mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-12-29 03:44:37 +00:00
e2e7c63c10
Courtesy Bill Gibbons <bill@gibbons.org> His comments: Here are the changes to JSRef to make it compile either as C or C++. Mostly the changes are to add missing casts (since C++ doesn't have implict conversion from void* to other pointer types nor implicit casts from ints to enumerations) plus a few random things like the use of "private" as a variable name. There are a few other minor bug fixes; in particular: * A long statement with and'ed conditions is reformatted to make it easier to remove other builtin objects (e.g. Date). * A #if was added to jsscript.c for the JS_HAS_SCRIPT_OBJECT off case. * In jsmath a #ifdef was changed to #if. My notes also mention... * jsobj.c should include jsopcode.h * jsfun.c - doesn't link if JS_HAS_ARGS_OBJECT is off * jsarray.c - a reference to js_ValueToSource should be conditional on JS_HAS_TOSOURCE r=mccabe
2809 lines
78 KiB
C
2809 lines
78 KiB
C
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* The contents of this file are subject to the Netscape Public
|
|
* License Version 1.1 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.mozilla.org/NPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS
|
|
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr
|
|
* implied. See the License for the specific language governing
|
|
* rights and limitations under the License.
|
|
*
|
|
* The Original Code is Mozilla Communicator client code, released
|
|
* March 31, 1998.
|
|
*
|
|
* The Initial Developer of the Original Code is Netscape
|
|
* Communications Corporation. Portions created by Netscape are
|
|
* Copyright (C) 1998 Netscape Communications Corporation. All
|
|
* Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
*
|
|
* Alternatively, the contents of this file may be used under the
|
|
* terms of the GNU Public License (the "GPL"), in which case the
|
|
* provisions of the GPL are applicable instead of those above.
|
|
* If you wish to allow use of your version of this file only
|
|
* under the terms of the GPL and not to allow others to use your
|
|
* version of this file under the NPL, indicate your decision by
|
|
* deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this
|
|
* file under either the NPL or the GPL.
|
|
*/
|
|
|
|
/*
|
|
* Portable double to alphanumeric string and back converters.
|
|
*/
|
|
#include "jsstddef.h"
|
|
#include "jslibmath.h"
|
|
#include "jstypes.h"
|
|
#include "jsdtoa.h"
|
|
#include "jsprf.h"
|
|
#include "jsutil.h" /* Added by JSIFY */
|
|
|
|
#ifdef JS_THREADSAFE
|
|
#include "prlock.h"
|
|
#endif
|
|
|
|
/****************************************************************
|
|
*
|
|
* The author of this software is David M. Gay.
|
|
*
|
|
* Copyright (c) 1991 by Lucent Technologies.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose without fee is hereby granted, provided that this entire notice
|
|
* is included in all copies of any software which is or includes a copy
|
|
* or modification of this software and in all copies of the supporting
|
|
* documentation for such software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
|
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
|
*
|
|
***************************************************************/
|
|
|
|
/* Please send bug reports to
|
|
David M. Gay
|
|
Bell Laboratories, Room 2C-463
|
|
600 Mountain Avenue
|
|
Murray Hill, NJ 07974-0636
|
|
U.S.A.
|
|
dmg@bell-labs.com
|
|
*/
|
|
|
|
/* On a machine with IEEE extended-precision registers, it is
|
|
* necessary to specify double-precision (53-bit) rounding precision
|
|
* before invoking strtod or dtoa. If the machine uses (the equivalent
|
|
* of) Intel 80x87 arithmetic, the call
|
|
* _control87(PC_53, MCW_PC);
|
|
* does this with many compilers. Whether this or another call is
|
|
* appropriate depends on the compiler; for this to work, it may be
|
|
* necessary to #include "float.h" or another system-dependent header
|
|
* file.
|
|
*/
|
|
|
|
/* strtod for IEEE-arithmetic machines.
|
|
*
|
|
* This strtod returns a nearest machine number to the input decimal
|
|
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are
|
|
* broken by the IEEE round-even rule. Otherwise ties are broken by
|
|
* biased rounding (add half and chop).
|
|
*
|
|
* Inspired loosely by William D. Clinger's paper "How to Read Floating
|
|
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
|
|
*
|
|
* Modifications:
|
|
*
|
|
* 1. We only require IEEE double-precision
|
|
* arithmetic (not IEEE double-extended).
|
|
* 2. We get by with floating-point arithmetic in a case that
|
|
* Clinger missed -- when we're computing d * 10^n
|
|
* for a small integer d and the integer n is not too
|
|
* much larger than 22 (the maximum integer k for which
|
|
* we can represent 10^k exactly), we may be able to
|
|
* compute (d*10^k) * 10^(e-k) with just one roundoff.
|
|
* 3. Rather than a bit-at-a-time adjustment of the binary
|
|
* result in the hard case, we use floating-point
|
|
* arithmetic to determine the adjustment to within
|
|
* one bit; only in really hard cases do we need to
|
|
* compute a second residual.
|
|
* 4. Because of 3., we don't need a large table of powers of 10
|
|
* for ten-to-e (just some small tables, e.g. of 10^k
|
|
* for 0 <= k <= 22).
|
|
*/
|
|
|
|
/*
|
|
* #define IEEE_8087 for IEEE-arithmetic machines where the least
|
|
* significant byte has the lowest address.
|
|
* #define IEEE_MC68k for IEEE-arithmetic machines where the most
|
|
* significant byte has the lowest address.
|
|
* #define Long int on machines with 32-bit ints and 64-bit longs.
|
|
* #define Sudden_Underflow for IEEE-format machines without gradual
|
|
* underflow (i.e., that flush to zero on underflow).
|
|
* #define No_leftright to omit left-right logic in fast floating-point
|
|
* computation of JS_dtoa.
|
|
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
|
|
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
|
|
* that use extended-precision instructions to compute rounded
|
|
* products and quotients) with IBM.
|
|
* #define ROUND_BIASED for IEEE-format with biased rounding.
|
|
* #define Inaccurate_Divide for IEEE-format with correctly rounded
|
|
* products but inaccurate quotients, e.g., for Intel i860.
|
|
* #define JS_HAVE_LONG_LONG on machines that have a "long long"
|
|
* integer type (of >= 64 bits). If long long is available and the name is
|
|
* something other than "long long", #define Llong to be the name,
|
|
* and if "unsigned Llong" does not work as an unsigned version of
|
|
* Llong, #define #ULLong to be the corresponding unsigned type.
|
|
* #define Bad_float_h if your system lacks a float.h or if it does not
|
|
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
|
|
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
|
|
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
|
|
* if memory is available and otherwise does something you deem
|
|
* appropriate. If MALLOC is undefined, malloc will be invoked
|
|
* directly -- and assumed always to succeed.
|
|
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
|
|
* memory allocations from a private pool of memory when possible.
|
|
* When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
|
|
* unless #defined to be a different length. This default length
|
|
* suffices to get rid of MALLOC calls except for unusual cases,
|
|
* such as decimal-to-binary conversion of a very long string of
|
|
* digits.
|
|
* #define INFNAN_CHECK on IEEE systems to cause strtod to check for
|
|
* Infinity and NaN (case insensitively). On some systems (e.g.,
|
|
* some HP systems), it may be necessary to #define NAN_WORD0
|
|
* appropriately -- to the most significant word of a quiet NaN.
|
|
* (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
|
|
* #define MULTIPLE_THREADS if the system offers preemptively scheduled
|
|
* multiple threads. In this case, you must provide (or suitably
|
|
* #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
|
|
* by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
|
|
* in pow5mult, ensures lazy evaluation of only one copy of high
|
|
* powers of 5; omitting this lock would introduce a small
|
|
* probability of wasting memory, but would otherwise be harmless.)
|
|
* You must also invoke freedtoa(s) to free the value s returned by
|
|
* dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
|
|
* #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
|
|
* avoids underflows on inputs whose result does not underflow.
|
|
*/
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
#define IEEE_8087
|
|
#else
|
|
#define IEEE_MC68k
|
|
#endif
|
|
|
|
#ifndef Long
|
|
#define Long int32
|
|
#endif
|
|
|
|
#ifndef ULong
|
|
#define ULong uint32
|
|
#endif
|
|
|
|
#define Bug(errorMessageString) JS_ASSERT(!errorMessageString)
|
|
|
|
#include "stdlib.h"
|
|
#include "string.h"
|
|
|
|
#ifdef MALLOC
|
|
extern void *MALLOC(size_t);
|
|
#else
|
|
#define MALLOC malloc
|
|
#endif
|
|
|
|
#define Omit_Private_Memory
|
|
/* Private memory currently doesn't work with JS_THREADSAFE */
|
|
#ifndef Omit_Private_Memory
|
|
#ifndef PRIVATE_MEM
|
|
#define PRIVATE_MEM 2000
|
|
#endif
|
|
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
|
|
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
|
|
#endif
|
|
|
|
#include "errno.h"
|
|
#ifdef Bad_float_h
|
|
#undef __STDC__
|
|
|
|
#define DBL_DIG 15
|
|
#define DBL_MAX_10_EXP 308
|
|
#define DBL_MAX_EXP 1024
|
|
#define FLT_RADIX 2
|
|
#define FLT_ROUNDS 1
|
|
#define DBL_MAX 1.7976931348623157e+308
|
|
|
|
|
|
|
|
#ifndef LONG_MAX
|
|
#define LONG_MAX 2147483647
|
|
#endif
|
|
|
|
#else /* ifndef Bad_float_h */
|
|
#include "float.h"
|
|
#endif /* Bad_float_h */
|
|
|
|
#ifndef __MATH_H__
|
|
#include "math.h"
|
|
#endif
|
|
|
|
#ifndef CONST
|
|
#define CONST const
|
|
#endif
|
|
|
|
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
|
|
Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
|
|
#endif
|
|
|
|
/* Stefan Hanske <sh990154@mail.uni-greifswald.de> reports:
|
|
* ARM is a little endian architecture but 64 bit double words are stored
|
|
* differently: the 32 bit words are in little endian byte order, the two words
|
|
* are stored in big endian`s way.
|
|
*/
|
|
#if defined (IEEE_8087) && !defined(__arm)
|
|
#define word0(x) ((ULong *)&x)[1]
|
|
#define word1(x) ((ULong *)&x)[0]
|
|
#else
|
|
#define word0(x) ((ULong *)&x)[0]
|
|
#define word1(x) ((ULong *)&x)[1]
|
|
#endif
|
|
|
|
/* The following definition of Storeinc is appropriate for MIPS processors.
|
|
* An alternative that might be better on some machines is
|
|
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
|
|
*/
|
|
#if defined(IEEE_8087)
|
|
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
|
|
((unsigned short *)a)[0] = (unsigned short)c, a++)
|
|
#else
|
|
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
|
|
((unsigned short *)a)[1] = (unsigned short)c, a++)
|
|
#endif
|
|
|
|
/* #define P DBL_MANT_DIG */
|
|
/* Ten_pmax = floor(P*log(2)/log(5)) */
|
|
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
|
|
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
|
|
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
|
|
|
|
#define Exp_shift 20
|
|
#define Exp_shift1 20
|
|
#define Exp_msk1 0x100000
|
|
#define Exp_msk11 0x100000
|
|
#define Exp_mask 0x7ff00000
|
|
#define P 53
|
|
#define Bias 1023
|
|
#define Emin (-1022)
|
|
#define Exp_1 0x3ff00000
|
|
#define Exp_11 0x3ff00000
|
|
#define Ebits 11
|
|
#define Frac_mask 0xfffff
|
|
#define Frac_mask1 0xfffff
|
|
#define Ten_pmax 22
|
|
#define Bletch 0x10
|
|
#define Bndry_mask 0xfffff
|
|
#define Bndry_mask1 0xfffff
|
|
#define LSB 1
|
|
#define Sign_bit 0x80000000
|
|
#define Log2P 1
|
|
#define Tiny0 0
|
|
#define Tiny1 1
|
|
#define Quick_max 14
|
|
#define Int_max 14
|
|
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
|
|
#ifndef NO_IEEE_Scale
|
|
#define Avoid_Underflow
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef RND_PRODQUOT
|
|
#define rounded_product(a,b) a = rnd_prod(a, b)
|
|
#define rounded_quotient(a,b) a = rnd_quot(a, b)
|
|
extern double rnd_prod(double, double), rnd_quot(double, double);
|
|
#else
|
|
#define rounded_product(a,b) a *= b
|
|
#define rounded_quotient(a,b) a /= b
|
|
#endif
|
|
|
|
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
|
|
#define Big1 0xffffffff
|
|
|
|
#ifndef JS_HAVE_LONG_LONG
|
|
#undef ULLong
|
|
#else /* long long available */
|
|
#ifndef Llong
|
|
#define Llong JSInt64
|
|
#endif
|
|
#ifndef ULLong
|
|
#define ULLong JSUint64
|
|
#endif
|
|
#endif /* JS_HAVE_LONG_LONG */
|
|
|
|
#ifdef JS_THREADSAFE
|
|
#define MULTIPLE_THREADS
|
|
static PRLock *freelist_lock;
|
|
#define ACQUIRE_DTOA_LOCK(n) PR_Lock(freelist_lock)
|
|
#define FREE_DTOA_LOCK(n) PR_Unlock(freelist_lock)
|
|
#else
|
|
#undef MULTIPLE_THREADS
|
|
#define ACQUIRE_DTOA_LOCK(n) /*nothing*/
|
|
#define FREE_DTOA_LOCK(n) /*nothing*/
|
|
#endif
|
|
|
|
#define Kmax 15
|
|
|
|
struct Bigint {
|
|
struct Bigint *next; /* Free list link */
|
|
int32 k; /* lg2(maxwds) */
|
|
int32 maxwds; /* Number of words allocated for x */
|
|
int32 sign; /* Zero if positive, 1 if negative. Ignored by most Bigint routines! */
|
|
int32 wds; /* Actual number of words. If value is nonzero, the most significant word must be nonzero. */
|
|
ULong x[1]; /* wds words of number in little endian order */
|
|
};
|
|
|
|
typedef struct Bigint Bigint;
|
|
|
|
static Bigint *freelist[Kmax+1];
|
|
|
|
/* Allocate a Bigint with 2^k words. */
|
|
static Bigint *Balloc(int32 k)
|
|
{
|
|
int32 x;
|
|
Bigint *rv;
|
|
#ifndef Omit_Private_Memory
|
|
uint32 len;
|
|
#endif
|
|
|
|
ACQUIRE_DTOA_LOCK(0);
|
|
if ((rv = freelist[k]) != NULL)
|
|
freelist[k] = rv->next;
|
|
FREE_DTOA_LOCK(0);
|
|
if (rv == NULL) {
|
|
x = 1 << k;
|
|
#ifdef Omit_Private_Memory
|
|
rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
|
|
#else
|
|
len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
|
|
/sizeof(double);
|
|
if (pmem_next - private_mem + len <= PRIVATE_mem) {
|
|
rv = (Bigint*)pmem_next;
|
|
pmem_next += len;
|
|
}
|
|
else
|
|
rv = (Bigint*)MALLOC(len*sizeof(double));
|
|
#endif
|
|
rv->k = k;
|
|
rv->maxwds = x;
|
|
}
|
|
rv->sign = rv->wds = 0;
|
|
return rv;
|
|
}
|
|
|
|
static void Bfree(Bigint *v)
|
|
{
|
|
if (v) {
|
|
ACQUIRE_DTOA_LOCK(0);
|
|
v->next = freelist[v->k];
|
|
freelist[v->k] = v;
|
|
FREE_DTOA_LOCK(0);
|
|
}
|
|
}
|
|
|
|
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
|
|
y->wds*sizeof(Long) + 2*sizeof(int32))
|
|
|
|
/* Return b*m + a. Deallocate the old b. Both a and m must be between 0 and 65535 inclusive. */
|
|
static Bigint *multadd(Bigint *b, int32 m, int32 a)
|
|
{
|
|
int32 i, wds;
|
|
#ifdef ULLong
|
|
ULong *x;
|
|
ULLong carry, y;
|
|
#else
|
|
ULong carry, *x, y;
|
|
ULong xi, z;
|
|
#endif
|
|
Bigint *b1;
|
|
|
|
wds = b->wds;
|
|
x = b->x;
|
|
i = 0;
|
|
carry = a;
|
|
do {
|
|
#ifdef ULLong
|
|
y = *x * (ULLong)m + carry;
|
|
carry = y >> 32;
|
|
*x++ = (ULong)(y & 0xffffffffUL);
|
|
#else
|
|
xi = *x;
|
|
y = (xi & 0xffff) * m + carry;
|
|
z = (xi >> 16) * m + (y >> 16);
|
|
carry = z >> 16;
|
|
*x++ = (z << 16) + (y & 0xffff);
|
|
#endif
|
|
}
|
|
while(++i < wds);
|
|
if (carry) {
|
|
if (wds >= b->maxwds) {
|
|
b1 = Balloc(b->k+1);
|
|
Bcopy(b1, b);
|
|
Bfree(b);
|
|
b = b1;
|
|
}
|
|
b->x[wds++] = (ULong)carry;
|
|
b->wds = wds;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
|
|
{
|
|
Bigint *b;
|
|
int32 i, k;
|
|
Long x, y;
|
|
|
|
x = (nd + 8) / 9;
|
|
for(k = 0, y = 1; x > y; y <<= 1, k++) ;
|
|
b = Balloc(k);
|
|
b->x[0] = y9;
|
|
b->wds = 1;
|
|
|
|
i = 9;
|
|
if (9 < nd0) {
|
|
s += 9;
|
|
do b = multadd(b, 10, *s++ - '0');
|
|
while(++i < nd0);
|
|
s++;
|
|
}
|
|
else
|
|
s += 10;
|
|
for(; i < nd; i++)
|
|
b = multadd(b, 10, *s++ - '0');
|
|
return b;
|
|
}
|
|
|
|
|
|
/* Return the number (0 through 32) of most significant zero bits in x. */
|
|
static int32 hi0bits(register ULong x)
|
|
{
|
|
register int32 k = 0;
|
|
|
|
if (!(x & 0xffff0000)) {
|
|
k = 16;
|
|
x <<= 16;
|
|
}
|
|
if (!(x & 0xff000000)) {
|
|
k += 8;
|
|
x <<= 8;
|
|
}
|
|
if (!(x & 0xf0000000)) {
|
|
k += 4;
|
|
x <<= 4;
|
|
}
|
|
if (!(x & 0xc0000000)) {
|
|
k += 2;
|
|
x <<= 2;
|
|
}
|
|
if (!(x & 0x80000000)) {
|
|
k++;
|
|
if (!(x & 0x40000000))
|
|
return 32;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
|
|
/* Return the number (0 through 32) of least significant zero bits in y.
|
|
* Also shift y to the right past these 0 through 32 zeros so that y's
|
|
* least significant bit will be set unless y was originally zero. */
|
|
static int32 lo0bits(ULong *y)
|
|
{
|
|
register int32 k;
|
|
register ULong x = *y;
|
|
|
|
if (x & 7) {
|
|
if (x & 1)
|
|
return 0;
|
|
if (x & 2) {
|
|
*y = x >> 1;
|
|
return 1;
|
|
}
|
|
*y = x >> 2;
|
|
return 2;
|
|
}
|
|
k = 0;
|
|
if (!(x & 0xffff)) {
|
|
k = 16;
|
|
x >>= 16;
|
|
}
|
|
if (!(x & 0xff)) {
|
|
k += 8;
|
|
x >>= 8;
|
|
}
|
|
if (!(x & 0xf)) {
|
|
k += 4;
|
|
x >>= 4;
|
|
}
|
|
if (!(x & 0x3)) {
|
|
k += 2;
|
|
x >>= 2;
|
|
}
|
|
if (!(x & 1)) {
|
|
k++;
|
|
x >>= 1;
|
|
if (!x & 1)
|
|
return 32;
|
|
}
|
|
*y = x;
|
|
return k;
|
|
}
|
|
|
|
/* Return a new Bigint with the given integer value, which must be nonnegative. */
|
|
static Bigint *i2b(int32 i)
|
|
{
|
|
Bigint *b;
|
|
|
|
b = Balloc(1);
|
|
b->x[0] = i;
|
|
b->wds = 1;
|
|
return b;
|
|
}
|
|
|
|
/* Return a newly allocated product of a and b. */
|
|
static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
|
|
{
|
|
CONST Bigint *t;
|
|
Bigint *c;
|
|
int32 k, wa, wb, wc;
|
|
ULong y;
|
|
ULong *xc, *xc0, *xce;
|
|
CONST ULong *x, *xa, *xae, *xb, *xbe;
|
|
#ifdef ULLong
|
|
ULLong carry, z;
|
|
#else
|
|
ULong carry, z;
|
|
ULong z2;
|
|
#endif
|
|
|
|
if (a->wds < b->wds) {
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
k = a->k;
|
|
wa = a->wds;
|
|
wb = b->wds;
|
|
wc = wa + wb;
|
|
if (wc > a->maxwds)
|
|
k++;
|
|
c = Balloc(k);
|
|
for(xc = c->x, xce = xc + wc; xc < xce; xc++)
|
|
*xc = 0;
|
|
xa = a->x;
|
|
xae = xa + wa;
|
|
xb = b->x;
|
|
xbe = xb + wb;
|
|
xc0 = c->x;
|
|
#ifdef ULLong
|
|
for(; xb < xbe; xc0++) {
|
|
if ((y = *xb++) != 0) {
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
do {
|
|
z = *x++ * (ULLong)y + *xc + carry;
|
|
carry = z >> 32;
|
|
*xc++ = (ULong)(z & 0xffffffffUL);
|
|
}
|
|
while(x < xae);
|
|
*xc = (ULong)carry;
|
|
}
|
|
}
|
|
#else
|
|
for(; xb < xbe; xb++, xc0++) {
|
|
if ((y = *xb & 0xffff) != 0) {
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
do {
|
|
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
|
|
carry = z >> 16;
|
|
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
|
|
carry = z2 >> 16;
|
|
Storeinc(xc, z2, z);
|
|
}
|
|
while(x < xae);
|
|
*xc = carry;
|
|
}
|
|
if ((y = *xb >> 16) != 0) {
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
z2 = *xc;
|
|
do {
|
|
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
|
|
carry = z >> 16;
|
|
Storeinc(xc, z, z2);
|
|
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
|
|
carry = z2 >> 16;
|
|
}
|
|
while(x < xae);
|
|
*xc = z2;
|
|
}
|
|
}
|
|
#endif
|
|
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
|
|
c->wds = wc;
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* 'p5s' points to a linked list of Bigints that are powers of 5.
|
|
* This list grows on demand, and it can only grow: it won't change
|
|
* in any other way. So if we read 'p5s' or the 'next' field of
|
|
* some Bigint on the list, and it is not NULL, we know it won't
|
|
* change to NULL or some other value. Only when the value of
|
|
* 'p5s' or 'next' is NULL do we need to acquire the lock and add
|
|
* a new Bigint to the list.
|
|
*/
|
|
|
|
static Bigint *p5s;
|
|
|
|
#ifdef JS_THREADSAFE
|
|
static PRLock *p5s_lock;
|
|
#endif
|
|
|
|
/* Return b * 5^k. Deallocate the old b. k must be nonnegative. */
|
|
static Bigint *pow5mult(Bigint *b, int32 k)
|
|
{
|
|
Bigint *b1, *p5, *p51;
|
|
int32 i;
|
|
static CONST int32 p05[3] = { 5, 25, 125 };
|
|
|
|
if ((i = k & 3) != 0)
|
|
b = multadd(b, p05[i-1], 0);
|
|
|
|
if (!(k >>= 2))
|
|
return b;
|
|
if (!(p5 = p5s)) {
|
|
#ifdef JS_THREADSAFE
|
|
/*
|
|
* We take great care to not call i2b() and Bfree()
|
|
* while holding the lock.
|
|
*/
|
|
Bigint *wasted_effort = NULL;
|
|
p5 = i2b(625);
|
|
/* lock and check again */
|
|
PR_Lock(p5s_lock);
|
|
if (!p5s) {
|
|
/* first time */
|
|
p5s = p5;
|
|
p5->next = 0;
|
|
} else {
|
|
/* some other thread just beat us */
|
|
wasted_effort = p5;
|
|
p5 = p5s;
|
|
}
|
|
PR_Unlock(p5s_lock);
|
|
if (wasted_effort) {
|
|
Bfree(wasted_effort);
|
|
}
|
|
#else
|
|
/* first time */
|
|
p5 = p5s = i2b(625);
|
|
p5->next = 0;
|
|
#endif
|
|
}
|
|
for(;;) {
|
|
if (k & 1) {
|
|
b1 = mult(b, p5);
|
|
Bfree(b);
|
|
b = b1;
|
|
}
|
|
if (!(k >>= 1))
|
|
break;
|
|
if (!(p51 = p5->next)) {
|
|
#ifdef JS_THREADSAFE
|
|
Bigint *wasted_effort = NULL;
|
|
p51 = mult(p5, p5);
|
|
PR_Lock(p5s_lock);
|
|
if (!p5->next) {
|
|
p5->next = p51;
|
|
p51->next = 0;
|
|
} else {
|
|
wasted_effort = p51;
|
|
p51 = p5->next;
|
|
}
|
|
PR_Unlock(p5s_lock);
|
|
if (wasted_effort) {
|
|
Bfree(wasted_effort);
|
|
}
|
|
#else
|
|
p51 = p5->next = mult(p5,p5);
|
|
p51->next = 0;
|
|
#endif
|
|
}
|
|
p5 = p51;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
/* Return b * 2^k. Deallocate the old b. k must be nonnegative. */
|
|
static Bigint *lshift(Bigint *b, int32 k)
|
|
{
|
|
int32 i, k1, n, n1;
|
|
Bigint *b1;
|
|
ULong *x, *x1, *xe, z;
|
|
|
|
n = k >> 5;
|
|
k1 = b->k;
|
|
n1 = n + b->wds + 1;
|
|
for(i = b->maxwds; n1 > i; i <<= 1)
|
|
k1++;
|
|
b1 = Balloc(k1);
|
|
x1 = b1->x;
|
|
for(i = 0; i < n; i++)
|
|
*x1++ = 0;
|
|
x = b->x;
|
|
xe = x + b->wds;
|
|
if (k &= 0x1f) {
|
|
k1 = 32 - k;
|
|
z = 0;
|
|
do {
|
|
*x1++ = *x << k | z;
|
|
z = *x++ >> k1;
|
|
}
|
|
while(x < xe);
|
|
if ((*x1 = z) != 0)
|
|
++n1;
|
|
}
|
|
else do
|
|
*x1++ = *x++;
|
|
while(x < xe);
|
|
b1->wds = n1 - 1;
|
|
Bfree(b);
|
|
return b1;
|
|
}
|
|
|
|
/* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
|
|
static int32 cmp(Bigint *a, Bigint *b)
|
|
{
|
|
ULong *xa, *xa0, *xb, *xb0;
|
|
int32 i, j;
|
|
|
|
i = a->wds;
|
|
j = b->wds;
|
|
#ifdef DEBUG
|
|
if (i > 1 && !a->x[i-1])
|
|
Bug("cmp called with a->x[a->wds-1] == 0");
|
|
if (j > 1 && !b->x[j-1])
|
|
Bug("cmp called with b->x[b->wds-1] == 0");
|
|
#endif
|
|
if (i -= j)
|
|
return i;
|
|
xa0 = a->x;
|
|
xa = xa0 + j;
|
|
xb0 = b->x;
|
|
xb = xb0 + j;
|
|
for(;;) {
|
|
if (*--xa != *--xb)
|
|
return *xa < *xb ? -1 : 1;
|
|
if (xa <= xa0)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Bigint *diff(Bigint *a, Bigint *b)
|
|
{
|
|
Bigint *c;
|
|
int32 i, wa, wb;
|
|
ULong *xa, *xae, *xb, *xbe, *xc;
|
|
#ifdef ULLong
|
|
ULLong borrow, y;
|
|
#else
|
|
ULong borrow, y;
|
|
ULong z;
|
|
#endif
|
|
|
|
i = cmp(a,b);
|
|
if (!i) {
|
|
c = Balloc(0);
|
|
c->wds = 1;
|
|
c->x[0] = 0;
|
|
return c;
|
|
}
|
|
if (i < 0) {
|
|
c = a;
|
|
a = b;
|
|
b = c;
|
|
i = 1;
|
|
}
|
|
else
|
|
i = 0;
|
|
c = Balloc(a->k);
|
|
c->sign = i;
|
|
wa = a->wds;
|
|
xa = a->x;
|
|
xae = xa + wa;
|
|
wb = b->wds;
|
|
xb = b->x;
|
|
xbe = xb + wb;
|
|
xc = c->x;
|
|
borrow = 0;
|
|
#ifdef ULLong
|
|
do {
|
|
y = (ULLong)*xa++ - *xb++ - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*xc++ = (ULong)(y & 0xffffffffUL);
|
|
}
|
|
while(xb < xbe);
|
|
while(xa < xae) {
|
|
y = *xa++ - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*xc++ = (ULong)(y & 0xffffffffUL);
|
|
}
|
|
#else
|
|
do {
|
|
y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(xc, z, y);
|
|
}
|
|
while(xb < xbe);
|
|
while(xa < xae) {
|
|
y = (*xa & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*xa++ >> 16) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(xc, z, y);
|
|
}
|
|
#endif
|
|
while(!*--xc)
|
|
wa--;
|
|
c->wds = wa;
|
|
return c;
|
|
}
|
|
|
|
/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
|
|
static double ulp(double x)
|
|
{
|
|
register Long L;
|
|
double a;
|
|
|
|
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
|
|
#ifndef Sudden_Underflow
|
|
if (L > 0) {
|
|
#endif
|
|
word0(a) = L;
|
|
word1(a) = 0;
|
|
#ifndef Sudden_Underflow
|
|
}
|
|
else {
|
|
L = -L >> Exp_shift;
|
|
if (L < Exp_shift) {
|
|
word0(a) = 0x80000 >> L;
|
|
word1(a) = 0;
|
|
}
|
|
else {
|
|
word0(a) = 0;
|
|
L -= Exp_shift;
|
|
word1(a) = L >= 31 ? 1 : 1 << (31 - L);
|
|
}
|
|
}
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
|
|
static double b2d(Bigint *a, int32 *e)
|
|
{
|
|
ULong *xa, *xa0, w, y, z;
|
|
int32 k;
|
|
double d;
|
|
#define d0 word0(d)
|
|
#define d1 word1(d)
|
|
|
|
xa0 = a->x;
|
|
xa = xa0 + a->wds;
|
|
y = *--xa;
|
|
#ifdef DEBUG
|
|
if (!y) Bug("zero y in b2d");
|
|
#endif
|
|
k = hi0bits(y);
|
|
*e = 32 - k;
|
|
if (k < Ebits) {
|
|
d0 = Exp_1 | y >> (Ebits - k);
|
|
w = xa > xa0 ? *--xa : 0;
|
|
d1 = y << (32-Ebits + k) | w >> (Ebits - k);
|
|
goto ret_d;
|
|
}
|
|
z = xa > xa0 ? *--xa : 0;
|
|
if (k -= Ebits) {
|
|
d0 = Exp_1 | y << k | z >> (32 - k);
|
|
y = xa > xa0 ? *--xa : 0;
|
|
d1 = z << k | y >> (32 - k);
|
|
}
|
|
else {
|
|
d0 = Exp_1 | y;
|
|
d1 = z;
|
|
}
|
|
ret_d:
|
|
#undef d0
|
|
#undef d1
|
|
return d;
|
|
}
|
|
|
|
|
|
/* Convert d into the form b*2^e, where b is an odd integer. b is the returned
|
|
* Bigint and e is the returned binary exponent. Return the number of significant
|
|
* bits in b in bits. d must be finite and nonzero. */
|
|
static Bigint *d2b(double d, int32 *e, int32 *bits)
|
|
{
|
|
Bigint *b;
|
|
int32 de, i, k;
|
|
ULong *x, y, z;
|
|
#define d0 word0(d)
|
|
#define d1 word1(d)
|
|
|
|
b = Balloc(1);
|
|
x = b->x;
|
|
|
|
z = d0 & Frac_mask;
|
|
d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
|
|
#ifdef Sudden_Underflow
|
|
de = (int32)(d0 >> Exp_shift);
|
|
z |= Exp_msk11;
|
|
#else
|
|
if ((de = (int32)(d0 >> Exp_shift)) != 0)
|
|
z |= Exp_msk1;
|
|
#endif
|
|
if ((y = d1) != 0) {
|
|
if ((k = lo0bits(&y)) != 0) {
|
|
x[0] = y | z << (32 - k);
|
|
z >>= k;
|
|
}
|
|
else
|
|
x[0] = y;
|
|
i = b->wds = (x[1] = z) ? 2 : 1;
|
|
}
|
|
else {
|
|
JS_ASSERT(z);
|
|
k = lo0bits(&z);
|
|
x[0] = z;
|
|
i = b->wds = 1;
|
|
k += 32;
|
|
}
|
|
#ifndef Sudden_Underflow
|
|
if (de) {
|
|
#endif
|
|
*e = de - Bias - (P-1) + k;
|
|
*bits = P - k;
|
|
#ifndef Sudden_Underflow
|
|
}
|
|
else {
|
|
*e = de - Bias - (P-1) + 1 + k;
|
|
*bits = 32*i - hi0bits(x[i-1]);
|
|
}
|
|
#endif
|
|
return b;
|
|
}
|
|
#undef d0
|
|
#undef d1
|
|
|
|
|
|
static double ratio(Bigint *a, Bigint *b)
|
|
{
|
|
double da, db;
|
|
int32 k, ka, kb;
|
|
|
|
da = b2d(a, &ka);
|
|
db = b2d(b, &kb);
|
|
k = ka - kb + 32*(a->wds - b->wds);
|
|
if (k > 0)
|
|
word0(da) += k*Exp_msk1;
|
|
else {
|
|
k = -k;
|
|
word0(db) += k*Exp_msk1;
|
|
}
|
|
return da / db;
|
|
}
|
|
|
|
static CONST double
|
|
tens[] = {
|
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
|
1e20, 1e21, 1e22
|
|
};
|
|
|
|
static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
|
|
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
|
|
#ifdef Avoid_Underflow
|
|
9007199254740992.e-256
|
|
#else
|
|
1e-256
|
|
#endif
|
|
};
|
|
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
|
|
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
|
|
#define Scale_Bit 0x10
|
|
#define n_bigtens 5
|
|
|
|
|
|
#ifdef INFNAN_CHECK
|
|
|
|
#ifndef NAN_WORD0
|
|
#define NAN_WORD0 0x7ff80000
|
|
#endif
|
|
|
|
#ifndef NAN_WORD1
|
|
#define NAN_WORD1 0
|
|
#endif
|
|
|
|
static int match(CONST char **sp, char *t)
|
|
{
|
|
int c, d;
|
|
CONST char *s = *sp;
|
|
|
|
while(d = *t++) {
|
|
if ((c = *++s) >= 'A' && c <= 'Z')
|
|
c += 'a' - 'A';
|
|
if (c != d)
|
|
return 0;
|
|
}
|
|
*sp = s + 1;
|
|
return 1;
|
|
}
|
|
#endif /* INFNAN_CHECK */
|
|
|
|
|
|
#ifdef JS_THREADSAFE
|
|
static JSBool initialized = JS_FALSE;
|
|
|
|
/* hacked replica of nspr _PR_InitDtoa */
|
|
static void InitDtoa(void)
|
|
{
|
|
freelist_lock = PR_NewLock();
|
|
p5s_lock = PR_NewLock();
|
|
initialized = JS_TRUE;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* nspr2 watcom bug ifdef omitted */
|
|
|
|
JS_FRIEND_API(double)
|
|
JS_strtod(CONST char *s00, char **se)
|
|
{
|
|
int32 scale;
|
|
int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
|
|
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
|
|
CONST char *s, *s0, *s1;
|
|
double aadj, aadj1, adj, rv, rv0;
|
|
Long L;
|
|
ULong y, z;
|
|
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
|
|
|
|
#ifdef JS_THREADSAFE
|
|
if (!initialized) InitDtoa();
|
|
#endif
|
|
|
|
bb = bd = bs = delta = NULL;
|
|
sign = nz0 = nz = 0;
|
|
rv = 0.;
|
|
for(s = s00;;s++) switch(*s) {
|
|
case '-':
|
|
sign = 1;
|
|
/* no break */
|
|
case '+':
|
|
if (*++s)
|
|
goto break2;
|
|
/* no break */
|
|
case 0:
|
|
s = s00;
|
|
goto ret;
|
|
case '\t':
|
|
case '\n':
|
|
case '\v':
|
|
case '\f':
|
|
case '\r':
|
|
case ' ':
|
|
continue;
|
|
default:
|
|
goto break2;
|
|
}
|
|
break2:
|
|
if (*s == '0') {
|
|
nz0 = 1;
|
|
while(*++s == '0') ;
|
|
if (!*s)
|
|
goto ret;
|
|
}
|
|
s0 = s;
|
|
y = z = 0;
|
|
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
|
|
if (nd < 9)
|
|
y = 10*y + c - '0';
|
|
else if (nd < 16)
|
|
z = 10*z + c - '0';
|
|
nd0 = nd;
|
|
if (c == '.') {
|
|
c = *++s;
|
|
if (!nd) {
|
|
for(; c == '0'; c = *++s)
|
|
nz++;
|
|
if (c > '0' && c <= '9') {
|
|
s0 = s;
|
|
nf += nz;
|
|
nz = 0;
|
|
goto have_dig;
|
|
}
|
|
goto dig_done;
|
|
}
|
|
for(; c >= '0' && c <= '9'; c = *++s) {
|
|
have_dig:
|
|
nz++;
|
|
if (c -= '0') {
|
|
nf += nz;
|
|
for(i = 1; i < nz; i++)
|
|
if (nd++ < 9)
|
|
y *= 10;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z *= 10;
|
|
if (nd++ < 9)
|
|
y = 10*y + c;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z = 10*z + c;
|
|
nz = 0;
|
|
}
|
|
}
|
|
}
|
|
dig_done:
|
|
e = 0;
|
|
if (c == 'e' || c == 'E') {
|
|
if (!nd && !nz && !nz0) {
|
|
s = s00;
|
|
goto ret;
|
|
}
|
|
s00 = s;
|
|
esign = 0;
|
|
switch(c = *++s) {
|
|
case '-':
|
|
esign = 1;
|
|
case '+':
|
|
c = *++s;
|
|
}
|
|
if (c >= '0' && c <= '9') {
|
|
while(c == '0')
|
|
c = *++s;
|
|
if (c > '0' && c <= '9') {
|
|
L = c - '0';
|
|
s1 = s;
|
|
while((c = *++s) >= '0' && c <= '9')
|
|
L = 10*L + c - '0';
|
|
if (s - s1 > 8 || L > 19999)
|
|
/* Avoid confusion from exponents
|
|
* so large that e might overflow.
|
|
*/
|
|
e = 19999; /* safe for 16 bit ints */
|
|
else
|
|
e = (int32)L;
|
|
if (esign)
|
|
e = -e;
|
|
}
|
|
else
|
|
e = 0;
|
|
}
|
|
else
|
|
s = s00;
|
|
}
|
|
if (!nd) {
|
|
if (!nz && !nz0) {
|
|
#ifdef INFNAN_CHECK
|
|
/* Check for Nan and Infinity */
|
|
switch(c) {
|
|
case 'i':
|
|
case 'I':
|
|
if (match(&s,"nfinity")) {
|
|
word0(rv) = 0x7ff00000;
|
|
word1(rv) = 0;
|
|
goto ret;
|
|
}
|
|
break;
|
|
case 'n':
|
|
case 'N':
|
|
if (match(&s, "an")) {
|
|
word0(rv) = NAN_WORD0;
|
|
word1(rv) = NAN_WORD1;
|
|
goto ret;
|
|
}
|
|
}
|
|
#endif /* INFNAN_CHECK */
|
|
s = s00;
|
|
}
|
|
goto ret;
|
|
}
|
|
e1 = e -= nf;
|
|
|
|
/* Now we have nd0 digits, starting at s0, followed by a
|
|
* decimal point, followed by nd-nd0 digits. The number we're
|
|
* after is the integer represented by those digits times
|
|
* 10**e */
|
|
|
|
if (!nd0)
|
|
nd0 = nd;
|
|
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
|
|
rv = y;
|
|
if (k > 9)
|
|
rv = tens[k - 9] * rv + z;
|
|
bd0 = 0;
|
|
if (nd <= DBL_DIG
|
|
#ifndef RND_PRODQUOT
|
|
&& FLT_ROUNDS == 1
|
|
#endif
|
|
) {
|
|
if (!e)
|
|
goto ret;
|
|
if (e > 0) {
|
|
if (e <= Ten_pmax) {
|
|
/* rv = */ rounded_product(rv, tens[e]);
|
|
goto ret;
|
|
}
|
|
i = DBL_DIG - nd;
|
|
if (e <= Ten_pmax + i) {
|
|
/* A fancier test would sometimes let us do
|
|
* this for larger i values.
|
|
*/
|
|
e -= i;
|
|
rv *= tens[i];
|
|
/* rv = */ rounded_product(rv, tens[e]);
|
|
goto ret;
|
|
}
|
|
}
|
|
#ifndef Inaccurate_Divide
|
|
else if (e >= -Ten_pmax) {
|
|
/* rv = */ rounded_quotient(rv, tens[-e]);
|
|
goto ret;
|
|
}
|
|
#endif
|
|
}
|
|
e1 += nd - k;
|
|
|
|
scale = 0;
|
|
|
|
/* Get starting approximation = rv * 10**e1 */
|
|
|
|
if (e1 > 0) {
|
|
if ((i = e1 & 15) != 0)
|
|
rv *= tens[i];
|
|
if (e1 &= ~15) {
|
|
if (e1 > DBL_MAX_10_EXP) {
|
|
ovfl:
|
|
errno = ERANGE;
|
|
#ifdef __STDC__
|
|
rv = HUGE_VAL;
|
|
#else
|
|
/* Can't trust HUGE_VAL */
|
|
word0(rv) = Exp_mask;
|
|
word1(rv) = 0;
|
|
#endif
|
|
if (bd0)
|
|
goto retfree;
|
|
goto ret;
|
|
}
|
|
e1 >>= 4;
|
|
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv *= bigtens[j];
|
|
/* The last multiplication could overflow. */
|
|
word0(rv) -= P*Exp_msk1;
|
|
rv *= bigtens[j];
|
|
if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
|
|
goto ovfl;
|
|
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
|
|
/* set to largest number */
|
|
/* (Can't trust DBL_MAX) */
|
|
word0(rv) = Big0;
|
|
word1(rv) = Big1;
|
|
}
|
|
else
|
|
word0(rv) += P*Exp_msk1;
|
|
}
|
|
}
|
|
else if (e1 < 0) {
|
|
e1 = -e1;
|
|
if ((i = e1 & 15) != 0)
|
|
rv /= tens[i];
|
|
if (e1 &= ~15) {
|
|
e1 >>= 4;
|
|
if (e1 >= 1 << n_bigtens)
|
|
goto undfl;
|
|
#ifdef Avoid_Underflow
|
|
if (e1 & Scale_Bit)
|
|
scale = P;
|
|
for(j = 0; e1 > 0; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv *= tinytens[j];
|
|
if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
|
|
>> Exp_shift)) > 0) {
|
|
/* scaled rv is denormal; zap j low bits */
|
|
if (j >= 32) {
|
|
word1(rv) = 0;
|
|
word0(rv) &= 0xffffffff << (j-32);
|
|
if (!word0(rv))
|
|
word0(rv) = 1;
|
|
}
|
|
else
|
|
word1(rv) &= 0xffffffff << j;
|
|
}
|
|
#else
|
|
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv *= tinytens[j];
|
|
/* The last multiplication could underflow. */
|
|
rv0 = rv;
|
|
rv *= tinytens[j];
|
|
if (!rv) {
|
|
rv = 2.*rv0;
|
|
rv *= tinytens[j];
|
|
#endif
|
|
if (!rv) {
|
|
undfl:
|
|
rv = 0.;
|
|
errno = ERANGE;
|
|
if (bd0)
|
|
goto retfree;
|
|
goto ret;
|
|
}
|
|
#ifndef Avoid_Underflow
|
|
word0(rv) = Tiny0;
|
|
word1(rv) = Tiny1;
|
|
/* The refinement below will clean
|
|
* this approximation up.
|
|
*/
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Now the hard part -- adjusting rv to the correct value.*/
|
|
|
|
/* Put digits into bd: true value = bd * 10^e */
|
|
|
|
bd0 = s2b(s0, nd0, nd, y);
|
|
|
|
for(;;) {
|
|
bd = Balloc(bd0->k);
|
|
Bcopy(bd, bd0);
|
|
bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
|
|
bs = i2b(1);
|
|
|
|
if (e >= 0) {
|
|
bb2 = bb5 = 0;
|
|
bd2 = bd5 = e;
|
|
}
|
|
else {
|
|
bb2 = bb5 = -e;
|
|
bd2 = bd5 = 0;
|
|
}
|
|
if (bbe >= 0)
|
|
bb2 += bbe;
|
|
else
|
|
bd2 -= bbe;
|
|
bs2 = bb2;
|
|
#ifdef Sudden_Underflow
|
|
j = P + 1 - bbbits;
|
|
#else
|
|
#ifdef Avoid_Underflow
|
|
j = bbe - scale;
|
|
#else
|
|
j = bbe;
|
|
#endif
|
|
i = j + bbbits - 1; /* logb(rv) */
|
|
if (i < Emin) /* denormal */
|
|
j += P - Emin;
|
|
else
|
|
j = P + 1 - bbbits;
|
|
#endif
|
|
bb2 += j;
|
|
bd2 += j;
|
|
#ifdef Avoid_Underflow
|
|
bd2 += scale;
|
|
#endif
|
|
i = bb2 < bd2 ? bb2 : bd2;
|
|
if (i > bs2)
|
|
i = bs2;
|
|
if (i > 0) {
|
|
bb2 -= i;
|
|
bd2 -= i;
|
|
bs2 -= i;
|
|
}
|
|
if (bb5 > 0) {
|
|
bs = pow5mult(bs, bb5);
|
|
bb1 = mult(bs, bb);
|
|
Bfree(bb);
|
|
bb = bb1;
|
|
}
|
|
if (bb2 > 0)
|
|
bb = lshift(bb, bb2);
|
|
if (bd5 > 0)
|
|
bd = pow5mult(bd, bd5);
|
|
if (bd2 > 0)
|
|
bd = lshift(bd, bd2);
|
|
if (bs2 > 0)
|
|
bs = lshift(bs, bs2);
|
|
delta = diff(bb, bd);
|
|
dsign = delta->sign;
|
|
delta->sign = 0;
|
|
i = cmp(delta, bs);
|
|
if (i < 0) {
|
|
/* Error is less than half an ulp -- check for
|
|
* special case of mantissa a power of two.
|
|
*/
|
|
if (dsign || word1(rv) || word0(rv) & Bndry_mask
|
|
#ifdef Avoid_Underflow
|
|
|| (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
|
|
#else
|
|
|| (word0(rv) & Exp_mask) <= Exp_msk1
|
|
#endif
|
|
) {
|
|
#ifdef Avoid_Underflow
|
|
if (!delta->x[0] && delta->wds == 1)
|
|
dsign = 2;
|
|
#endif
|
|
break;
|
|
}
|
|
delta = lshift(delta,Log2P);
|
|
if (cmp(delta, bs) > 0)
|
|
goto drop_down;
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
/* exactly half-way between */
|
|
if (dsign) {
|
|
if ((word0(rv) & Bndry_mask1) == Bndry_mask1
|
|
&& word1(rv) == 0xffffffff) {
|
|
/*boundary case -- increment exponent*/
|
|
word0(rv) = (word0(rv) & Exp_mask) + Exp_msk1;
|
|
word1(rv) = 0;
|
|
#ifdef Avoid_Underflow
|
|
dsign = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
|
|
#ifdef Avoid_Underflow
|
|
dsign = 2;
|
|
#endif
|
|
drop_down:
|
|
/* boundary case -- decrement exponent */
|
|
#ifdef Sudden_Underflow
|
|
L = word0(rv) & Exp_mask;
|
|
if (L <= Exp_msk1)
|
|
goto undfl;
|
|
L -= Exp_msk1;
|
|
#else
|
|
L = (word0(rv) & Exp_mask) - Exp_msk1;
|
|
#endif
|
|
word0(rv) = L | Bndry_mask1;
|
|
word1(rv) = 0xffffffff;
|
|
break;
|
|
}
|
|
#ifndef ROUND_BIASED
|
|
if (!(word1(rv) & LSB))
|
|
break;
|
|
#endif
|
|
if (dsign)
|
|
rv += ulp(rv);
|
|
#ifndef ROUND_BIASED
|
|
else {
|
|
rv -= ulp(rv);
|
|
#ifndef Sudden_Underflow
|
|
if (!rv)
|
|
goto undfl;
|
|
#endif
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
dsign = 1 - dsign;
|
|
#endif
|
|
#endif
|
|
break;
|
|
}
|
|
if ((aadj = ratio(delta, bs)) <= 2.) {
|
|
if (dsign)
|
|
aadj = aadj1 = 1.;
|
|
else if (word1(rv) || word0(rv) & Bndry_mask) {
|
|
#ifndef Sudden_Underflow
|
|
if (word1(rv) == Tiny1 && !word0(rv))
|
|
goto undfl;
|
|
#endif
|
|
aadj = 1.;
|
|
aadj1 = -1.;
|
|
}
|
|
else {
|
|
/* special case -- power of FLT_RADIX to be */
|
|
/* rounded down... */
|
|
|
|
if (aadj < 2./FLT_RADIX)
|
|
aadj = 1./FLT_RADIX;
|
|
else
|
|
aadj *= 0.5;
|
|
aadj1 = -aadj;
|
|
}
|
|
}
|
|
else {
|
|
aadj *= 0.5;
|
|
aadj1 = dsign ? aadj : -aadj;
|
|
#ifdef Check_FLT_ROUNDS
|
|
switch(FLT_ROUNDS) {
|
|
case 2: /* towards +infinity */
|
|
aadj1 -= 0.5;
|
|
break;
|
|
case 0: /* towards 0 */
|
|
case 3: /* towards -infinity */
|
|
aadj1 += 0.5;
|
|
}
|
|
#else
|
|
if (FLT_ROUNDS == 0)
|
|
aadj1 += 0.5;
|
|
#endif
|
|
}
|
|
y = word0(rv) & Exp_mask;
|
|
|
|
/* Check for overflow */
|
|
|
|
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
|
|
rv0 = rv;
|
|
word0(rv) -= P*Exp_msk1;
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
if ((word0(rv) & Exp_mask) >=
|
|
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
|
|
if (word0(rv0) == Big0 && word1(rv0) == Big1)
|
|
goto ovfl;
|
|
word0(rv) = Big0;
|
|
word1(rv) = Big1;
|
|
goto cont;
|
|
}
|
|
else
|
|
word0(rv) += P*Exp_msk1;
|
|
}
|
|
else {
|
|
#ifdef Sudden_Underflow
|
|
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
|
|
rv0 = rv;
|
|
word0(rv) += P*Exp_msk1;
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
|
|
{
|
|
if (word0(rv0) == Tiny0
|
|
&& word1(rv0) == Tiny1)
|
|
goto undfl;
|
|
word0(rv) = Tiny0;
|
|
word1(rv) = Tiny1;
|
|
goto cont;
|
|
}
|
|
else
|
|
word0(rv) -= P*Exp_msk1;
|
|
}
|
|
else {
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
}
|
|
#else
|
|
/* Compute adj so that the IEEE rounding rules will
|
|
* correctly round rv + adj in some half-way cases.
|
|
* If rv * ulp(rv) is denormalized (i.e.,
|
|
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
|
|
* trouble from bits lost to denormalization;
|
|
* example: 1.2e-307 .
|
|
*/
|
|
#ifdef Avoid_Underflow
|
|
if (y <= P*Exp_msk1 && aadj > 1.)
|
|
#else
|
|
if (y <= (P-1)*Exp_msk1 && aadj > 1.)
|
|
#endif
|
|
{
|
|
aadj1 = (double)(int32)(aadj + 0.5);
|
|
if (!dsign)
|
|
aadj1 = -aadj1;
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
if (scale && y <= P*Exp_msk1)
|
|
word0(aadj1) += (P+1)*Exp_msk1 - y;
|
|
#endif
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
#endif
|
|
}
|
|
z = word0(rv) & Exp_mask;
|
|
#ifdef Avoid_Underflow
|
|
if (!scale)
|
|
#endif
|
|
if (y == z) {
|
|
/* Can we stop now? */
|
|
L = (Long)aadj;
|
|
aadj -= L;
|
|
/* The tolerances below are conservative. */
|
|
if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
|
|
if (aadj < .4999999 || aadj > .5000001)
|
|
break;
|
|
}
|
|
else if (aadj < .4999999/FLT_RADIX)
|
|
break;
|
|
}
|
|
cont:
|
|
Bfree(bb);
|
|
Bfree(bd);
|
|
Bfree(bs);
|
|
Bfree(delta);
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
if (scale) {
|
|
word0(rv0) = Exp_1 - P*Exp_msk1;
|
|
word1(rv0) = 0;
|
|
if ((word0(rv) & Exp_mask) <= P*Exp_msk1
|
|
&& word1(rv) & 1
|
|
&& dsign != 2) {
|
|
if (dsign) {
|
|
#ifdef Sudden_Underflow
|
|
/* rv will be 0, but this would give the */
|
|
/* right result if only rv *= rv0 worked. */
|
|
word0(rv) += P*Exp_msk1;
|
|
word0(rv0) = Exp_1 - 2*P*Exp_msk1;
|
|
#endif
|
|
rv += ulp(rv);
|
|
}
|
|
else
|
|
word1(rv) &= ~1;
|
|
}
|
|
rv *= rv0;
|
|
}
|
|
#endif /* Avoid_Underflow */
|
|
retfree:
|
|
Bfree(bb);
|
|
Bfree(bd);
|
|
Bfree(bs);
|
|
Bfree(bd0);
|
|
Bfree(delta);
|
|
ret:
|
|
if (se)
|
|
*se = (char *)s;
|
|
return sign ? -rv : rv;
|
|
}
|
|
|
|
|
|
/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */
|
|
static uint32 quorem2(Bigint *b, int32 k)
|
|
{
|
|
ULong mask;
|
|
ULong result;
|
|
ULong *bx, *bxe;
|
|
int32 w;
|
|
int32 n = k >> 5;
|
|
k &= 0x1F;
|
|
mask = (1<<k) - 1;
|
|
|
|
w = b->wds - n;
|
|
if (w <= 0)
|
|
return 0;
|
|
JS_ASSERT(w <= 2);
|
|
bx = b->x;
|
|
bxe = bx + n;
|
|
result = *bxe >> k;
|
|
*bxe &= mask;
|
|
if (w == 2) {
|
|
JS_ASSERT(!(bxe[1] & ~mask));
|
|
if (k)
|
|
result |= bxe[1] << (32 - k);
|
|
}
|
|
n++;
|
|
while (!*bxe && bxe != bx) {
|
|
n--;
|
|
bxe--;
|
|
}
|
|
b->wds = n;
|
|
return result;
|
|
}
|
|
|
|
/* Return floor(b/S) and set b to be the remainder. As added restrictions, b must not have
|
|
* more words than S, the most significant word of S must not start with a 1 bit, and the
|
|
* returned quotient must be less than 36. */
|
|
static int32 quorem(Bigint *b, Bigint *S)
|
|
{
|
|
int32 n;
|
|
ULong *bx, *bxe, q, *sx, *sxe;
|
|
#ifdef ULLong
|
|
ULLong borrow, carry, y, ys;
|
|
#else
|
|
ULong borrow, carry, y, ys;
|
|
ULong si, z, zs;
|
|
#endif
|
|
|
|
n = S->wds;
|
|
JS_ASSERT(b->wds <= n);
|
|
if (b->wds < n)
|
|
return 0;
|
|
sx = S->x;
|
|
sxe = sx + --n;
|
|
bx = b->x;
|
|
bxe = bx + n;
|
|
JS_ASSERT(*sxe <= 0x7FFFFFFF);
|
|
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
|
|
JS_ASSERT(q < 36);
|
|
if (q) {
|
|
borrow = 0;
|
|
carry = 0;
|
|
do {
|
|
#ifdef ULLong
|
|
ys = *sx++ * (ULLong)q + carry;
|
|
carry = ys >> 32;
|
|
y = *bx - (ys & 0xffffffffUL) - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*bx++ = (ULong)(y & 0xffffffffUL);
|
|
#else
|
|
si = *sx++;
|
|
ys = (si & 0xffff) * q + carry;
|
|
zs = (si >> 16) * q + (ys >> 16);
|
|
carry = zs >> 16;
|
|
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(bx, z, y);
|
|
#endif
|
|
}
|
|
while(sx <= sxe);
|
|
if (!*bxe) {
|
|
bx = b->x;
|
|
while(--bxe > bx && !*bxe)
|
|
--n;
|
|
b->wds = n;
|
|
}
|
|
}
|
|
if (cmp(b, S) >= 0) {
|
|
q++;
|
|
borrow = 0;
|
|
carry = 0;
|
|
bx = b->x;
|
|
sx = S->x;
|
|
do {
|
|
#ifdef ULLong
|
|
ys = *sx++ + carry;
|
|
carry = ys >> 32;
|
|
y = *bx - (ys & 0xffffffffUL) - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*bx++ = (ULong)(y & 0xffffffffUL);
|
|
#else
|
|
si = *sx++;
|
|
ys = (si & 0xffff) + carry;
|
|
zs = (si >> 16) + (ys >> 16);
|
|
carry = zs >> 16;
|
|
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(bx, z, y);
|
|
#endif
|
|
} while(sx <= sxe);
|
|
bx = b->x;
|
|
bxe = bx + n;
|
|
if (!*bxe) {
|
|
while(--bxe > bx && !*bxe)
|
|
--n;
|
|
b->wds = n;
|
|
}
|
|
}
|
|
return (int32)q;
|
|
}
|
|
|
|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
|
*
|
|
* Inspired by "How to Print Floating-Point Numbers Accurately" by
|
|
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
|
|
*
|
|
* Modifications:
|
|
* 1. Rather than iterating, we use a simple numeric overestimate
|
|
* to determine k = floor(log10(d)). We scale relevant
|
|
* quantities using O(log2(k)) rather than O(k) multiplications.
|
|
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
|
* try to generate digits strictly left to right. Instead, we
|
|
* compute with fewer bits and propagate the carry if necessary
|
|
* when rounding the final digit up. This is often faster.
|
|
* 3. Under the assumption that input will be rounded nearest,
|
|
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
|
* That is, we allow equality in stopping tests when the
|
|
* round-nearest rule will give the same floating-point value
|
|
* as would satisfaction of the stopping test with strict
|
|
* inequality.
|
|
* 4. We remove common factors of powers of 2 from relevant
|
|
* quantities.
|
|
* 5. When converting floating-point integers less than 1e16,
|
|
* we use floating-point arithmetic rather than resorting
|
|
* to multiple-precision integers.
|
|
* 6. When asked to produce fewer than 15 digits, we first try
|
|
* to get by with floating-point arithmetic; we resort to
|
|
* multiple-precision integer arithmetic only if we cannot
|
|
* guarantee that the floating-point calculation has given
|
|
* the correctly rounded result. For k requested digits and
|
|
* "uniformly" distributed input, the probability is
|
|
* something like 10^(k-15) that we must resort to the Long
|
|
* calculation.
|
|
*/
|
|
|
|
/* Always emits at least one digit. */
|
|
/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
|
|
* when the number is exactly halfway between two representable values. For example,
|
|
* rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
|
|
* 2.49 will still round to 2, and 2.51 will still round to 3. */
|
|
/* bufsize should be at least 20 for modes 0 and 1. For the other modes,
|
|
* bufsize should be two greater than the maximum number of output characters expected. */
|
|
static JSBool
|
|
JS_dtoa(double d, int mode, JSBool biasUp, int ndigits,
|
|
int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
|
|
{
|
|
/* Arguments ndigits, decpt, sign are similar to those
|
|
of ecvt and fcvt; trailing zeros are suppressed from
|
|
the returned string. If not null, *rve is set to point
|
|
to the end of the return value. If d is +-Infinity or NaN,
|
|
then *decpt is set to 9999.
|
|
|
|
mode:
|
|
0 ==> shortest string that yields d when read in
|
|
and rounded to nearest.
|
|
1 ==> like 0, but with Steele & White stopping rule;
|
|
e.g. with IEEE P754 arithmetic , mode 0 gives
|
|
1e23 whereas mode 1 gives 9.999999999999999e22.
|
|
2 ==> max(1,ndigits) significant digits. This gives a
|
|
return value similar to that of ecvt, except
|
|
that trailing zeros are suppressed.
|
|
3 ==> through ndigits past the decimal point. This
|
|
gives a return value similar to that from fcvt,
|
|
except that trailing zeros are suppressed, and
|
|
ndigits can be negative.
|
|
4-9 should give the same return values as 2-3, i.e.,
|
|
4 <= mode <= 9 ==> same return as mode
|
|
2 + (mode & 1). These modes are mainly for
|
|
debugging; often they run slower but sometimes
|
|
faster than modes 2-3.
|
|
4,5,8,9 ==> left-to-right digit generation.
|
|
6-9 ==> don't try fast floating-point estimate
|
|
(if applicable).
|
|
|
|
Values of mode other than 0-9 are treated as mode 0.
|
|
|
|
Sufficient space is allocated to the return value
|
|
to hold the suppressed trailing zeros.
|
|
*/
|
|
|
|
int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
|
|
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
|
spec_case, try_quick;
|
|
Long L;
|
|
#ifndef Sudden_Underflow
|
|
int32 denorm;
|
|
ULong x;
|
|
#endif
|
|
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
|
|
double d2, ds, eps;
|
|
char *s;
|
|
|
|
#ifdef JS_THREADSAFE
|
|
if (!initialized) InitDtoa();
|
|
#endif
|
|
|
|
if (word0(d) & Sign_bit) {
|
|
/* set sign for everything, including 0's and NaNs */
|
|
*sign = 1;
|
|
word0(d) &= ~Sign_bit; /* clear sign bit */
|
|
}
|
|
else
|
|
*sign = 0;
|
|
|
|
if ((word0(d) & Exp_mask) == Exp_mask) {
|
|
/* Infinity or NaN */
|
|
*decpt = 9999;
|
|
s = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
|
|
if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) {
|
|
JS_ASSERT(JS_FALSE);
|
|
/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
|
|
return JS_FALSE;
|
|
}
|
|
strcpy(buf, s);
|
|
if (rve) {
|
|
*rve = buf[3] ? buf + 8 : buf + 3;
|
|
JS_ASSERT(**rve == '\0');
|
|
}
|
|
return JS_TRUE;
|
|
}
|
|
if (!d) {
|
|
no_digits:
|
|
*decpt = 1;
|
|
if (bufsize < 2) {
|
|
JS_ASSERT(JS_FALSE);
|
|
/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
|
|
return JS_FALSE;
|
|
}
|
|
buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */
|
|
if (rve)
|
|
*rve = buf + 1;
|
|
return JS_TRUE;
|
|
}
|
|
|
|
b = d2b(d, &be, &bbits);
|
|
#ifdef Sudden_Underflow
|
|
i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
|
|
#else
|
|
if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
|
|
#endif
|
|
d2 = d;
|
|
word0(d2) &= Frac_mask1;
|
|
word0(d2) |= Exp_11;
|
|
|
|
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
|
* log10(x) = log(x) / log(10)
|
|
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
|
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
|
*
|
|
* This suggests computing an approximation k to log10(d) by
|
|
*
|
|
* k = (i - Bias)*0.301029995663981
|
|
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
|
*
|
|
* We want k to be too large rather than too small.
|
|
* The error in the first-order Taylor series approximation
|
|
* is in our favor, so we just round up the constant enough
|
|
* to compensate for any error in the multiplication of
|
|
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
|
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
|
* adding 1e-13 to the constant term more than suffices.
|
|
* Hence we adjust the constant term to 0.1760912590558.
|
|
* (We could get a more accurate k by invoking log10,
|
|
* but this is probably not worthwhile.)
|
|
*/
|
|
|
|
i -= Bias;
|
|
#ifndef Sudden_Underflow
|
|
denorm = 0;
|
|
}
|
|
else {
|
|
/* d is denormalized */
|
|
|
|
i = bbits + be + (Bias + (P-1) - 1);
|
|
x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
|
|
d2 = x;
|
|
word0(d2) -= 31*Exp_msk1; /* adjust exponent */
|
|
i -= (Bias + (P-1) - 1) + 1;
|
|
denorm = 1;
|
|
}
|
|
#endif
|
|
/* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */
|
|
ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
|
k = (int32)ds;
|
|
if (ds < 0. && ds != k)
|
|
k--; /* want k = floor(ds) */
|
|
k_check = 1;
|
|
if (k >= 0 && k <= Ten_pmax) {
|
|
if (d < tens[k])
|
|
k--;
|
|
k_check = 0;
|
|
}
|
|
/* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
|
|
If k_check is zero, we're guaranteed that k = floor(log10(d)). */
|
|
j = bbits - i - 1;
|
|
/* At this point d = b/2^j, where b is an odd integer. */
|
|
if (j >= 0) {
|
|
b2 = 0;
|
|
s2 = j;
|
|
}
|
|
else {
|
|
b2 = -j;
|
|
s2 = 0;
|
|
}
|
|
if (k >= 0) {
|
|
b5 = 0;
|
|
s5 = k;
|
|
s2 += k;
|
|
}
|
|
else {
|
|
b2 -= k;
|
|
b5 = -k;
|
|
s5 = 0;
|
|
}
|
|
/* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
|
|
b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
|
|
if (mode < 0 || mode > 9)
|
|
mode = 0;
|
|
try_quick = 1;
|
|
if (mode > 5) {
|
|
mode -= 4;
|
|
try_quick = 0;
|
|
}
|
|
leftright = 1;
|
|
ilim = ilim1 = 0;
|
|
switch(mode) {
|
|
case 0:
|
|
case 1:
|
|
ilim = ilim1 = -1;
|
|
i = 18;
|
|
ndigits = 0;
|
|
break;
|
|
case 2:
|
|
leftright = 0;
|
|
/* no break */
|
|
case 4:
|
|
if (ndigits <= 0)
|
|
ndigits = 1;
|
|
ilim = ilim1 = i = ndigits;
|
|
break;
|
|
case 3:
|
|
leftright = 0;
|
|
/* no break */
|
|
case 5:
|
|
i = ndigits + k + 1;
|
|
ilim = i;
|
|
ilim1 = i - 1;
|
|
if (i <= 0)
|
|
i = 1;
|
|
}
|
|
/* ilim is the maximum number of significant digits we want, based on k and ndigits. */
|
|
/* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
|
|
when it turns out that k was computed too high by one. */
|
|
|
|
/* Ensure space for at least i+1 characters, including trailing null. */
|
|
if (bufsize <= (size_t)i) {
|
|
Bfree(b);
|
|
JS_ASSERT(JS_FALSE);
|
|
return JS_FALSE;
|
|
}
|
|
s = buf;
|
|
|
|
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
|
|
|
|
/* Try to get by with floating-point arithmetic. */
|
|
|
|
i = 0;
|
|
d2 = d;
|
|
k0 = k;
|
|
ilim0 = ilim;
|
|
ieps = 2; /* conservative */
|
|
/* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
|
|
if (k > 0) {
|
|
ds = tens[k&0xf];
|
|
j = k >> 4;
|
|
if (j & Bletch) {
|
|
/* prevent overflows */
|
|
j &= Bletch - 1;
|
|
d /= bigtens[n_bigtens-1];
|
|
ieps++;
|
|
}
|
|
for(; j; j >>= 1, i++)
|
|
if (j & 1) {
|
|
ieps++;
|
|
ds *= bigtens[i];
|
|
}
|
|
d /= ds;
|
|
}
|
|
else if ((j1 = -k) != 0) {
|
|
d *= tens[j1 & 0xf];
|
|
for(j = j1 >> 4; j; j >>= 1, i++)
|
|
if (j & 1) {
|
|
ieps++;
|
|
d *= bigtens[i];
|
|
}
|
|
}
|
|
/* Check that k was computed correctly. */
|
|
if (k_check && d < 1. && ilim > 0) {
|
|
if (ilim1 <= 0)
|
|
goto fast_failed;
|
|
ilim = ilim1;
|
|
k--;
|
|
d *= 10.;
|
|
ieps++;
|
|
}
|
|
/* eps bounds the cumulative error. */
|
|
eps = ieps*d + 7.;
|
|
word0(eps) -= (P-1)*Exp_msk1;
|
|
if (ilim == 0) {
|
|
S = mhi = 0;
|
|
d -= 5.;
|
|
if (d > eps)
|
|
goto one_digit;
|
|
if (d < -eps)
|
|
goto no_digits;
|
|
goto fast_failed;
|
|
}
|
|
#ifndef No_leftright
|
|
if (leftright) {
|
|
/* Use Steele & White method of only
|
|
* generating digits needed.
|
|
*/
|
|
eps = 0.5/tens[ilim-1] - eps;
|
|
for(i = 0;;) {
|
|
L = (Long)d;
|
|
d -= L;
|
|
*s++ = '0' + (char)L;
|
|
if (d < eps)
|
|
goto ret1;
|
|
if (1. - d < eps)
|
|
goto bump_up;
|
|
if (++i >= ilim)
|
|
break;
|
|
eps *= 10.;
|
|
d *= 10.;
|
|
}
|
|
}
|
|
else {
|
|
#endif
|
|
/* Generate ilim digits, then fix them up. */
|
|
eps *= tens[ilim-1];
|
|
for(i = 1;; i++, d *= 10.) {
|
|
L = (Long)d;
|
|
d -= L;
|
|
*s++ = '0' + (char)L;
|
|
if (i == ilim) {
|
|
if (d > 0.5 + eps)
|
|
goto bump_up;
|
|
else if (d < 0.5 - eps) {
|
|
while(*--s == '0') ;
|
|
s++;
|
|
goto ret1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#ifndef No_leftright
|
|
}
|
|
#endif
|
|
fast_failed:
|
|
s = buf;
|
|
d = d2;
|
|
k = k0;
|
|
ilim = ilim0;
|
|
}
|
|
|
|
/* Do we have a "small" integer? */
|
|
|
|
if (be >= 0 && k <= Int_max) {
|
|
/* Yes. */
|
|
ds = tens[k];
|
|
if (ndigits < 0 && ilim <= 0) {
|
|
S = mhi = 0;
|
|
if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
|
|
goto no_digits;
|
|
goto one_digit;
|
|
}
|
|
for(i = 1;; i++) {
|
|
L = (Long) (d / ds);
|
|
d -= L*ds;
|
|
#ifdef Check_FLT_ROUNDS
|
|
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
|
if (d < 0) {
|
|
L--;
|
|
d += ds;
|
|
}
|
|
#endif
|
|
*s++ = '0' + (char)L;
|
|
if (i == ilim) {
|
|
d += d;
|
|
if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
|
|
bump_up:
|
|
while(*--s == '9')
|
|
if (s == buf) {
|
|
k++;
|
|
*s = '0';
|
|
break;
|
|
}
|
|
++*s++;
|
|
}
|
|
break;
|
|
}
|
|
if (!(d *= 10.))
|
|
break;
|
|
}
|
|
goto ret1;
|
|
}
|
|
|
|
m2 = b2;
|
|
m5 = b5;
|
|
mhi = mlo = 0;
|
|
if (leftright) {
|
|
if (mode < 2) {
|
|
i =
|
|
#ifndef Sudden_Underflow
|
|
denorm ? be + (Bias + (P-1) - 1 + 1) :
|
|
#endif
|
|
1 + P - bbits;
|
|
/* i is 1 plus the number of trailing zero bits in d's significand. Thus,
|
|
(2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
|
|
}
|
|
else {
|
|
j = ilim - 1;
|
|
if (m5 >= j)
|
|
m5 -= j;
|
|
else {
|
|
s5 += j -= m5;
|
|
b5 += j;
|
|
m5 = 0;
|
|
}
|
|
if ((i = ilim) < 0) {
|
|
m2 -= i;
|
|
i = 0;
|
|
}
|
|
/* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
|
|
}
|
|
b2 += i;
|
|
s2 += i;
|
|
mhi = i2b(1);
|
|
/* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
|
|
input (when mode < 2) significant digit, divided by 10^k. */
|
|
}
|
|
/* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in
|
|
b2, m2, and s2 without changing the equalities. */
|
|
if (m2 > 0 && s2 > 0) {
|
|
i = m2 < s2 ? m2 : s2;
|
|
b2 -= i;
|
|
m2 -= i;
|
|
s2 -= i;
|
|
}
|
|
|
|
/* Fold b5 into b and m5 into mhi. */
|
|
if (b5 > 0) {
|
|
if (leftright) {
|
|
if (m5 > 0) {
|
|
mhi = pow5mult(mhi, m5);
|
|
b1 = mult(mhi, b);
|
|
Bfree(b);
|
|
b = b1;
|
|
}
|
|
if ((j = b5 - m5) != 0)
|
|
b = pow5mult(b, j);
|
|
}
|
|
else
|
|
b = pow5mult(b, b5);
|
|
}
|
|
/* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
|
|
(mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
|
|
|
|
S = i2b(1);
|
|
if (s5 > 0)
|
|
S = pow5mult(S, s5);
|
|
/* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
|
|
(mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
|
|
|
|
/* Check for special case that d is a normalized power of 2. */
|
|
spec_case = 0;
|
|
if (mode < 2) {
|
|
if (!word1(d) && !(word0(d) & Bndry_mask)
|
|
#ifndef Sudden_Underflow
|
|
&& word0(d) & (Exp_mask & Exp_mask << 1)
|
|
#endif
|
|
) {
|
|
/* The special case. Here we want to be within a quarter of the last input
|
|
significant digit instead of one half of it when the decimal output string's value is less than d. */
|
|
b2 += Log2P;
|
|
s2 += Log2P;
|
|
spec_case = 1;
|
|
}
|
|
}
|
|
|
|
/* Arrange for convenient computation of quotients:
|
|
* shift left if necessary so divisor has 4 leading 0 bits.
|
|
*
|
|
* Perhaps we should just compute leading 28 bits of S once
|
|
* and for all and pass them and a shift to quorem, so it
|
|
* can do shifts and ors to compute the numerator for q.
|
|
*/
|
|
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
|
|
i = 32 - i;
|
|
/* i is the number of leading zero bits in the most significant word of S*2^s2. */
|
|
if (i > 4) {
|
|
i -= 4;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
else if (i < 4) {
|
|
i += 28;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
/* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
|
|
if (b2 > 0)
|
|
b = lshift(b, b2);
|
|
if (s2 > 0)
|
|
S = lshift(S, s2);
|
|
/* Now we have d/10^k = b/S and
|
|
(mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
|
|
if (k_check) {
|
|
if (cmp(b,S) < 0) {
|
|
k--;
|
|
b = multadd(b, 10, 0); /* we botched the k estimate */
|
|
if (leftright)
|
|
mhi = multadd(mhi, 10, 0);
|
|
ilim = ilim1;
|
|
}
|
|
}
|
|
/* At this point 1 <= d/10^k = b/S < 10. */
|
|
|
|
if (ilim <= 0 && mode > 2) {
|
|
/* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
|
|
Output either zero or the minimum nonzero output depending on which is closer to d. */
|
|
if (ilim < 0 || (i = cmp(b,S = multadd(S,5,0))) < 0 || (i == 0 && !biasUp)) {
|
|
/* Always emit at least one digit. If the number appears to be zero
|
|
using the current mode, then emit one '0' digit and set decpt to 1. */
|
|
/*no_digits:
|
|
k = -1 - ndigits;
|
|
goto ret; */
|
|
goto no_digits;
|
|
}
|
|
one_digit:
|
|
*s++ = '1';
|
|
k++;
|
|
goto ret;
|
|
}
|
|
if (leftright) {
|
|
if (m2 > 0)
|
|
mhi = lshift(mhi, m2);
|
|
|
|
/* Compute mlo -- check for special case
|
|
* that d is a normalized power of 2.
|
|
*/
|
|
|
|
mlo = mhi;
|
|
if (spec_case) {
|
|
mhi = Balloc(mhi->k);
|
|
Bcopy(mhi, mlo);
|
|
mhi = lshift(mhi, Log2P);
|
|
}
|
|
/* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
|
|
/* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
|
|
|
|
for(i = 1;;i++) {
|
|
dig = quorem(b,S) + '0';
|
|
/* Do we yet have the shortest decimal string
|
|
* that will round to d?
|
|
*/
|
|
j = cmp(b, mlo);
|
|
/* j is b/S compared with mlo/S. */
|
|
delta = diff(S, mhi);
|
|
j1 = delta->sign ? 1 : cmp(b, delta);
|
|
Bfree(delta);
|
|
/* j1 is b/S compared with 1 - mhi/S. */
|
|
#ifndef ROUND_BIASED
|
|
if (j1 == 0 && !mode && !(word1(d) & 1)) {
|
|
if (dig == '9')
|
|
goto round_9_up;
|
|
if (j > 0)
|
|
dig++;
|
|
*s++ = (char)dig;
|
|
goto ret;
|
|
}
|
|
#endif
|
|
if ((j < 0) || (j == 0 && !mode
|
|
#ifndef ROUND_BIASED
|
|
&& !(word1(d) & 1)
|
|
#endif
|
|
)) {
|
|
if (j1 > 0) {
|
|
/* Either dig or dig+1 would work here as the least significant decimal digit.
|
|
Use whichever would produce a decimal value closer to d. */
|
|
b = lshift(b, 1);
|
|
j1 = cmp(b, S);
|
|
if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
|
|
&& (dig++ == '9'))
|
|
goto round_9_up;
|
|
}
|
|
*s++ = (char)dig;
|
|
goto ret;
|
|
}
|
|
if (j1 > 0) {
|
|
if (dig == '9') { /* possible if i == 1 */
|
|
round_9_up:
|
|
*s++ = '9';
|
|
goto roundoff;
|
|
}
|
|
*s++ = dig + 1;
|
|
goto ret;
|
|
}
|
|
*s++ = (char)dig;
|
|
if (i == ilim)
|
|
break;
|
|
b = multadd(b, 10, 0);
|
|
if (mlo == mhi)
|
|
mlo = mhi = multadd(mhi, 10, 0);
|
|
else {
|
|
mlo = multadd(mlo, 10, 0);
|
|
mhi = multadd(mhi, 10, 0);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
for(i = 1;; i++) {
|
|
*s++ = (char)(dig = quorem(b,S) + '0');
|
|
if (i >= ilim)
|
|
break;
|
|
b = multadd(b, 10, 0);
|
|
}
|
|
|
|
/* Round off last digit */
|
|
|
|
b = lshift(b, 1);
|
|
j = cmp(b, S);
|
|
if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
|
|
roundoff:
|
|
while(*--s == '9')
|
|
if (s == buf) {
|
|
k++;
|
|
*s++ = '1';
|
|
goto ret;
|
|
}
|
|
++*s++;
|
|
}
|
|
else {
|
|
/* Strip trailing zeros */
|
|
while(*--s == '0') ;
|
|
s++;
|
|
}
|
|
ret:
|
|
Bfree(S);
|
|
if (mhi) {
|
|
if (mlo && mlo != mhi)
|
|
Bfree(mlo);
|
|
Bfree(mhi);
|
|
}
|
|
ret1:
|
|
Bfree(b);
|
|
JS_ASSERT(s < buf + bufsize);
|
|
*s = '\0';
|
|
if (rve)
|
|
*rve = s;
|
|
*decpt = k + 1;
|
|
return JS_TRUE;
|
|
}
|
|
|
|
|
|
/* Mapping of JSDToStrMode -> JS_dtoa mode */
|
|
static const int dtoaModes[] = {
|
|
0, /* DTOSTR_STANDARD */
|
|
0, /* DTOSTR_STANDARD_EXPONENTIAL, */
|
|
3, /* DTOSTR_FIXED, */
|
|
2, /* DTOSTR_EXPONENTIAL, */
|
|
2}; /* DTOSTR_PRECISION */
|
|
|
|
JS_FRIEND_API(char *)
|
|
JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
|
|
{
|
|
int decPt; /* Position of decimal point relative to first digit returned by JS_dtoa */
|
|
int sign; /* Nonzero if the sign bit was set in d */
|
|
int nDigits; /* Number of significand digits returned by JS_dtoa */
|
|
char *numBegin = buffer+2; /* Pointer to the digits returned by JS_dtoa; the +2 leaves space for */
|
|
/* the sign and/or decimal point */
|
|
char *numEnd; /* Pointer past the digits returned by JS_dtoa */
|
|
|
|
JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
|
|
DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
|
|
|
|
if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
|
|
mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
|
|
|
|
if (!JS_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2))
|
|
return 0;
|
|
|
|
nDigits = numEnd - numBegin;
|
|
|
|
/* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
|
|
if (decPt != 9999) {
|
|
JSBool exponentialNotation = JS_FALSE;
|
|
int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */
|
|
char *p;
|
|
char *q;
|
|
|
|
switch (mode) {
|
|
case DTOSTR_STANDARD:
|
|
if (decPt < -5 || decPt > 21)
|
|
exponentialNotation = JS_TRUE;
|
|
else
|
|
minNDigits = decPt;
|
|
break;
|
|
|
|
case DTOSTR_FIXED:
|
|
if (precision >= 0)
|
|
minNDigits = decPt + precision;
|
|
else
|
|
minNDigits = decPt;
|
|
break;
|
|
|
|
case DTOSTR_EXPONENTIAL:
|
|
JS_ASSERT(precision > 0);
|
|
minNDigits = precision;
|
|
/* Fall through */
|
|
case DTOSTR_STANDARD_EXPONENTIAL:
|
|
exponentialNotation = JS_TRUE;
|
|
break;
|
|
|
|
case DTOSTR_PRECISION:
|
|
JS_ASSERT(precision > 0);
|
|
minNDigits = precision;
|
|
if (decPt < -5 || decPt > precision)
|
|
exponentialNotation = JS_TRUE;
|
|
break;
|
|
}
|
|
|
|
/* If the number has fewer than minNDigits, pad it with zeros at the end */
|
|
if (nDigits < minNDigits) {
|
|
p = numBegin + minNDigits;
|
|
nDigits = minNDigits;
|
|
do {
|
|
*numEnd++ = '0';
|
|
} while (numEnd != p);
|
|
*numEnd = '\0';
|
|
}
|
|
|
|
if (exponentialNotation) {
|
|
/* Insert a decimal point if more than one significand digit */
|
|
if (nDigits != 1) {
|
|
numBegin--;
|
|
numBegin[0] = numBegin[1];
|
|
numBegin[1] = '.';
|
|
}
|
|
JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1);
|
|
} else if (decPt != nDigits) {
|
|
/* Some kind of a fraction in fixed notation */
|
|
JS_ASSERT(decPt <= nDigits);
|
|
if (decPt > 0) {
|
|
/* dd...dd . dd...dd */
|
|
p = --numBegin;
|
|
do {
|
|
*p = p[1];
|
|
p++;
|
|
} while (--decPt);
|
|
*p = '.';
|
|
} else {
|
|
/* 0 . 00...00dd...dd */
|
|
p = numEnd;
|
|
numEnd += 1 - decPt;
|
|
q = numEnd;
|
|
JS_ASSERT(numEnd < buffer + bufferSize);
|
|
*numEnd = '\0';
|
|
while (p != numBegin)
|
|
*--q = *--p;
|
|
for (p = numBegin + 1; p != q; p++)
|
|
*p = '0';
|
|
*numBegin = '.';
|
|
*--numBegin = '0';
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If negative and neither -0.0 nor NaN, output a leading '-'. */
|
|
if (sign &&
|
|
!(word0(d) == Sign_bit && word1(d) == 0) &&
|
|
!((word0(d) & Exp_mask) == Exp_mask &&
|
|
(word1(d) || (word0(d) & Frac_mask)))) {
|
|
*--numBegin = '-';
|
|
}
|
|
return numBegin;
|
|
}
|
|
|
|
|
|
/* Let b = floor(b / divisor), and return the remainder. b must be nonnegative.
|
|
* divisor must be between 1 and 65536.
|
|
* This function cannot run out of memory. */
|
|
static uint32
|
|
divrem(Bigint *b, uint32 divisor)
|
|
{
|
|
int32 n = b->wds;
|
|
uint32 remainder = 0;
|
|
ULong *bx;
|
|
ULong *bp;
|
|
|
|
JS_ASSERT(divisor > 0 && divisor <= 65536);
|
|
|
|
if (!n)
|
|
return 0; /* b is zero */
|
|
bx = b->x;
|
|
bp = bx + n;
|
|
do {
|
|
ULong a = *--bp;
|
|
ULong dividend = remainder << 16 | a >> 16;
|
|
ULong quotientHi = dividend / divisor;
|
|
ULong quotientLo;
|
|
|
|
remainder = dividend - quotientHi*divisor;
|
|
JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor);
|
|
dividend = remainder << 16 | (a & 0xFFFF);
|
|
quotientLo = dividend / divisor;
|
|
remainder = dividend - quotientLo*divisor;
|
|
JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor);
|
|
*bp = quotientHi << 16 | quotientLo;
|
|
} while (bp != bx);
|
|
/* Decrease the size of the number if its most significant word is now zero. */
|
|
if (bx[n-1] == 0)
|
|
b->wds--;
|
|
return remainder;
|
|
}
|
|
|
|
|
|
/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
|
|
* which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of
|
|
* the output string and malloc fewer bytes depending on d and base, but why bother? */
|
|
#define DTOBASESTR_BUFFER_SIZE 1078
|
|
#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
|
|
|
|
JS_FRIEND_API(char *)
|
|
JS_dtobasestr(int base, double d)
|
|
{
|
|
char *buffer; /* The output string */
|
|
char *p; /* Pointer to current position in the buffer */
|
|
char *pInt; /* Pointer to the beginning of the integer part of the string */
|
|
char *q;
|
|
uint32 digit;
|
|
double di; /* d truncated to an integer */
|
|
double df; /* The fractional part of d */
|
|
|
|
JS_ASSERT(base >= 2 && base <= 36);
|
|
|
|
buffer = (char*) malloc(DTOBASESTR_BUFFER_SIZE);
|
|
if (buffer) {
|
|
p = buffer;
|
|
if (d < 0.0
|
|
#ifdef XP_PC
|
|
&& !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */
|
|
#endif
|
|
) {
|
|
*p++ = '-';
|
|
d = -d;
|
|
}
|
|
|
|
/* Check for Infinity and NaN */
|
|
if ((word0(d) & Exp_mask) == Exp_mask) {
|
|
strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
|
|
return buffer;
|
|
}
|
|
|
|
/* Output the integer part of d with the digits in reverse order. */
|
|
pInt = p;
|
|
di = fd_floor(d);
|
|
if (di <= 4294967295.0) {
|
|
uint32 n = (uint32)di;
|
|
if (n)
|
|
do {
|
|
uint32 m = n / base;
|
|
digit = n - m*base;
|
|
n = m;
|
|
JS_ASSERT(digit < (uint32)base);
|
|
*p++ = BASEDIGIT(digit);
|
|
} while (n);
|
|
else *p++ = '0';
|
|
} else {
|
|
/* XXX We really should check for null here, but none of the routines we call is out-of-memory-safe,
|
|
* so this change would need to be made pervasively in this file. */
|
|
int32 e;
|
|
int32 bits; /* Number of significant bits in di; not used. */
|
|
Bigint *b = d2b(di, &e, &bits);
|
|
b = lshift(b, e);
|
|
do {
|
|
digit = divrem(b, base);
|
|
JS_ASSERT(digit < (uint32)base);
|
|
*p++ = BASEDIGIT(digit);
|
|
} while (b->wds);
|
|
Bfree(b);
|
|
}
|
|
/* Reverse the digits of the integer part of d. */
|
|
q = p-1;
|
|
while (q > pInt) {
|
|
char ch = *pInt;
|
|
*pInt++ = *q;
|
|
*q-- = ch;
|
|
}
|
|
|
|
df = d - di;
|
|
if (df != 0.0) {
|
|
/* We have a fraction. */
|
|
int32 e, bbits, s2, done;
|
|
Bigint *b, *s, *mlo, *mhi;
|
|
|
|
*p++ = '.';
|
|
b = d2b(df, &e, &bbits);
|
|
JS_ASSERT(e < 0);
|
|
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
|
|
|
|
s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
|
|
#ifndef Sudden_Underflow
|
|
if (!s2)
|
|
s2 = -1;
|
|
#endif
|
|
s2 += Bias + P;
|
|
/* 1/2^s2 = (nextDouble(d) - d)/2 */
|
|
JS_ASSERT(-s2 < e);
|
|
mlo = i2b(1);
|
|
mhi = mlo;
|
|
if (!word1(d) && !(word0(d) & Bndry_mask)
|
|
#ifndef Sudden_Underflow
|
|
&& word0(d) & (Exp_mask & Exp_mask << 1)
|
|
#endif
|
|
) {
|
|
/* The special case. Here we want to be within a quarter of the last input
|
|
significant digit instead of one half of it when the output string's value is less than d. */
|
|
s2 += Log2P;
|
|
mhi = i2b(1<<Log2P);
|
|
}
|
|
b = lshift(b, e + s2);
|
|
s = i2b(1);
|
|
s = lshift(s, s2);
|
|
/* At this point we have the following:
|
|
* s = 2^s2;
|
|
* 1 > df = b/2^s2 > 0;
|
|
* (d - prevDouble(d))/2 = mlo/2^s2;
|
|
* (nextDouble(d) - d)/2 = mhi/2^s2. */
|
|
|
|
done = JS_FALSE;
|
|
do {
|
|
int32 j, j1;
|
|
Bigint *delta;
|
|
|
|
b = multadd(b, base, 0);
|
|
digit = quorem2(b, s2);
|
|
if (mlo == mhi)
|
|
mlo = mhi = multadd(mlo, base, 0);
|
|
else {
|
|
mlo = multadd(mlo, base, 0);
|
|
mhi = multadd(mhi, base, 0);
|
|
}
|
|
|
|
/* Do we yet have the shortest string that will round to d? */
|
|
j = cmp(b, mlo);
|
|
/* j is b/2^s2 compared with mlo/2^s2. */
|
|
delta = diff(s, mhi);
|
|
j1 = delta->sign ? 1 : cmp(b, delta);
|
|
Bfree(delta);
|
|
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
|
|
|
|
#ifndef ROUND_BIASED
|
|
if (j1 == 0 && !(word1(d) & 1)) {
|
|
if (j > 0)
|
|
digit++;
|
|
done = JS_TRUE;
|
|
} else
|
|
#endif
|
|
if (j < 0 || (j == 0
|
|
#ifndef ROUND_BIASED
|
|
&& !(word1(d) & 1)
|
|
#endif
|
|
)) {
|
|
if (j1 > 0) {
|
|
/* Either dig or dig+1 would work here as the least significant digit.
|
|
Use whichever would produce an output value closer to d. */
|
|
b = lshift(b, 1);
|
|
j1 = cmp(b, s);
|
|
if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output
|
|
* such as 3.5 in base 3. */
|
|
digit++;
|
|
}
|
|
done = JS_TRUE;
|
|
} else if (j1 > 0) {
|
|
digit++;
|
|
done = JS_TRUE;
|
|
}
|
|
JS_ASSERT(digit < (uint32)base);
|
|
*p++ = BASEDIGIT(digit);
|
|
} while (!done);
|
|
Bfree(b);
|
|
Bfree(s);
|
|
if (mlo != mhi)
|
|
Bfree(mlo);
|
|
Bfree(mhi);
|
|
}
|
|
JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
|
|
*p = '\0';
|
|
}
|
|
return buffer;
|
|
}
|