mirror of
https://github.com/mozilla/gecko-dev.git
synced 2024-11-28 23:31:56 +00:00
06bbff1f71
Differential Revision: https://phabricator.services.mozilla.com/D103139
1121 lines
39 KiB
C++
1121 lines
39 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef KeyboardLayout_h__
|
|
#define KeyboardLayout_h__
|
|
|
|
#include "mozilla/RefPtr.h"
|
|
#include "nscore.h"
|
|
#include "nsString.h"
|
|
#include "nsWindowBase.h"
|
|
#include "nsWindowDefs.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/EventForwards.h"
|
|
#include "mozilla/TextEventDispatcher.h"
|
|
#include "mozilla/widget/WinMessages.h"
|
|
#include "mozilla/widget/WinModifierKeyState.h"
|
|
#include <windows.h>
|
|
|
|
#define NS_NUM_OF_KEYS 70
|
|
|
|
#define VK_OEM_1 0xBA // ';:' for US
|
|
#define VK_OEM_PLUS 0xBB // '+' any country
|
|
#define VK_OEM_COMMA 0xBC
|
|
#define VK_OEM_MINUS 0xBD // '-' any country
|
|
#define VK_OEM_PERIOD 0xBE
|
|
#define VK_OEM_2 0xBF
|
|
#define VK_OEM_3 0xC0
|
|
// '/?' for Brazilian (ABNT)
|
|
#define VK_ABNT_C1 0xC1
|
|
// Separator in Numpad for Brazilian (ABNT) or JIS keyboard for Mac.
|
|
#define VK_ABNT_C2 0xC2
|
|
#define VK_OEM_4 0xDB
|
|
#define VK_OEM_5 0xDC
|
|
#define VK_OEM_6 0xDD
|
|
#define VK_OEM_7 0xDE
|
|
#define VK_OEM_8 0xDF
|
|
#define VK_OEM_102 0xE2
|
|
#define VK_OEM_CLEAR 0xFE
|
|
|
|
class nsIUserIdleServiceInternal;
|
|
|
|
namespace mozilla {
|
|
namespace widget {
|
|
|
|
enum ScanCode : uint16_t {
|
|
eCapsLock = 0x003A,
|
|
eNumLock = 0xE045,
|
|
eShiftLeft = 0x002A,
|
|
eShiftRight = 0x0036,
|
|
eControlLeft = 0x001D,
|
|
eControlRight = 0xE01D,
|
|
eAltLeft = 0x0038,
|
|
eAltRight = 0xE038,
|
|
};
|
|
|
|
// 0: nsIWidget's native modifier flag
|
|
// 1: Virtual keycode which does not distinguish whether left or right location.
|
|
// 2: Virtual keycode which distinguishes whether left or right location.
|
|
// 3: Scan code.
|
|
static const uint32_t sModifierKeyMap[][4] = {
|
|
{nsIWidget::CAPS_LOCK, VK_CAPITAL, 0, ScanCode::eCapsLock},
|
|
{nsIWidget::NUM_LOCK, VK_NUMLOCK, 0, ScanCode::eNumLock},
|
|
{nsIWidget::SHIFT_L, VK_SHIFT, VK_LSHIFT, ScanCode::eShiftLeft},
|
|
{nsIWidget::SHIFT_R, VK_SHIFT, VK_RSHIFT, ScanCode::eShiftRight},
|
|
{nsIWidget::CTRL_L, VK_CONTROL, VK_LCONTROL, ScanCode::eControlLeft},
|
|
{nsIWidget::CTRL_R, VK_CONTROL, VK_RCONTROL, ScanCode::eControlRight},
|
|
{nsIWidget::ALT_L, VK_MENU, VK_LMENU, ScanCode::eAltLeft},
|
|
{nsIWidget::ALT_R, VK_MENU, VK_RMENU, ScanCode::eAltRight}};
|
|
|
|
class KeyboardLayout;
|
|
|
|
class MOZ_STACK_CLASS UniCharsAndModifiers final {
|
|
public:
|
|
UniCharsAndModifiers() {}
|
|
UniCharsAndModifiers operator+(const UniCharsAndModifiers& aOther) const;
|
|
UniCharsAndModifiers& operator+=(const UniCharsAndModifiers& aOther);
|
|
|
|
/**
|
|
* Append a pair of unicode character and the final modifier.
|
|
*/
|
|
void Append(char16_t aUniChar, Modifiers aModifiers);
|
|
void Clear() {
|
|
mChars.Truncate();
|
|
mModifiers.Clear();
|
|
}
|
|
bool IsEmpty() const {
|
|
MOZ_ASSERT(mChars.Length() == mModifiers.Length());
|
|
return mChars.IsEmpty();
|
|
}
|
|
|
|
char16_t CharAt(size_t aIndex) const {
|
|
MOZ_ASSERT(aIndex < Length());
|
|
return mChars[aIndex];
|
|
}
|
|
Modifiers ModifiersAt(size_t aIndex) const {
|
|
MOZ_ASSERT(aIndex < Length());
|
|
return mModifiers[aIndex];
|
|
}
|
|
size_t Length() const {
|
|
MOZ_ASSERT(mChars.Length() == mModifiers.Length());
|
|
return mChars.Length();
|
|
}
|
|
|
|
bool IsProducingCharsWithAltGr() const {
|
|
return !IsEmpty() && (ModifiersAt(0) & MODIFIER_ALTGRAPH) != 0;
|
|
}
|
|
|
|
void FillModifiers(Modifiers aModifiers);
|
|
/**
|
|
* OverwriteModifiersIfBeginsWith() assigns mModifiers with aOther between
|
|
* [0] and [aOther.mLength - 1] only when mChars begins with aOther.mChars.
|
|
*/
|
|
void OverwriteModifiersIfBeginsWith(const UniCharsAndModifiers& aOther);
|
|
|
|
bool UniCharsEqual(const UniCharsAndModifiers& aOther) const;
|
|
bool UniCharsCaseInsensitiveEqual(const UniCharsAndModifiers& aOther) const;
|
|
bool BeginsWith(const UniCharsAndModifiers& aOther) const;
|
|
|
|
const nsString& ToString() const { return mChars; }
|
|
|
|
private:
|
|
nsAutoString mChars;
|
|
// 5 is enough number for normal keyboard layout handling. On Windows,
|
|
// a dead key sequence may cause inputting up to 5 characters per key press.
|
|
CopyableAutoTArray<Modifiers, 5> mModifiers;
|
|
};
|
|
|
|
struct DeadKeyEntry {
|
|
char16_t BaseChar;
|
|
char16_t CompositeChar;
|
|
};
|
|
|
|
class DeadKeyTable {
|
|
friend class KeyboardLayout;
|
|
|
|
uint16_t mEntries;
|
|
// KeyboardLayout::AddDeadKeyTable() will allocate as many entries as
|
|
// required. It is the only way to create new DeadKeyTable instances.
|
|
DeadKeyEntry mTable[1];
|
|
|
|
void Init(const DeadKeyEntry* aDeadKeyArray, uint32_t aEntries) {
|
|
mEntries = aEntries;
|
|
memcpy(mTable, aDeadKeyArray, aEntries * sizeof(DeadKeyEntry));
|
|
}
|
|
|
|
static uint32_t SizeInBytes(uint32_t aEntries) {
|
|
return offsetof(DeadKeyTable, mTable) + aEntries * sizeof(DeadKeyEntry);
|
|
}
|
|
|
|
public:
|
|
uint32_t Entries() const { return mEntries; }
|
|
|
|
bool IsEqual(const DeadKeyEntry* aDeadKeyArray, uint32_t aEntries) const {
|
|
return (mEntries == aEntries &&
|
|
!memcmp(mTable, aDeadKeyArray, aEntries * sizeof(DeadKeyEntry)));
|
|
}
|
|
|
|
char16_t GetCompositeChar(char16_t aBaseChar) const;
|
|
};
|
|
|
|
class VirtualKey {
|
|
public:
|
|
enum ShiftStateIndex : uint8_t {
|
|
// 0 - Normal
|
|
eNormal = 0,
|
|
// 1 - Shift
|
|
eShift,
|
|
// 2 - Control
|
|
eControl,
|
|
// 3 - Control + Shift
|
|
eControlShift,
|
|
// 4 - Alt
|
|
eAlt,
|
|
// 5 - Alt + Shift
|
|
eAltShift,
|
|
// 6 - Alt + Control (AltGr)
|
|
eAltGr,
|
|
// 7 - Alt + Control + Shift (AltGr + Shift)
|
|
eAltGrShift,
|
|
// 8 - CapsLock
|
|
eWithCapsLock,
|
|
// 9 - CapsLock + Shift
|
|
eShiftWithCapsLock,
|
|
// 10 - CapsLock + Control
|
|
eControlWithCapsLock,
|
|
// 11 - CapsLock + Control + Shift
|
|
eControlShiftWithCapsLock,
|
|
// 12 - CapsLock + Alt
|
|
eAltWithCapsLock,
|
|
// 13 - CapsLock + Alt + Shift
|
|
eAltShiftWithCapsLock,
|
|
// 14 - CapsLock + Alt + Control (CapsLock + AltGr)
|
|
eAltGrWithCapsLock,
|
|
// 15 - CapsLock + Alt + Control + Shift (CapsLock + AltGr + Shift)
|
|
eAltGrShiftWithCapsLock,
|
|
};
|
|
|
|
enum ShiftStateFlag {
|
|
STATE_SHIFT = 0x01,
|
|
STATE_CONTROL = 0x02,
|
|
STATE_ALT = 0x04,
|
|
STATE_CAPSLOCK = 0x08,
|
|
// ShiftState needs to have AltGr state separately since this is necessary
|
|
// for lossless conversion with Modifiers.
|
|
STATE_ALTGRAPH = 0x80,
|
|
// Useful to remove or check Ctrl and Alt flags.
|
|
STATE_CONTROL_ALT = STATE_CONTROL | STATE_ALT,
|
|
};
|
|
|
|
typedef uint8_t ShiftState;
|
|
|
|
static ShiftState ModifiersToShiftState(Modifiers aModifiers);
|
|
static ShiftState ModifierKeyStateToShiftState(
|
|
const ModifierKeyState& aModKeyState) {
|
|
return ModifiersToShiftState(aModKeyState.GetModifiers());
|
|
}
|
|
static Modifiers ShiftStateToModifiers(ShiftState aShiftState);
|
|
static bool IsAltGrIndex(uint8_t aIndex) {
|
|
return (aIndex & STATE_CONTROL_ALT) == STATE_CONTROL_ALT;
|
|
}
|
|
|
|
private:
|
|
union KeyShiftState {
|
|
struct {
|
|
char16_t Chars[4];
|
|
} Normal;
|
|
struct {
|
|
const DeadKeyTable* Table;
|
|
char16_t DeadChar;
|
|
} DeadKey;
|
|
};
|
|
|
|
KeyShiftState mShiftStates[16];
|
|
uint16_t mIsDeadKey;
|
|
|
|
static uint8_t ToShiftStateIndex(ShiftState aShiftState) {
|
|
if (!(aShiftState & STATE_ALTGRAPH)) {
|
|
MOZ_ASSERT(aShiftState <= eAltGrShiftWithCapsLock);
|
|
return static_cast<uint8_t>(aShiftState);
|
|
}
|
|
uint8_t index = aShiftState & ~STATE_ALTGRAPH;
|
|
index |= (STATE_ALT | STATE_CONTROL);
|
|
MOZ_ASSERT(index <= eAltGrShiftWithCapsLock);
|
|
return index;
|
|
}
|
|
|
|
void SetDeadKey(ShiftState aShiftState, bool aIsDeadKey) {
|
|
if (aIsDeadKey) {
|
|
mIsDeadKey |= 1 << ToShiftStateIndex(aShiftState);
|
|
} else {
|
|
mIsDeadKey &= ~(1 << ToShiftStateIndex(aShiftState));
|
|
}
|
|
}
|
|
|
|
public:
|
|
static void FillKbdState(PBYTE aKbdState, const ShiftState aShiftState);
|
|
|
|
bool IsDeadKey(ShiftState aShiftState) const {
|
|
return (mIsDeadKey & (1 << ToShiftStateIndex(aShiftState))) != 0;
|
|
}
|
|
|
|
/**
|
|
* IsChangedByAltGr() is useful to check if a key with AltGr produces
|
|
* different character(s) from the key without AltGr.
|
|
* Note that this is designed for checking if a keyboard layout has AltGr
|
|
* key. So, this result may not exactly correct for the key since it's
|
|
* okay to fails in some edge cases when we check all keys which produce
|
|
* character(s) in a layout.
|
|
*/
|
|
bool IsChangedByAltGr(ShiftState aShiftState) const {
|
|
MOZ_ASSERT(aShiftState == ToShiftStateIndex(aShiftState));
|
|
MOZ_ASSERT(IsAltGrIndex(aShiftState));
|
|
MOZ_ASSERT(IsDeadKey(aShiftState) ||
|
|
mShiftStates[aShiftState].Normal.Chars[0]);
|
|
const ShiftState kShiftStateWithoutAltGr =
|
|
aShiftState - ShiftStateIndex::eAltGr;
|
|
if (IsDeadKey(aShiftState) != IsDeadKey(kShiftStateWithoutAltGr)) {
|
|
return false;
|
|
}
|
|
if (IsDeadKey(aShiftState)) {
|
|
return mShiftStates[aShiftState].DeadKey.DeadChar !=
|
|
mShiftStates[kShiftStateWithoutAltGr].DeadKey.DeadChar;
|
|
}
|
|
for (size_t i = 0; i < 4; i++) {
|
|
if (mShiftStates[aShiftState].Normal.Chars[i] !=
|
|
mShiftStates[kShiftStateWithoutAltGr].Normal.Chars[i]) {
|
|
return true;
|
|
}
|
|
if (!mShiftStates[aShiftState].Normal.Chars[i] &&
|
|
!mShiftStates[kShiftStateWithoutAltGr].Normal.Chars[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void AttachDeadKeyTable(ShiftState aShiftState,
|
|
const DeadKeyTable* aDeadKeyTable) {
|
|
MOZ_ASSERT(aShiftState == ToShiftStateIndex(aShiftState));
|
|
mShiftStates[aShiftState].DeadKey.Table = aDeadKeyTable;
|
|
}
|
|
|
|
void SetNormalChars(ShiftState aShiftState, const char16_t* aChars,
|
|
uint32_t aNumOfChars);
|
|
void SetDeadChar(ShiftState aShiftState, char16_t aDeadChar);
|
|
const DeadKeyTable* MatchingDeadKeyTable(const DeadKeyEntry* aDeadKeyArray,
|
|
uint32_t aEntries) const;
|
|
inline char16_t GetCompositeChar(ShiftState aShiftState,
|
|
char16_t aBaseChar) const {
|
|
return mShiftStates[ToShiftStateIndex(aShiftState)]
|
|
.DeadKey.Table->GetCompositeChar(aBaseChar);
|
|
}
|
|
|
|
char16_t GetCompositeChar(const ModifierKeyState& aModKeyState,
|
|
char16_t aBaseChar) const {
|
|
return GetCompositeChar(ModifierKeyStateToShiftState(aModKeyState),
|
|
aBaseChar);
|
|
}
|
|
|
|
/**
|
|
* GetNativeUniChars() returns character(s) which is produced by the
|
|
* key with given modifiers. This does NOT return proper MODIFIER_ALTGRAPH
|
|
* state because this is raw accessor of the database of this key.
|
|
*/
|
|
UniCharsAndModifiers GetNativeUniChars(ShiftState aShiftState) const;
|
|
UniCharsAndModifiers GetNativeUniChars(
|
|
const ModifierKeyState& aModKeyState) const {
|
|
return GetNativeUniChars(ModifierKeyStateToShiftState(aModKeyState));
|
|
}
|
|
|
|
/**
|
|
* GetUniChars() returns characters and modifiers which are not consumed
|
|
* to input the character.
|
|
* For example, if you specify Ctrl key but the key produces no character
|
|
* with Ctrl, this returns character(s) which is produced by the key
|
|
* without Ctrl. So, the result is useful to decide KeyboardEvent.key
|
|
* value.
|
|
* Another example is, if you specify Ctrl key and the key produces
|
|
* different character(s) from the case without Ctrl key, this returns
|
|
* the character(s) *without* MODIFIER_CONTROL. This modifier information
|
|
* is useful for eKeyPress since TextEditor does not treat eKeyPress events
|
|
* whose modifier includes MODIFIER_ALT and/or MODIFIER_CONTROL.
|
|
*
|
|
* @param aShiftState Modifiers which you want to retrieve
|
|
* KeyboardEvent.key value for the key with.
|
|
* If AltGr key is pressed, this should include
|
|
* STATE_ALTGRAPH and should NOT include
|
|
* STATE_ALT nor STATE_CONTROL.
|
|
* If both Alt and Ctrl are pressed to emulate
|
|
* AltGr, this should include both STATE_ALT and
|
|
* STATE_CONTROL but should NOT include
|
|
* MODIFIER_ALTGRAPH.
|
|
* Then, this returns proper modifiers when
|
|
* this key produces no character with AltGr.
|
|
*/
|
|
UniCharsAndModifiers GetUniChars(ShiftState aShiftState) const;
|
|
UniCharsAndModifiers GetUniChars(const ModifierKeyState& aModKeyState) const {
|
|
return GetUniChars(ModifierKeyStateToShiftState(aModKeyState));
|
|
}
|
|
};
|
|
|
|
class MOZ_STACK_CLASS NativeKey final {
|
|
friend class KeyboardLayout;
|
|
|
|
public:
|
|
struct FakeCharMsg {
|
|
UINT mCharCode;
|
|
UINT mScanCode;
|
|
bool mIsSysKey;
|
|
bool mIsDeadKey;
|
|
bool mConsumed;
|
|
|
|
FakeCharMsg()
|
|
: mCharCode(0),
|
|
mScanCode(0),
|
|
mIsSysKey(false),
|
|
mIsDeadKey(false),
|
|
mConsumed(false) {}
|
|
|
|
MSG GetCharMsg(HWND aWnd) const {
|
|
MSG msg;
|
|
msg.hwnd = aWnd;
|
|
msg.message = mIsDeadKey && mIsSysKey ? WM_SYSDEADCHAR
|
|
: mIsDeadKey ? WM_DEADCHAR
|
|
: mIsSysKey ? WM_SYSCHAR
|
|
: WM_CHAR;
|
|
msg.wParam = static_cast<WPARAM>(mCharCode);
|
|
msg.lParam = static_cast<LPARAM>(mScanCode << 16);
|
|
msg.time = 0;
|
|
msg.pt.x = msg.pt.y = 0;
|
|
return msg;
|
|
}
|
|
};
|
|
|
|
NativeKey(nsWindowBase* aWidget, const MSG& aMessage,
|
|
const ModifierKeyState& aModKeyState,
|
|
HKL aOverrideKeyboardLayout = 0,
|
|
nsTArray<FakeCharMsg>* aFakeCharMsgs = nullptr);
|
|
|
|
~NativeKey();
|
|
|
|
/**
|
|
* Handle WM_KEYDOWN message or WM_SYSKEYDOWN message. The instance must be
|
|
* initialized with WM_KEYDOWN or WM_SYSKEYDOWN.
|
|
* Returns true if dispatched keydown event or keypress event is consumed.
|
|
* Otherwise, false.
|
|
*/
|
|
bool HandleKeyDownMessage(bool* aEventDispatched = nullptr) const;
|
|
|
|
/**
|
|
* Handles WM_CHAR message or WM_SYSCHAR message. The instance must be
|
|
* initialized with them.
|
|
* Returns true if dispatched keypress event is consumed. Otherwise, false.
|
|
*/
|
|
bool HandleCharMessage(bool* aEventDispatched = nullptr) const;
|
|
|
|
/**
|
|
* Handles keyup message. Returns true if the event is consumed.
|
|
* Otherwise, false.
|
|
*/
|
|
bool HandleKeyUpMessage(bool* aEventDispatched = nullptr) const;
|
|
|
|
/**
|
|
* Handles WM_APPCOMMAND message. Returns true if the event is consumed.
|
|
* Otherwise, false.
|
|
*/
|
|
bool HandleAppCommandMessage() const;
|
|
|
|
/**
|
|
* Callback of TextEventDispatcherListener::WillDispatchKeyboardEvent().
|
|
* This method sets alternative char codes of aKeyboardEvent.
|
|
*/
|
|
void WillDispatchKeyboardEvent(WidgetKeyboardEvent& aKeyboardEvent,
|
|
uint32_t aIndex);
|
|
|
|
/**
|
|
* Returns true if aChar is a control character which shouldn't be inputted
|
|
* into focused text editor.
|
|
*/
|
|
static bool IsControlChar(char16_t aChar);
|
|
|
|
bool IsShift() const { return mModKeyState.IsShift(); }
|
|
bool IsControl() const { return mModKeyState.IsControl(); }
|
|
bool IsAlt() const { return mModKeyState.IsAlt(); }
|
|
bool MaybeEmulatingAltGraph() const;
|
|
Modifiers GetModifiers() const { return mModKeyState.GetModifiers(); }
|
|
const ModifierKeyState& ModifierKeyStateRef() const { return mModKeyState; }
|
|
VirtualKey::ShiftState GetShiftState() const {
|
|
return VirtualKey::ModifierKeyStateToShiftState(mModKeyState);
|
|
}
|
|
|
|
/**
|
|
* GenericVirtualKeyCode() returns virtual keycode which cannot distinguish
|
|
* position of modifier keys. E.g., VK_CONTROL for both ControlLeft and
|
|
* ControlRight.
|
|
*/
|
|
uint8_t GenericVirtualKeyCode() const { return mOriginalVirtualKeyCode; }
|
|
|
|
/**
|
|
* SpecificVirtualKeyCode() returns virtual keycode which can distinguish
|
|
* position of modifier keys. E.g., returns VK_LCONTROL or VK_RCONTROL
|
|
* instead of VK_CONTROL. If the key message is synthesized with not
|
|
* enough information, this prefers left position's keycode.
|
|
*/
|
|
uint8_t SpecificVirtualKeyCode() const { return mVirtualKeyCode; }
|
|
|
|
private:
|
|
NativeKey* mLastInstance;
|
|
// mRemovingMsg is set at removing a char message from
|
|
// GetFollowingCharMessage().
|
|
MSG mRemovingMsg;
|
|
// mReceivedMsg is set when another instance starts to handle the message
|
|
// unexpectedly.
|
|
MSG mReceivedMsg;
|
|
RefPtr<nsWindowBase> mWidget;
|
|
RefPtr<TextEventDispatcher> mDispatcher;
|
|
HKL mKeyboardLayout;
|
|
MSG mMsg;
|
|
// mFollowingCharMsgs stores WM_CHAR, WM_SYSCHAR, WM_DEADCHAR or
|
|
// WM_SYSDEADCHAR message which follows WM_KEYDOWN.
|
|
// Note that the stored messaged are already removed from the queue.
|
|
// FYI: 5 is enough number for usual keyboard layout handling. On Windows,
|
|
// a dead key sequence may cause inputting up to 5 characters per key press.
|
|
AutoTArray<MSG, 5> mFollowingCharMsgs;
|
|
// mRemovedOddCharMsgs stores WM_CHAR messages which are caused by ATOK or
|
|
// WXG (they are Japanese IME) when the user tries to do "Kakutei-undo"
|
|
// (it means "undo the last commit").
|
|
nsTArray<MSG> mRemovedOddCharMsgs;
|
|
// If dispatching eKeyDown or eKeyPress event causes focus change,
|
|
// the instance shouldn't handle remaning char messages. For checking it,
|
|
// this should store first focused window.
|
|
HWND mFocusedWndBeforeDispatch;
|
|
|
|
uint32_t mDOMKeyCode;
|
|
KeyNameIndex mKeyNameIndex;
|
|
CodeNameIndex mCodeNameIndex;
|
|
|
|
ModifierKeyState mModKeyState;
|
|
|
|
// mVirtualKeyCode distinguishes left key or right key of modifier key.
|
|
uint8_t mVirtualKeyCode;
|
|
// mOriginalVirtualKeyCode doesn't distinguish left key or right key of
|
|
// modifier key. However, if the given keycode is VK_PROCESS, it's resolved
|
|
// to a keycode before it's handled by IME.
|
|
uint8_t mOriginalVirtualKeyCode;
|
|
|
|
// mCommittedChars indicates the inputted characters which is committed by
|
|
// the key. If dead key fail to composite a character, mCommittedChars
|
|
// indicates both the dead characters and the base characters.
|
|
UniCharsAndModifiers mCommittedCharsAndModifiers;
|
|
|
|
// Following strings are computed by
|
|
// ComputeInputtingStringWithKeyboardLayout() which is typically called
|
|
// before dispatching keydown event.
|
|
// mInputtingStringAndModifiers's string is the string to be
|
|
// inputted into the focused editor and its modifier state is proper
|
|
// modifier state for inputting the string into the editor.
|
|
UniCharsAndModifiers mInputtingStringAndModifiers;
|
|
// mShiftedString is the string to be inputted into the editor with
|
|
// current modifier state with active shift state.
|
|
UniCharsAndModifiers mShiftedString;
|
|
// mUnshiftedString is the string to be inputted into the editor with
|
|
// current modifier state without shift state.
|
|
UniCharsAndModifiers mUnshiftedString;
|
|
// Following integers are computed by
|
|
// ComputeInputtingStringWithKeyboardLayout() which is typically called
|
|
// before dispatching keydown event. The meaning of these values is same
|
|
// as charCode.
|
|
uint32_t mShiftedLatinChar;
|
|
uint32_t mUnshiftedLatinChar;
|
|
|
|
WORD mScanCode;
|
|
bool mIsExtended;
|
|
// mIsRepeat is true if the key message is caused by the auto-repeat
|
|
// feature.
|
|
bool mIsRepeat;
|
|
bool mIsDeadKey;
|
|
// mIsPrintableKey is true if the key may be a printable key without
|
|
// any modifier keys. Otherwise, false.
|
|
// Please note that the event may not cause any text input even if this
|
|
// is true. E.g., it might be dead key state or Ctrl key may be pressed.
|
|
bool mIsPrintableKey;
|
|
// mIsSkippableInRemoteProcess is false if the key event shouldn't be
|
|
// skipped in the remote process even if it's too old event.
|
|
bool mIsSkippableInRemoteProcess;
|
|
// mCharMessageHasGone is true if the message is a keydown message and
|
|
// it's followed by at least one char message but it's gone at removing
|
|
// from the queue. This could occur if PeekMessage() or something is
|
|
// hooked by odd tool.
|
|
bool mCharMessageHasGone;
|
|
// mIsOverridingKeyboardLayout is true if the instance temporarily overriding
|
|
// keyboard layout with specified by the constructor.
|
|
bool mIsOverridingKeyboardLayout;
|
|
// mCanIgnoreModifierStateAtKeyPress is true if it's allowed to remove
|
|
// Ctrl or Alt modifier state at dispatching eKeyPress.
|
|
bool mCanIgnoreModifierStateAtKeyPress;
|
|
|
|
nsTArray<FakeCharMsg>* mFakeCharMsgs;
|
|
|
|
// When a keydown event is dispatched at handling WM_APPCOMMAND, the computed
|
|
// virtual keycode is set to this. Even if we consume WM_APPCOMMAND message,
|
|
// Windows may send WM_KEYDOWN and WM_KEYUP message for them.
|
|
// At that time, we should not dispatch key events for them.
|
|
static uint8_t sDispatchedKeyOfAppCommand;
|
|
|
|
NativeKey() {
|
|
MOZ_CRASH("The default constructor of NativeKey isn't available");
|
|
}
|
|
|
|
void InitWithAppCommand();
|
|
void InitWithKeyOrChar();
|
|
|
|
/**
|
|
* InitIsSkippableForKeyOrChar() initializes mIsSkippableInRemoteProcess with
|
|
* mIsRepeat and previous key message information. So, this must be called
|
|
* after mIsRepeat is initialized.
|
|
*/
|
|
void InitIsSkippableForKeyOrChar(const MSG& aLastKeyMSG);
|
|
|
|
/**
|
|
* InitCommittedCharsAndModifiersWithFollowingCharMessages() initializes
|
|
* mCommittedCharsAndModifiers with mFollowingCharMsgs and mModKeyState.
|
|
* If mFollowingCharMsgs includes non-printable char messages, they are
|
|
* ignored (skipped).
|
|
*/
|
|
void InitCommittedCharsAndModifiersWithFollowingCharMessages();
|
|
|
|
UINT GetScanCodeWithExtendedFlag() const;
|
|
|
|
// The result is one of eKeyLocation*.
|
|
uint32_t GetKeyLocation() const;
|
|
|
|
/**
|
|
* RemoveFollowingOddCharMessages() removes odd WM_CHAR messages from the
|
|
* queue when IsIMEDoingKakuteiUndo() returns true.
|
|
*/
|
|
void RemoveFollowingOddCharMessages();
|
|
|
|
/**
|
|
* "Kakutei-Undo" of ATOK or WXG (both of them are Japanese IME) causes
|
|
* strange WM_KEYDOWN/WM_KEYUP/WM_CHAR message pattern. So, when this
|
|
* returns true, the caller needs to be careful for processing the messages.
|
|
*/
|
|
bool IsIMEDoingKakuteiUndo() const;
|
|
|
|
/**
|
|
* This returns true if user types a number key in numpad with Alt key
|
|
* to input a Unicode character from its scalar value.
|
|
* Note that inputting Unicode scalar value is available without NumLock.
|
|
* Therefore, this returns true even if user presses a function key on
|
|
* numpad without NumLock, but that may be intended to perform a shortcut
|
|
* key like Alt + Home.
|
|
*/
|
|
bool MaybeTypingUnicodeScalarValue() const {
|
|
return !mIsExtended && IsSysKeyDownOrKeyUpMessage() && IsAlt() &&
|
|
!IsControl() && !IsShift() &&
|
|
((mScanCode >= 0x004F && mScanCode <= 0x0052) || // Numpad0-3
|
|
(mScanCode >= 0x004B && mScanCode <= 0x004D) || // Numpad4-6
|
|
(mScanCode >= 0x0047 && mScanCode <= 0x0049)); // Numpad7-9
|
|
}
|
|
|
|
bool IsKeyDownMessage() const {
|
|
return mMsg.message == WM_KEYDOWN || mMsg.message == WM_SYSKEYDOWN;
|
|
}
|
|
bool IsKeyUpMessage() const {
|
|
return mMsg.message == WM_KEYUP || mMsg.message == WM_SYSKEYUP;
|
|
}
|
|
bool IsSysKeyDownOrKeyUpMessage() const {
|
|
return mMsg.message == WM_SYSKEYDOWN || mMsg.message == WM_SYSKEYUP;
|
|
}
|
|
bool IsCharOrSysCharMessage(const MSG& aMSG) const {
|
|
return IsCharOrSysCharMessage(aMSG.message);
|
|
}
|
|
bool IsCharOrSysCharMessage(UINT aMessage) const {
|
|
return (aMessage == WM_CHAR || aMessage == WM_SYSCHAR);
|
|
}
|
|
bool IsCharMessage(const MSG& aMSG) const {
|
|
return IsCharMessage(aMSG.message);
|
|
}
|
|
bool IsCharMessage(UINT aMessage) const {
|
|
return (IsCharOrSysCharMessage(aMessage) || IsDeadCharMessage(aMessage));
|
|
}
|
|
bool IsDeadCharMessage(const MSG& aMSG) const {
|
|
return IsDeadCharMessage(aMSG.message);
|
|
}
|
|
bool IsDeadCharMessage(UINT aMessage) const {
|
|
return (aMessage == WM_DEADCHAR || aMessage == WM_SYSDEADCHAR);
|
|
}
|
|
bool IsSysCharMessage(const MSG& aMSG) const {
|
|
return IsSysCharMessage(aMSG.message);
|
|
}
|
|
bool IsSysCharMessage(UINT aMessage) const {
|
|
return (aMessage == WM_SYSCHAR || aMessage == WM_SYSDEADCHAR);
|
|
}
|
|
bool MayBeSameCharMessage(const MSG& aCharMsg1, const MSG& aCharMsg2) const;
|
|
bool IsSamePhysicalKeyMessage(const MSG& aKeyOrCharMsg1,
|
|
const MSG& aKeyOrCharMsg2) const;
|
|
bool IsFollowedByPrintableCharMessage() const;
|
|
bool IsFollowedByPrintableCharOrSysCharMessage() const;
|
|
bool IsFollowedByDeadCharMessage() const;
|
|
bool IsPrintableCharMessage(const MSG& aMSG) const {
|
|
return aMSG.message == WM_CHAR &&
|
|
!IsControlChar(static_cast<char16_t>(aMSG.wParam));
|
|
}
|
|
bool IsEnterKeyPressCharMessage(const MSG& aMSG) const {
|
|
return aMSG.message == WM_CHAR && aMSG.wParam == '\r';
|
|
}
|
|
bool IsPrintableCharOrSysCharMessage(const MSG& aMSG) const {
|
|
return IsCharOrSysCharMessage(aMSG) &&
|
|
!IsControlChar(static_cast<char16_t>(aMSG.wParam));
|
|
}
|
|
bool IsControlCharMessage(const MSG& aMSG) const {
|
|
return IsCharMessage(aMSG.message) &&
|
|
IsControlChar(static_cast<char16_t>(aMSG.wParam));
|
|
}
|
|
|
|
/**
|
|
* IsReservedBySystem() returns true if the key combination is reserved by
|
|
* the system. Even if it's consumed by web apps, the message should be
|
|
* sent to next wndproc.
|
|
*/
|
|
bool IsReservedBySystem() const;
|
|
|
|
/**
|
|
* GetFollowingCharMessage() returns following char message of handling
|
|
* keydown event. If the message is found, this method returns true.
|
|
* Otherwise, returns false.
|
|
*
|
|
* WARNING: Even if this returns true, aCharMsg may be WM_NULL or its
|
|
* hwnd may be different window.
|
|
*/
|
|
bool GetFollowingCharMessage(MSG& aCharMsg);
|
|
|
|
/**
|
|
* Wraps MapVirtualKeyEx() with MAPVK_VSC_TO_VK.
|
|
*/
|
|
uint8_t ComputeVirtualKeyCodeFromScanCode() const;
|
|
|
|
/**
|
|
* Wraps MapVirtualKeyEx() with MAPVK_VSC_TO_VK_EX.
|
|
*/
|
|
uint8_t ComputeVirtualKeyCodeFromScanCodeEx() const;
|
|
|
|
/**
|
|
* Wraps MapVirtualKeyEx() with MAPVK_VK_TO_VSC_EX or MAPVK_VK_TO_VSC.
|
|
*/
|
|
uint16_t ComputeScanCodeExFromVirtualKeyCode(UINT aVirtualKeyCode) const;
|
|
|
|
/**
|
|
* Wraps MapVirtualKeyEx() with MAPVK_VSC_TO_VK and MAPVK_VK_TO_CHAR.
|
|
*/
|
|
char16_t ComputeUnicharFromScanCode() const;
|
|
|
|
/**
|
|
* Initializes the aKeyEvent with the information stored in the instance.
|
|
*/
|
|
nsEventStatus InitKeyEvent(WidgetKeyboardEvent& aKeyEvent,
|
|
const ModifierKeyState& aModKeyState) const;
|
|
nsEventStatus InitKeyEvent(WidgetKeyboardEvent& aKeyEvent) const;
|
|
|
|
/**
|
|
* Dispatches a command event for aEventCommand.
|
|
* Returns true if the event is consumed. Otherwise, false.
|
|
*/
|
|
bool DispatchCommandEvent(uint32_t aEventCommand) const;
|
|
|
|
/**
|
|
* DispatchKeyPressEventsWithRetrievedCharMessages() dispatches keypress
|
|
* event(s) with retrieved char messages.
|
|
*/
|
|
bool DispatchKeyPressEventsWithRetrievedCharMessages() const;
|
|
|
|
/**
|
|
* DispatchKeyPressEventsWithoutCharMessage() dispatches keypress event(s)
|
|
* without char messages. So, this should be used only when there are no
|
|
* following char messages.
|
|
*/
|
|
bool DispatchKeyPressEventsWithoutCharMessage() const;
|
|
|
|
/**
|
|
* Checkes whether the key event down message is handled without following
|
|
* WM_CHAR messages. For example, if following WM_CHAR message indicates
|
|
* control character input, the WM_CHAR message is unclear whether it's
|
|
* caused by a printable key with Ctrl or just a function key such as Enter
|
|
* or Backspace.
|
|
*/
|
|
bool NeedsToHandleWithoutFollowingCharMessages() const;
|
|
|
|
/**
|
|
* ComputeInputtingStringWithKeyboardLayout() computes string to be inputted
|
|
* with the key and the modifier state, without shift state and with shift
|
|
* state.
|
|
*/
|
|
void ComputeInputtingStringWithKeyboardLayout();
|
|
|
|
/**
|
|
* IsFocusedWindowChanged() returns true if focused window is changed
|
|
* after the instance is created.
|
|
*/
|
|
bool IsFocusedWindowChanged() const {
|
|
return mFocusedWndBeforeDispatch != ::GetFocus();
|
|
}
|
|
|
|
/**
|
|
* Handles WM_CHAR message or WM_SYSCHAR message. The instance must be
|
|
* initialized with WM_KEYDOWN, WM_SYSKEYDOWN or them.
|
|
* Returns true if dispatched keypress event is consumed. Otherwise, false.
|
|
*/
|
|
bool HandleCharMessage(const MSG& aCharMsg,
|
|
bool* aEventDispatched = nullptr) const;
|
|
|
|
// Calls of PeekMessage() from NativeKey might cause nested message handling
|
|
// due to (perhaps) odd API hook. NativeKey should do nothing if given
|
|
// message is tried to be retrieved by another instance.
|
|
|
|
/**
|
|
* sLatestInstacne is a pointer to the newest instance of NativeKey which is
|
|
* handling a key or char message(s).
|
|
*/
|
|
static NativeKey* sLatestInstance;
|
|
|
|
static const MSG sEmptyMSG;
|
|
|
|
static MSG sLastKeyOrCharMSG;
|
|
|
|
static MSG sLastKeyMSG;
|
|
|
|
static bool IsEmptyMSG(const MSG& aMSG) {
|
|
return !memcmp(&aMSG, &sEmptyMSG, sizeof(MSG));
|
|
}
|
|
|
|
bool IsAnotherInstanceRemovingCharMessage() const {
|
|
return mLastInstance && !IsEmptyMSG(mLastInstance->mRemovingMsg);
|
|
}
|
|
|
|
public:
|
|
/**
|
|
* Returns last key or char MSG. If no MSG has been received yet, the result
|
|
* is empty MSG (i.e., .message is WM_NULL).
|
|
*/
|
|
static const MSG& LastKeyOrCharMSG() { return sLastKeyOrCharMSG; }
|
|
};
|
|
|
|
class KeyboardLayout {
|
|
public:
|
|
static KeyboardLayout* GetInstance();
|
|
static void Shutdown();
|
|
static HKL GetActiveLayout();
|
|
static nsCString GetActiveLayoutName();
|
|
static void NotifyIdleServiceOfUserActivity();
|
|
|
|
static bool IsPrintableCharKey(uint8_t aVirtualKey);
|
|
|
|
/**
|
|
* HasAltGr() returns true if the keyboard layout's AltRight key is AltGr
|
|
* key.
|
|
*/
|
|
bool HasAltGr() const { return mHasAltGr; }
|
|
|
|
/**
|
|
* IsDeadKey() returns true if aVirtualKey is a dead key with aModKeyState.
|
|
* This method isn't stateful.
|
|
*/
|
|
bool IsDeadKey(uint8_t aVirtualKey,
|
|
const ModifierKeyState& aModKeyState) const;
|
|
bool IsDeadKey(const NativeKey& aNativeKey) const {
|
|
return IsDeadKey(aNativeKey.GenericVirtualKeyCode(),
|
|
aNativeKey.ModifierKeyStateRef());
|
|
}
|
|
|
|
/**
|
|
* IsInDeadKeySequence() returns true when it's in a dead key sequence.
|
|
* It starts when a dead key is down and ends when another key down causes
|
|
* inactivating the dead key state.
|
|
*/
|
|
bool IsInDeadKeySequence() const { return !mActiveDeadKeys.IsEmpty(); }
|
|
|
|
/**
|
|
* IsSysKey() returns true if aVirtualKey with aModKeyState causes WM_SYSKEY*
|
|
* or WM_SYS*CHAR messages.
|
|
*/
|
|
bool IsSysKey(uint8_t aVirtualKey,
|
|
const ModifierKeyState& aModKeyState) const;
|
|
bool IsSysKey(const NativeKey& aNativeKey) const {
|
|
return IsSysKey(aNativeKey.GenericVirtualKeyCode(),
|
|
aNativeKey.ModifierKeyStateRef());
|
|
}
|
|
|
|
/**
|
|
* GetUniCharsAndModifiers() returns characters which are inputted by
|
|
* aVirtualKey with aModKeyState. This method isn't stateful.
|
|
* Note that if the combination causes text input, the result's Ctrl and
|
|
* Alt key state are never active.
|
|
*/
|
|
UniCharsAndModifiers GetUniCharsAndModifiers(
|
|
uint8_t aVirtualKey, const ModifierKeyState& aModKeyState) const {
|
|
VirtualKey::ShiftState shiftState =
|
|
VirtualKey::ModifierKeyStateToShiftState(aModKeyState);
|
|
return GetUniCharsAndModifiers(aVirtualKey, shiftState);
|
|
}
|
|
UniCharsAndModifiers GetUniCharsAndModifiers(
|
|
const NativeKey& aNativeKey) const {
|
|
return GetUniCharsAndModifiers(aNativeKey.GenericVirtualKeyCode(),
|
|
aNativeKey.GetShiftState());
|
|
}
|
|
|
|
/**
|
|
* OnLayoutChange() must be called before the first keydown message is
|
|
* received. LoadLayout() changes the keyboard state, that causes breaking
|
|
* dead key state. Therefore, we need to load the layout before the first
|
|
* keydown message.
|
|
*/
|
|
void OnLayoutChange(HKL aKeyboardLayout) {
|
|
MOZ_ASSERT(!mIsOverridden);
|
|
LoadLayout(aKeyboardLayout);
|
|
}
|
|
|
|
/**
|
|
* OverrideLayout() loads the specified keyboard layout.
|
|
*/
|
|
void OverrideLayout(HKL aLayout) {
|
|
mIsOverridden = true;
|
|
LoadLayout(aLayout);
|
|
}
|
|
|
|
/**
|
|
* RestoreLayout() loads the current keyboard layout of the thread.
|
|
*/
|
|
void RestoreLayout() {
|
|
mIsOverridden = false;
|
|
mIsPendingToRestoreKeyboardLayout = true;
|
|
}
|
|
|
|
uint32_t ConvertNativeKeyCodeToDOMKeyCode(UINT aNativeKeyCode) const;
|
|
|
|
/**
|
|
* ConvertNativeKeyCodeToKeyNameIndex() returns KeyNameIndex value for
|
|
* non-printable keys (except some special keys like space key).
|
|
*/
|
|
KeyNameIndex ConvertNativeKeyCodeToKeyNameIndex(uint8_t aVirtualKey) const;
|
|
|
|
/**
|
|
* ConvertScanCodeToCodeNameIndex() returns CodeNameIndex value for
|
|
* the given scan code. aScanCode can be over 0xE000 since this method
|
|
* doesn't use Windows API.
|
|
*/
|
|
static CodeNameIndex ConvertScanCodeToCodeNameIndex(UINT aScanCode);
|
|
|
|
HKL GetLayout() const {
|
|
return mIsPendingToRestoreKeyboardLayout ? ::GetKeyboardLayout(0)
|
|
: mKeyboardLayout;
|
|
}
|
|
|
|
/**
|
|
* This wraps MapVirtualKeyEx() API with MAPVK_VK_TO_VSC.
|
|
*/
|
|
WORD ComputeScanCodeForVirtualKeyCode(uint8_t aVirtualKeyCode) const;
|
|
|
|
/**
|
|
* Implementation of nsIWidget::SynthesizeNativeKeyEvent().
|
|
*/
|
|
nsresult SynthesizeNativeKeyEvent(nsWindowBase* aWidget,
|
|
int32_t aNativeKeyboardLayout,
|
|
int32_t aNativeKeyCode,
|
|
uint32_t aModifierFlags,
|
|
const nsAString& aCharacters,
|
|
const nsAString& aUnmodifiedCharacters);
|
|
|
|
private:
|
|
KeyboardLayout();
|
|
~KeyboardLayout();
|
|
|
|
static KeyboardLayout* sInstance;
|
|
static nsIUserIdleServiceInternal* sIdleService;
|
|
|
|
struct DeadKeyTableListEntry {
|
|
DeadKeyTableListEntry* next;
|
|
uint8_t data[1];
|
|
};
|
|
|
|
HKL mKeyboardLayout;
|
|
|
|
VirtualKey mVirtualKeys[NS_NUM_OF_KEYS];
|
|
DeadKeyTableListEntry* mDeadKeyTableListHead;
|
|
// When mActiveDeadKeys is empty, it's not in dead key sequence.
|
|
// Otherwise, it contains virtual keycodes which are pressed in current
|
|
// dead key sequence.
|
|
nsTArray<uint8_t> mActiveDeadKeys;
|
|
// mDeadKeyShiftStates is always same length as mActiveDeadKeys.
|
|
// This stores shift states at pressing each dead key stored in
|
|
// mActiveDeadKeys.
|
|
nsTArray<VirtualKey::ShiftState> mDeadKeyShiftStates;
|
|
|
|
bool mIsOverridden;
|
|
bool mIsPendingToRestoreKeyboardLayout;
|
|
bool mHasAltGr;
|
|
|
|
static inline int32_t GetKeyIndex(uint8_t aVirtualKey);
|
|
static int CompareDeadKeyEntries(const void* aArg1, const void* aArg2,
|
|
void* aData);
|
|
static bool AddDeadKeyEntry(char16_t aBaseChar, char16_t aCompositeChar,
|
|
DeadKeyEntry* aDeadKeyArray, uint32_t aEntries);
|
|
bool EnsureDeadKeyActive(bool aIsActive, uint8_t aDeadKey,
|
|
const PBYTE aDeadKeyKbdState);
|
|
uint32_t GetDeadKeyCombinations(uint8_t aDeadKey,
|
|
const PBYTE aDeadKeyKbdState,
|
|
uint16_t aShiftStatesWithBaseChars,
|
|
DeadKeyEntry* aDeadKeyArray,
|
|
uint32_t aMaxEntries);
|
|
/**
|
|
* Activates or deactivates dead key state.
|
|
*/
|
|
void ActivateDeadKeyState(const NativeKey& aNativeKey);
|
|
void DeactivateDeadKeyState();
|
|
|
|
const DeadKeyTable* AddDeadKeyTable(const DeadKeyEntry* aDeadKeyArray,
|
|
uint32_t aEntries);
|
|
void ReleaseDeadKeyTables();
|
|
|
|
/**
|
|
* Loads the specified keyboard layout. This method always clear the dead key
|
|
* state.
|
|
*/
|
|
void LoadLayout(HKL aLayout);
|
|
|
|
/**
|
|
* Gets the keyboard layout name of aLayout. Be careful, this may be too
|
|
* slow to call at handling user input.
|
|
*/
|
|
nsCString GetLayoutName(HKL aLayout) const;
|
|
|
|
/**
|
|
* InitNativeKey() must be called when actually widget receives WM_KEYDOWN or
|
|
* WM_KEYUP. This method is stateful. This saves current dead key state at
|
|
* WM_KEYDOWN. Additionally, computes current inputted character(s) and set
|
|
* them to the aNativeKey.
|
|
*/
|
|
void InitNativeKey(NativeKey& aNativeKey);
|
|
|
|
/**
|
|
* MaybeInitNativeKeyAsDeadKey() initializes aNativeKey only when aNativeKey
|
|
* is a dead key's event.
|
|
* When it's not in a dead key sequence, this activates the dead key state.
|
|
* When it's in a dead key sequence, this initializes aNativeKey with a
|
|
* composite character or a preceding dead char and a dead char which should
|
|
* be caused by aNativeKey.
|
|
* Returns true when this initializes aNativeKey. Otherwise, false.
|
|
*/
|
|
bool MaybeInitNativeKeyAsDeadKey(NativeKey& aNativeKey);
|
|
|
|
/**
|
|
* MaybeInitNativeKeyWithCompositeChar() may initialize aNativeKey with
|
|
* proper composite character when dead key produces a composite character.
|
|
* Otherwise, just returns false.
|
|
*/
|
|
bool MaybeInitNativeKeyWithCompositeChar(NativeKey& aNativeKey);
|
|
|
|
/**
|
|
* See the comment of GetUniCharsAndModifiers() below.
|
|
*/
|
|
UniCharsAndModifiers GetUniCharsAndModifiers(
|
|
uint8_t aVirtualKey, VirtualKey::ShiftState aShiftState) const;
|
|
|
|
/**
|
|
* GetDeadUniCharsAndModifiers() returns dead chars which are stored in
|
|
* current dead key sequence. So, this is stateful.
|
|
*/
|
|
UniCharsAndModifiers GetDeadUniCharsAndModifiers() const;
|
|
|
|
/**
|
|
* GetCompositeChar() returns a composite character with dead character
|
|
* caused by mActiveDeadKeys, mDeadKeyShiftStates and a base character
|
|
* (aBaseChar).
|
|
* If the combination of the dead character and the base character doesn't
|
|
* cause a composite character, this returns 0.
|
|
*/
|
|
char16_t GetCompositeChar(char16_t aBaseChar) const;
|
|
|
|
// NativeKey class should access InitNativeKey() directly, but it shouldn't
|
|
// be available outside of NativeKey. So, let's make NativeKey a friend
|
|
// class of this.
|
|
friend class NativeKey;
|
|
};
|
|
|
|
class RedirectedKeyDownMessageManager {
|
|
public:
|
|
/*
|
|
* If a window receives WM_KEYDOWN message or WM_SYSKEYDOWM message which is
|
|
* a redirected message, NativeKey::DispatchKeyDownAndKeyPressEvent()
|
|
* prevents to dispatch eKeyDown event because it has been dispatched
|
|
* before the message was redirected. However, in some cases, WM_*KEYDOWN
|
|
* message handler may not handle actually. Then, the message handler needs
|
|
* to forget the redirected message and remove WM_CHAR message or WM_SYSCHAR
|
|
* message for the redirected keydown message. AutoFlusher class is a helper
|
|
* class for doing it. This must be created in the stack.
|
|
*/
|
|
class MOZ_STACK_CLASS AutoFlusher final {
|
|
public:
|
|
AutoFlusher(nsWindowBase* aWidget, const MSG& aMsg)
|
|
: mCancel(!RedirectedKeyDownMessageManager::IsRedirectedMessage(aMsg)),
|
|
mWidget(aWidget),
|
|
mMsg(aMsg) {}
|
|
|
|
~AutoFlusher() {
|
|
if (mCancel) {
|
|
return;
|
|
}
|
|
// Prevent unnecessary keypress event
|
|
if (!mWidget->Destroyed()) {
|
|
RedirectedKeyDownMessageManager::RemoveNextCharMessage(mMsg.hwnd);
|
|
}
|
|
// Foreget the redirected message
|
|
RedirectedKeyDownMessageManager::Forget();
|
|
}
|
|
|
|
void Cancel() { mCancel = true; }
|
|
|
|
private:
|
|
bool mCancel;
|
|
RefPtr<nsWindowBase> mWidget;
|
|
const MSG& mMsg;
|
|
};
|
|
|
|
static void WillRedirect(const MSG& aMsg, bool aDefualtPrevented) {
|
|
sRedirectedKeyDownMsg = aMsg;
|
|
sDefaultPreventedOfRedirectedMsg = aDefualtPrevented;
|
|
}
|
|
|
|
static void Forget() { sRedirectedKeyDownMsg.message = WM_NULL; }
|
|
|
|
static void PreventDefault() { sDefaultPreventedOfRedirectedMsg = true; }
|
|
static bool DefaultPrevented() { return sDefaultPreventedOfRedirectedMsg; }
|
|
|
|
static bool IsRedirectedMessage(const MSG& aMsg);
|
|
|
|
/**
|
|
* RemoveNextCharMessage() should be called by WM_KEYDOWN or WM_SYSKEYDOWM
|
|
* message handler. If there is no WM_(SYS)CHAR message for it, this
|
|
* method does nothing.
|
|
* NOTE: WM_(SYS)CHAR message is posted by TranslateMessage() API which is
|
|
* called in message loop. So, WM_(SYS)KEYDOWN message should have
|
|
* WM_(SYS)CHAR message in the queue if the keydown event causes character
|
|
* input.
|
|
*/
|
|
static void RemoveNextCharMessage(HWND aWnd);
|
|
|
|
private:
|
|
// sRedirectedKeyDownMsg is WM_KEYDOWN message or WM_SYSKEYDOWN message which
|
|
// is reirected with SendInput() API by
|
|
// widget::NativeKey::DispatchKeyDownAndKeyPressEvent()
|
|
static MSG sRedirectedKeyDownMsg;
|
|
static bool sDefaultPreventedOfRedirectedMsg;
|
|
};
|
|
|
|
} // namespace widget
|
|
} // namespace mozilla
|
|
|
|
#endif
|