSize;
|
|
return uint64_t(*aNbytes) == nbytes64; // returns false on overflow
|
|
}
|
|
|
|
// Compute max and min load numbers (entry counts). We have a secondary max
|
|
// that allows us to overload a table reasonably if it cannot be grown further
|
|
// (i.e. if ChangeTable() fails). The table slows down drastically if the
|
|
// secondary max is too close to 1, but 0.96875 gives only a slight slowdown
|
|
// while allowing 1.3x more elements.
|
|
static inline uint32_t MaxLoad(uint32_t aCapacity) {
|
|
return aCapacity - (aCapacity >> 2); // == aCapacity * 0.75
|
|
}
|
|
static inline uint32_t MaxLoadOnGrowthFailure(uint32_t aCapacity) {
|
|
return aCapacity - (aCapacity >> 5); // == aCapacity * 0.96875
|
|
}
|
|
static inline uint32_t MinLoad(uint32_t aCapacity) {
|
|
return aCapacity >> 2; // == aCapacity * 0.25
|
|
}
|
|
|
|
// Compute the minimum capacity (and the Log2 of that capacity) for a table
|
|
// containing |aLength| elements while respecting the following contraints:
|
|
// - table must be at most 75% full;
|
|
// - capacity must be a power of two;
|
|
// - capacity cannot be too small.
|
|
static inline void BestCapacity(uint32_t aLength, uint32_t* aCapacityOut,
|
|
uint32_t* aLog2CapacityOut) {
|
|
// Callers should ensure this is true.
|
|
MOZ_ASSERT(aLength <= PLDHashTable::kMaxInitialLength);
|
|
|
|
// Compute the smallest capacity allowing |aLength| elements to be inserted
|
|
// without rehashing.
|
|
uint32_t capacity = (aLength * 4 + (3 - 1)) / 3; // == ceil(aLength * 4 / 3)
|
|
if (capacity < PLDHashTable::kMinCapacity) {
|
|
capacity = PLDHashTable::kMinCapacity;
|
|
}
|
|
|
|
// Round up capacity to next power-of-two.
|
|
uint32_t log2 = CeilingLog2(capacity);
|
|
capacity = 1u << log2;
|
|
MOZ_ASSERT(capacity <= PLDHashTable::kMaxCapacity);
|
|
|
|
*aCapacityOut = capacity;
|
|
*aLog2CapacityOut = log2;
|
|
}
|
|
|
|
/* static */ MOZ_ALWAYS_INLINE uint32_t
|
|
PLDHashTable::HashShift(uint32_t aEntrySize, uint32_t aLength) {
|
|
if (aLength > kMaxInitialLength) {
|
|
MOZ_CRASH("Initial length is too large");
|
|
}
|
|
|
|
uint32_t capacity, log2;
|
|
BestCapacity(aLength, &capacity, &log2);
|
|
|
|
uint32_t nbytes;
|
|
if (!SizeOfEntryStore(capacity, aEntrySize, &nbytes)) {
|
|
MOZ_CRASH("Initial entry store size is too large");
|
|
}
|
|
|
|
// Compute the hashShift value.
|
|
return kPLDHashNumberBits - log2;
|
|
}
|
|
|
|
PLDHashTable::PLDHashTable(const PLDHashTableOps* aOps, uint32_t aEntrySize,
|
|
uint32_t aLength)
|
|
: mOps(aOps),
|
|
mGeneration(0),
|
|
mHashShift(HashShift(aEntrySize, aLength)),
|
|
mEntrySize(aEntrySize),
|
|
mEntryCount(0),
|
|
mRemovedCount(0) {
|
|
// An entry size greater than 0xff is unlikely, but let's check anyway. If
|
|
// you hit this, your hashtable would waste lots of space for unused entries
|
|
// and you should change your hash table's entries to pointers.
|
|
if (aEntrySize != uint32_t(mEntrySize)) {
|
|
MOZ_CRASH("Entry size is too large");
|
|
}
|
|
}
|
|
|
|
PLDHashTable& PLDHashTable::operator=(PLDHashTable&& aOther) {
|
|
if (this == &aOther) {
|
|
return *this;
|
|
}
|
|
|
|
// |mOps| and |mEntrySize| are required to stay the same, they're
|
|
// conceptually part of the type -- indeed, if PLDHashTable was a templated
|
|
// type like nsTHashtable, they *would* be part of the type -- so it only
|
|
// makes sense to assign in cases where they match.
|
|
MOZ_RELEASE_ASSERT(mOps == aOther.mOps || !mOps);
|
|
MOZ_RELEASE_ASSERT(mEntrySize == aOther.mEntrySize || !mEntrySize);
|
|
|
|
// Reconstruct |this|.
|
|
const PLDHashTableOps* ops = aOther.mOps;
|
|
this->~PLDHashTable();
|
|
new (KnownNotNull, this) PLDHashTable(ops, aOther.mEntrySize, 0);
|
|
|
|
// Move non-const pieces over.
|
|
mHashShift = std::move(aOther.mHashShift);
|
|
mEntryCount = std::move(aOther.mEntryCount);
|
|
mRemovedCount = std::move(aOther.mRemovedCount);
|
|
mEntryStore.Set(aOther.mEntryStore.Get(), &mGeneration);
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
mChecker = std::move(aOther.mChecker);
|
|
#endif
|
|
|
|
// Clear up |aOther| so its destruction will be a no-op and it reports being
|
|
// empty.
|
|
{
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
AutoDestructorOp op(mChecker);
|
|
#endif
|
|
aOther.mEntryCount = 0;
|
|
aOther.mEntryStore.Set(nullptr, &aOther.mGeneration);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
PLDHashNumber PLDHashTable::Hash1(PLDHashNumber aHash0) const {
|
|
return aHash0 >> mHashShift;
|
|
}
|
|
|
|
void PLDHashTable::Hash2(PLDHashNumber aHash0, uint32_t& aHash2Out,
|
|
uint32_t& aSizeMaskOut) const {
|
|
uint32_t sizeLog2 = kPLDHashNumberBits - mHashShift;
|
|
uint32_t sizeMask = (PLDHashNumber(1) << sizeLog2) - 1;
|
|
aSizeMaskOut = sizeMask;
|
|
|
|
// The incoming aHash0 always has the low bit unset (since we leave it
|
|
// free for the collision flag), and should have reasonably random
|
|
// data in the other 31 bits. We used the high bits of aHash0 for
|
|
// Hash1, so we use the low bits here. If the table size is large,
|
|
// the bits we use may overlap, but that's still more random than
|
|
// filling with 0s.
|
|
//
|
|
// Double hashing needs the second hash code to be relatively prime to table
|
|
// size, so we simply make hash2 odd.
|
|
//
|
|
// This also conveniently covers up the fact that we have the low bit
|
|
// unset since aHash0 has the low bit unset.
|
|
aHash2Out = (aHash0 & sizeMask) | 1;
|
|
}
|
|
|
|
// Reserve mKeyHash 0 for free entries and 1 for removed-entry sentinels. Note
|
|
// that a removed-entry sentinel need be stored only if the removed entry had
|
|
// a colliding entry added after it. Therefore we can use 1 as the collision
|
|
// flag in addition to the removed-entry sentinel value. Multiplicative hash
|
|
// uses the high order bits of mKeyHash, so this least-significant reservation
|
|
// should not hurt the hash function's effectiveness much.
|
|
|
|
// Match an entry's mKeyHash against an unstored one computed from a key.
|
|
/* static */
|
|
bool PLDHashTable::MatchSlotKeyhash(Slot& aSlot, const PLDHashNumber aKeyHash) {
|
|
return (aSlot.KeyHash() & ~kCollisionFlag) == aKeyHash;
|
|
}
|
|
|
|
// Compute the address of the indexed entry in table.
|
|
auto PLDHashTable::SlotForIndex(uint32_t aIndex) const -> Slot {
|
|
return mEntryStore.SlotForIndex(aIndex, mEntrySize, CapacityFromHashShift());
|
|
}
|
|
|
|
PLDHashTable::~PLDHashTable() {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
AutoDestructorOp op(mChecker);
|
|
#endif
|
|
|
|
if (!mEntryStore.IsAllocated()) {
|
|
return;
|
|
}
|
|
|
|
// Clear any remaining live entries (if not trivially destructible).
|
|
if (mOps->clearEntry) {
|
|
mEntryStore.ForEachSlot(Capacity(), mEntrySize, [&](const Slot& aSlot) {
|
|
if (aSlot.IsLive()) {
|
|
mOps->clearEntry(this, aSlot.ToEntry());
|
|
}
|
|
});
|
|
}
|
|
|
|
// Entry storage is freed last, by ~EntryStore().
|
|
}
|
|
|
|
void PLDHashTable::ClearAndPrepareForLength(uint32_t aLength) {
|
|
// Get these values before the destructor clobbers them.
|
|
const PLDHashTableOps* ops = mOps;
|
|
uint32_t entrySize = mEntrySize;
|
|
|
|
this->~PLDHashTable();
|
|
new (KnownNotNull, this) PLDHashTable(ops, entrySize, aLength);
|
|
}
|
|
|
|
void PLDHashTable::Clear() { ClearAndPrepareForLength(kDefaultInitialLength); }
|
|
|
|
// If |Reason| is |ForAdd|, the return value is always non-null and it may be
|
|
// a previously-removed entry. If |Reason| is |ForSearchOrRemove|, the return
|
|
// value is null on a miss, and will never be a previously-removed entry on a
|
|
// hit. This distinction is a bit grotty but this function is hot enough that
|
|
// these differences are worthwhile. (It's also hot enough that
|
|
// MOZ_ALWAYS_INLINE makes a significant difference.)
|
|
template <PLDHashTable::SearchReason Reason, typename Success, typename Failure>
|
|
MOZ_ALWAYS_INLINE auto PLDHashTable::SearchTable(const void* aKey,
|
|
PLDHashNumber aKeyHash,
|
|
Success&& aSuccess,
|
|
Failure&& aFailure) const {
|
|
MOZ_ASSERT(mEntryStore.IsAllocated());
|
|
NS_ASSERTION(!(aKeyHash & kCollisionFlag), "!(aKeyHash & kCollisionFlag)");
|
|
|
|
// Compute the primary hash address.
|
|
PLDHashNumber hash1 = Hash1(aKeyHash);
|
|
Slot slot = SlotForIndex(hash1);
|
|
|
|
// Miss: return space for a new entry.
|
|
if (slot.IsFree()) {
|
|
return (Reason == ForAdd) ? aSuccess(slot) : aFailure();
|
|
}
|
|
|
|
// Hit: return entry.
|
|
PLDHashMatchEntry matchEntry = mOps->matchEntry;
|
|
if (MatchSlotKeyhash(slot, aKeyHash)) {
|
|
PLDHashEntryHdr* e = slot.ToEntry();
|
|
if (matchEntry(e, aKey)) {
|
|
return aSuccess(slot);
|
|
}
|
|
}
|
|
|
|
// Collision: double hash.
|
|
PLDHashNumber hash2;
|
|
uint32_t sizeMask;
|
|
Hash2(aKeyHash, hash2, sizeMask);
|
|
|
|
// Save the first removed entry slot so Add() can recycle it. (Only used
|
|
// if Reason==ForAdd.)
|
|
Maybe<Slot> firstRemoved;
|
|
|
|
for (;;) {
|
|
if (Reason == ForAdd && !firstRemoved) {
|
|
if (MOZ_UNLIKELY(slot.IsRemoved())) {
|
|
firstRemoved.emplace(slot);
|
|
} else {
|
|
slot.MarkColliding();
|
|
}
|
|
}
|
|
|
|
hash1 -= hash2;
|
|
hash1 &= sizeMask;
|
|
|
|
slot = SlotForIndex(hash1);
|
|
if (slot.IsFree()) {
|
|
if (Reason != ForAdd) {
|
|
return aFailure();
|
|
}
|
|
return aSuccess(firstRemoved.refOr(slot));
|
|
}
|
|
|
|
if (MatchSlotKeyhash(slot, aKeyHash)) {
|
|
PLDHashEntryHdr* e = slot.ToEntry();
|
|
if (matchEntry(e, aKey)) {
|
|
return aSuccess(slot);
|
|
}
|
|
}
|
|
}
|
|
|
|
// NOTREACHED
|
|
return aFailure();
|
|
}
|
|
|
|
// This is a copy of SearchTable(), used by ChangeTable(), hardcoded to
|
|
// 1. assume |Reason| is |ForAdd|,
|
|
// 2. assume that |aKey| will never match an existing entry, and
|
|
// 3. assume that no entries have been removed from the current table
|
|
// structure.
|
|
// Avoiding the need for |aKey| means we can avoid needing a way to map entries
|
|
// to keys, which means callers can use complex key types more easily.
|
|
MOZ_ALWAYS_INLINE auto PLDHashTable::FindFreeSlot(PLDHashNumber aKeyHash) const
|
|
-> Slot {
|
|
MOZ_ASSERT(mEntryStore.IsAllocated());
|
|
NS_ASSERTION(!(aKeyHash & kCollisionFlag), "!(aKeyHash & kCollisionFlag)");
|
|
|
|
// Compute the primary hash address.
|
|
PLDHashNumber hash1 = Hash1(aKeyHash);
|
|
Slot slot = SlotForIndex(hash1);
|
|
|
|
// Miss: return space for a new entry.
|
|
if (slot.IsFree()) {
|
|
return slot;
|
|
}
|
|
|
|
// Collision: double hash.
|
|
PLDHashNumber hash2;
|
|
uint32_t sizeMask;
|
|
Hash2(aKeyHash, hash2, sizeMask);
|
|
|
|
for (;;) {
|
|
MOZ_ASSERT(!slot.IsRemoved());
|
|
slot.MarkColliding();
|
|
|
|
hash1 -= hash2;
|
|
hash1 &= sizeMask;
|
|
|
|
slot = SlotForIndex(hash1);
|
|
if (slot.IsFree()) {
|
|
return slot;
|
|
}
|
|
}
|
|
|
|
// NOTREACHED
|
|
}
|
|
|
|
bool PLDHashTable::ChangeTable(int32_t aDeltaLog2) {
|
|
MOZ_ASSERT(mEntryStore.IsAllocated());
|
|
|
|
// Look, but don't touch, until we succeed in getting new entry store.
|
|
int32_t oldLog2 = kPLDHashNumberBits - mHashShift;
|
|
int32_t newLog2 = oldLog2 + aDeltaLog2;
|
|
uint32_t newCapacity = 1u << newLog2;
|
|
if (newCapacity > kMaxCapacity) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t nbytes;
|
|
if (!SizeOfEntryStore(newCapacity, mEntrySize, &nbytes)) {
|
|
return false; // overflowed
|
|
}
|
|
|
|
char* newEntryStore = (char*)calloc(1, nbytes);
|
|
if (!newEntryStore) {
|
|
return false;
|
|
}
|
|
|
|
// We can't fail from here on, so update table parameters.
|
|
mHashShift = kPLDHashNumberBits - newLog2;
|
|
mRemovedCount = 0;
|
|
|
|
// Assign the new entry store to table.
|
|
char* oldEntryStore = mEntryStore.Get();
|
|
mEntryStore.Set(newEntryStore, &mGeneration);
|
|
PLDHashMoveEntry moveEntry = mOps->moveEntry;
|
|
|
|
// Copy only live entries, leaving removed ones behind.
|
|
uint32_t oldCapacity = 1u << oldLog2;
|
|
EntryStore::ForEachSlot(
|
|
oldEntryStore, oldCapacity, mEntrySize, [&](const Slot& slot) {
|
|
if (slot.IsLive()) {
|
|
const PLDHashNumber key = slot.KeyHash() & ~kCollisionFlag;
|
|
Slot newSlot = FindFreeSlot(key);
|
|
MOZ_ASSERT(newSlot.IsFree());
|
|
moveEntry(this, slot.ToEntry(), newSlot.ToEntry());
|
|
newSlot.SetKeyHash(key);
|
|
}
|
|
});
|
|
|
|
free(oldEntryStore);
|
|
return true;
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE PLDHashNumber
|
|
PLDHashTable::ComputeKeyHash(const void* aKey) const {
|
|
MOZ_ASSERT(mEntryStore.IsAllocated());
|
|
|
|
PLDHashNumber keyHash = mozilla::ScrambleHashCode(mOps->hashKey(aKey));
|
|
|
|
// Avoid 0 and 1 hash codes, they indicate free and removed entries.
|
|
if (keyHash < 2) {
|
|
keyHash -= 2;
|
|
}
|
|
keyHash &= ~kCollisionFlag;
|
|
|
|
return keyHash;
|
|
}
|
|
|
|
PLDHashEntryHdr* PLDHashTable::Search(const void* aKey) const {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
AutoReadOp op(mChecker);
|
|
#endif
|
|
|
|
if (!mEntryStore.IsAllocated()) {
|
|
return nullptr;
|
|
}
|
|
|
|
return SearchTable<ForSearchOrRemove>(
|
|
aKey, ComputeKeyHash(aKey),
|
|
[&](Slot& slot) -> PLDHashEntryHdr* { return slot.ToEntry(); },
|
|
[&]() -> PLDHashEntryHdr* { return nullptr; });
|
|
}
|
|
|
|
PLDHashEntryHdr* PLDHashTable::Add(const void* aKey,
|
|
const mozilla::fallible_t& aFallible) {
|
|
auto maybeEntryHandle = MakeEntryHandle(aKey, aFallible);
|
|
if (!maybeEntryHandle) {
|
|
return nullptr;
|
|
}
|
|
return maybeEntryHandle->OrInsert([&aKey, this](PLDHashEntryHdr* entry) {
|
|
if (mOps->initEntry) {
|
|
mOps->initEntry(entry, aKey);
|
|
}
|
|
});
|
|
}
|
|
|
|
PLDHashEntryHdr* PLDHashTable::Add(const void* aKey) {
|
|
return MakeEntryHandle(aKey).OrInsert([&aKey, this](PLDHashEntryHdr* entry) {
|
|
if (mOps->initEntry) {
|
|
mOps->initEntry(entry, aKey);
|
|
}
|
|
});
|
|
}
|
|
|
|
void PLDHashTable::Remove(const void* aKey) {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
AutoWriteOp op(mChecker);
|
|
#endif
|
|
|
|
if (!mEntryStore.IsAllocated()) {
|
|
return;
|
|
}
|
|
|
|
PLDHashNumber keyHash = ComputeKeyHash(aKey);
|
|
SearchTable<ForSearchOrRemove>(
|
|
aKey, keyHash,
|
|
[&](Slot& slot) {
|
|
RawRemove(slot);
|
|
ShrinkIfAppropriate();
|
|
},
|
|
[&]() {
|
|
// Do nothing.
|
|
});
|
|
}
|
|
|
|
void PLDHashTable::RemoveEntry(PLDHashEntryHdr* aEntry) {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
AutoWriteOp op(mChecker);
|
|
#endif
|
|
|
|
RawRemove(aEntry);
|
|
ShrinkIfAppropriate();
|
|
}
|
|
|
|
void PLDHashTable::RawRemove(PLDHashEntryHdr* aEntry) {
|
|
Slot slot(mEntryStore.SlotForPLDHashEntry(aEntry, Capacity(), mEntrySize));
|
|
RawRemove(slot);
|
|
}
|
|
|
|
void PLDHashTable::RawRemove(Slot& aSlot) {
|
|
// Unfortunately, we can only do weak checking here. That's because
|
|
// RawRemove() can be called legitimately while an Enumerate() call is
|
|
// active, which doesn't fit well into how Checker's mState variable works.
|
|
MOZ_ASSERT(mChecker.IsWritable());
|
|
|
|
MOZ_ASSERT(mEntryStore.IsAllocated());
|
|
|
|
MOZ_ASSERT(aSlot.IsLive());
|
|
|
|
// Load keyHash first in case clearEntry() goofs it.
|
|
PLDHashNumber keyHash = aSlot.KeyHash();
|
|
if (mOps->clearEntry) {
|
|
PLDHashEntryHdr* entry = aSlot.ToEntry();
|
|
mOps->clearEntry(this, entry);
|
|
}
|
|
if (keyHash & kCollisionFlag) {
|
|
aSlot.MarkRemoved();
|
|
mRemovedCount++;
|
|
} else {
|
|
aSlot.MarkFree();
|
|
}
|
|
mEntryCount--;
|
|
}
|
|
|
|
// Shrink or compress if a quarter or more of all entries are removed, or if the
|
|
// table is underloaded according to the minimum alpha, and is not minimal-size
|
|
// already.
|
|
void PLDHashTable::ShrinkIfAppropriate() {
|
|
uint32_t capacity = Capacity();
|
|
if (mRemovedCount >= capacity >> 2 ||
|
|
(capacity > kMinCapacity && mEntryCount <= MinLoad(capacity))) {
|
|
uint32_t log2;
|
|
BestCapacity(mEntryCount, &capacity, &log2);
|
|
|
|
int32_t deltaLog2 = log2 - (kPLDHashNumberBits - mHashShift);
|
|
MOZ_ASSERT(deltaLog2 <= 0);
|
|
|
|
(void)ChangeTable(deltaLog2);
|
|
}
|
|
}
|
|
|
|
size_t PLDHashTable::ShallowSizeOfExcludingThis(
|
|
MallocSizeOf aMallocSizeOf) const {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
AutoReadOp op(mChecker);
|
|
#endif
|
|
|
|
return aMallocSizeOf(mEntryStore.Get());
|
|
}
|
|
|
|
size_t PLDHashTable::ShallowSizeOfIncludingThis(
|
|
MallocSizeOf aMallocSizeOf) const {
|
|
return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
|
|
}
|
|
|
|
mozilla::Maybe<PLDHashTable::EntryHandle> PLDHashTable::MakeEntryHandle(
|
|
const void* aKey, const mozilla::fallible_t&) {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
mChecker.StartWriteOp();
|
|
auto endWriteOp = MakeScopeExit([&] { mChecker.EndWriteOp(); });
|
|
#endif
|
|
|
|
// Allocate the entry storage if it hasn't already been allocated.
|
|
if (!mEntryStore.IsAllocated()) {
|
|
uint32_t nbytes;
|
|
// We already checked this in the constructor, so it must still be true.
|
|
MOZ_RELEASE_ASSERT(
|
|
SizeOfEntryStore(CapacityFromHashShift(), mEntrySize, &nbytes));
|
|
mEntryStore.Set((char*)calloc(1, nbytes), &mGeneration);
|
|
if (!mEntryStore.IsAllocated()) {
|
|
return Nothing();
|
|
}
|
|
}
|
|
|
|
// If alpha is >= .75, grow or compress the table. If aKey is already in the
|
|
// table, we may grow once more than necessary, but only if we are on the
|
|
// edge of being overloaded.
|
|
uint32_t capacity = Capacity();
|
|
if (mEntryCount + mRemovedCount >= MaxLoad(capacity)) {
|
|
// Compress if a quarter or more of all entries are removed.
|
|
int deltaLog2 = 1;
|
|
if (mRemovedCount >= capacity >> 2) {
|
|
deltaLog2 = 0;
|
|
}
|
|
|
|
// Grow or compress the table. If ChangeTable() fails, allow overloading up
|
|
// to the secondary max. Once we hit the secondary max, return null.
|
|
if (!ChangeTable(deltaLog2) &&
|
|
mEntryCount + mRemovedCount >= MaxLoadOnGrowthFailure(capacity)) {
|
|
return Nothing();
|
|
}
|
|
}
|
|
|
|
// Look for entry after possibly growing, so we don't have to add it,
|
|
// then skip it while growing the table and re-add it after.
|
|
PLDHashNumber keyHash = ComputeKeyHash(aKey);
|
|
Slot slot = SearchTable<ForAdd>(
|
|
aKey, keyHash, [](Slot& found) -> Slot { return found; },
|
|
[]() -> Slot {
|
|
MOZ_CRASH("Nope");
|
|
return Slot(nullptr, nullptr);
|
|
});
|
|
|
|
// The `EntryHandle` will handle ending the write op when it is destroyed.
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
endWriteOp.release();
|
|
#endif
|
|
|
|
return Some(EntryHandle{this, keyHash, slot});
|
|
}
|
|
|
|
PLDHashTable::EntryHandle PLDHashTable::MakeEntryHandle(const void* aKey) {
|
|
auto res = MakeEntryHandle(aKey, fallible);
|
|
if (!res) {
|
|
if (!mEntryStore.IsAllocated()) {
|
|
// We OOM'd while allocating the initial entry storage.
|
|
uint32_t nbytes;
|
|
(void)SizeOfEntryStore(CapacityFromHashShift(), mEntrySize, &nbytes);
|
|
NS_ABORT_OOM(nbytes);
|
|
} else {
|
|
// We failed to resize the existing entry storage, either due to OOM or
|
|
// because we exceeded the maximum table capacity or size; report it as
|
|
// an OOM. The multiplication by 2 gets us the size we tried to allocate,
|
|
// which is double the current size.
|
|
NS_ABORT_OOM(2 * EntrySize() * EntryCount());
|
|
}
|
|
}
|
|
return res.extract();
|
|
}
|
|
|
|
PLDHashTable::EntryHandle::EntryHandle(PLDHashTable* aTable,
|
|
PLDHashNumber aKeyHash, Slot aSlot)
|
|
: mTable(aTable), mKeyHash(aKeyHash), mSlot(aSlot) {}
|
|
|
|
PLDHashTable::EntryHandle::EntryHandle(EntryHandle&& aOther) noexcept
|
|
: mTable(std::exchange(aOther.mTable, nullptr)),
|
|
mKeyHash(aOther.mKeyHash),
|
|
mSlot(aOther.mSlot) {}
|
|
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
PLDHashTable::EntryHandle::~EntryHandle() {
|
|
if (!mTable) {
|
|
return;
|
|
}
|
|
|
|
mTable->mChecker.EndWriteOp();
|
|
}
|
|
#endif
|
|
|
|
void PLDHashTable::EntryHandle::Remove() {
|
|
MOZ_ASSERT(HasEntry());
|
|
|
|
mTable->RawRemove(mSlot);
|
|
}
|
|
|
|
void PLDHashTable::EntryHandle::OrRemove() {
|
|
if (HasEntry()) {
|
|
Remove();
|
|
}
|
|
}
|
|
|
|
void PLDHashTable::EntryHandle::OccupySlot() {
|
|
MOZ_ASSERT(!HasEntry());
|
|
|
|
PLDHashNumber keyHash = mKeyHash;
|
|
if (mSlot.IsRemoved()) {
|
|
mTable->mRemovedCount--;
|
|
keyHash |= kCollisionFlag;
|
|
}
|
|
mSlot.SetKeyHash(keyHash);
|
|
mTable->mEntryCount++;
|
|
}
|
|
|
|
PLDHashTable::Iterator::Iterator(Iterator&& aOther)
|
|
: mTable(aOther.mTable),
|
|
mCurrent(aOther.mCurrent),
|
|
mNexts(aOther.mNexts),
|
|
mNextsLimit(aOther.mNextsLimit),
|
|
mHaveRemoved(aOther.mHaveRemoved),
|
|
mEntrySize(aOther.mEntrySize) {
|
|
// No need to change |mChecker| here.
|
|
aOther.mTable = nullptr;
|
|
// We don't really have the concept of a null slot, so leave mCurrent.
|
|
aOther.mNexts = 0;
|
|
aOther.mNextsLimit = 0;
|
|
aOther.mHaveRemoved = false;
|
|
aOther.mEntrySize = 0;
|
|
}
|
|
|
|
PLDHashTable::Iterator::Iterator(PLDHashTable* aTable)
|
|
: mTable(aTable),
|
|
mCurrent(mTable->mEntryStore.SlotForIndex(0, mTable->mEntrySize,
|
|
mTable->Capacity())),
|
|
mNexts(0),
|
|
mNextsLimit(mTable->EntryCount()),
|
|
mHaveRemoved(false),
|
|
mEntrySize(aTable->mEntrySize) {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
mTable->mChecker.StartReadOp();
|
|
#endif
|
|
|
|
if (ChaosMode::isActive(ChaosFeature::HashTableIteration) &&
|
|
mTable->Capacity() > 0) {
|
|
// Start iterating at a random entry. It would be even more chaotic to
|
|
// iterate in fully random order, but that's harder.
|
|
uint32_t capacity = mTable->CapacityFromHashShift();
|
|
uint32_t i = ChaosMode::randomUint32LessThan(capacity);
|
|
mCurrent =
|
|
mTable->mEntryStore.SlotForIndex(i, mTable->mEntrySize, capacity);
|
|
}
|
|
|
|
// Advance to the first live entry, if there is one.
|
|
if (!Done() && IsOnNonLiveEntry()) {
|
|
MoveToNextLiveEntry();
|
|
}
|
|
}
|
|
|
|
PLDHashTable::Iterator::Iterator(PLDHashTable* aTable, EndIteratorTag aTag)
|
|
: mTable(aTable),
|
|
mCurrent(mTable->mEntryStore.SlotForIndex(0, mTable->mEntrySize,
|
|
mTable->Capacity())),
|
|
mNexts(mTable->EntryCount()),
|
|
mNextsLimit(mTable->EntryCount()),
|
|
mHaveRemoved(false),
|
|
mEntrySize(aTable->mEntrySize) {
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
mTable->mChecker.StartReadOp();
|
|
#endif
|
|
|
|
MOZ_ASSERT(Done());
|
|
}
|
|
|
|
PLDHashTable::Iterator::Iterator(const Iterator& aOther)
|
|
: mTable(aOther.mTable),
|
|
mCurrent(aOther.mCurrent),
|
|
mNexts(aOther.mNexts),
|
|
mNextsLimit(aOther.mNextsLimit),
|
|
mHaveRemoved(aOther.mHaveRemoved),
|
|
mEntrySize(aOther.mEntrySize) {
|
|
// TODO: Is this necessary?
|
|
MOZ_ASSERT(!mHaveRemoved);
|
|
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
mTable->mChecker.StartReadOp();
|
|
#endif
|
|
}
|
|
|
|
PLDHashTable::Iterator::~Iterator() {
|
|
if (mTable) {
|
|
if (mHaveRemoved) {
|
|
mTable->ShrinkIfAppropriate();
|
|
}
|
|
#ifdef MOZ_HASH_TABLE_CHECKS_ENABLED
|
|
mTable->mChecker.EndReadOp();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE bool PLDHashTable::Iterator::IsOnNonLiveEntry() const {
|
|
MOZ_ASSERT(!Done());
|
|
return !mCurrent.IsLive();
|
|
}
|
|
|
|
void PLDHashTable::Iterator::Next() {
|
|
MOZ_ASSERT(!Done());
|
|
|
|
mNexts++;
|
|
|
|
// Advance to the next live entry, if there is one.
|
|
if (!Done()) {
|
|
MoveToNextLiveEntry();
|
|
}
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE void PLDHashTable::Iterator::MoveToNextLiveEntry() {
|
|
// Chaos mode requires wraparound to cover all possible entries, so we can't
|
|
// simply move to the next live entry and stop when we hit the end of the
|
|
// entry store. But we don't want to introduce extra branches into our inner
|
|
// loop. So we are going to exploit the structure of the entry store in this
|
|
// method to implement an efficient inner loop.
|
|
//
|
|
// The idea is that since we are really only iterating through the stored
|
|
// hashes and because we know that there are a power-of-two number of
|
|
// hashes, we can use masking to implement the wraparound for us. This
|
|
// method does have the downside of needing to recalculate where the
|
|
// associated entry is once we've found it, but that seems OK.
|
|
|
|
// Our current slot and its associated hash.
|
|
Slot slot = mCurrent;
|
|
PLDHashNumber* p = slot.HashPtr();
|
|
const uint32_t capacity = mTable->CapacityFromHashShift();
|
|
const uint32_t mask = capacity - 1;
|
|
auto hashes = reinterpret_cast<PLDHashNumber*>(mTable->mEntryStore.Get());
|
|
uint32_t slotIndex = p - hashes;
|
|
|
|
do {
|
|
slotIndex = (slotIndex + 1) & mask;
|
|
} while (!Slot::IsLiveHash(hashes[slotIndex]));
|
|
|
|
// slotIndex now indicates where a live slot is. Rematerialize the entry
|
|
// and the slot.
|
|
mCurrent = mTable->mEntryStore.SlotForIndex(slotIndex, mEntrySize, capacity);
|
|
}
|
|
|
|
void PLDHashTable::Iterator::Remove() {
|
|
mTable->RawRemove(mCurrent);
|
|
mHaveRemoved = true;
|
|
}
|